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Abstract. Older adults reported that a robot in their homes would be
of great help if it could find objects that users regularly search for. We
propose an interactive method to learn objects directly with the user and
the robot and then use the RGB-D model to search for the object in the
scene. The robot presents a turntable to the user for rotating the part in
front of its camera and obtain a full 3D model. The user is asked to turn
the object upside down and the two half-models are merged. The model
is then used at predefined search locations for detecting the object on
tables or other horizontal surfaces. Experiments in three environments,
up to 14 objects and a total of 1080 scenes indicate that present detection
methods need to be considerably improved to provide a good service to
users. We analyse the results and contribute to the discussion on how to
overcome limited image quality and resolution by exploiting the robotic
system.

Keywords: Robot object learning - 3D object modelling - RGB-D
model - Object detection in clutter

1 Introduction

Recently several vision methods have been used on mobile assistive or compan-
ion robots. These can be summarised to fall into three groups [1]: face, gesture
and posture recognition methods for interacting with the user, navigation meth-
ods beyond using laser but rather RGB-D sensors to cope with the truly 3D
environment, and methods to recognise objects.

It is interesting to note that most of the robots operate in care facilities.
First robots have been operated either locally or remotely and did not possess
autonomous navigation capabilities. Only recently a few robots moved out into
the homes of users, e.g. [2,3]. The big step forward in recent work is that the
robot should be at least partially autonomous in the user’s home. So far robots
have been operated remotely or only for very few tasks in a home during limited
time of user trials, for example in [4-6]. It was pointed out by the researchers
that the autonomous navigation capability would be of high importance.

Autonomous navigation in user homes enlarges the possible set of assistive
functions. Experience has shown and user studies have confirmed that a modular
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approach with customisable features would most suitably satisfy the heteroge-
neous group of older people who could benefit from the use of a mobile robot
in their homes. Example functions that could use computer vision methods are
detecting emergencies, adaptive robot behaviour depending on user behaviour,
picking up objects from the floor or other locations, or the detection of objects.

In workshops with older adults, users indicated that it would be a very useful
function if the robot could find and detect objects. They reported to search
relatively often for a few typical objects such as handbag or mug.

To realise this demand, we developed a procedure to detect objects that
are of interest to users. This demand generalises to object search and delivery
scenarios. To implement such an assistive function for robots needs three basic
robot and vision capabilities.

1. Learn about the object of interest that the user wants to be detected and
create a model for later usage.

2. Detect the object using the learned model.

3. Grasp the object and deliver it to the user either in the gripper or in a storage
tray on the robot.

In this paper we report on the first two capabilities. Object grasping has
been shown elsewhere already and object learning and detection are the core
abilities for a robot in an object search and deliver scenario. For object learning
and detection in a home setting there are two specific challenges that need to be
tackled.

1. Autonomous object learning: The objects of interest will vary for every user.
Hence, it is necessary to learn these objects. In a beginning phase an adviser
or care person could assist, but assuming a wide use of service robots, this
would not be feasible. Consequently, a method is needed that allows the user
herself to teach the robot which objects are of her interest and need to be
detected.

2. Variety of home settings: the detection procedure needs to be able to cope
with detecting everyday objects that have very different types and it needs to
find them under the largely varying conditions in a home environment. This
conditions include but are not limited to the ambient illumination situation
and that objects are typically not standing alone but rather found in cluttered
scenes.

Further requirements such as detecting good search positions in the first places
or an autonomous detection of such search location are beyond the scope of this
work. We will focus on these two functions that are challenging in themselves.
The contribution of this paper is an approach that first lets the user model
an object together with the robot and that then uses the learned model for
detecting the object at specified search locations. To the best of our knowledge
this is the first time that a user will trigger the learning procedure and conduct
the procedure to acquire a full 3D model of the object of interest. Figure 1 shows
the robot with the turntable that is used for object learning. The detection
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procedure itself capitalises on a mix of well established methods to combine
colour and depth information of the learned models for object detection. The
method of acquiring the model of a specific object will be made available open
source.

Fig. 1. The robot used for learning object models and then using the models for object
detection. The robot is shown during the acquisition of the model of an object of
interest. It uses an active robot head to direct an RGB-D camera towards the object.
The object is placed on a turntable including natural script on its side walls (masked
for reasons of anonymity). The user initiates the robot learning procedure and then
the robot guides the user through the necessary modelling steps. The processing steps
are executed autonomously.

The second contribution of the paper is to evaluate the learning and object
recognition method in a robotic use case and scenario. We evaluated the method
by presenting the robot with real-world scenes in three different environments.
This includes that the robot autonomously navigated to the target locations. The
intention is to learn the difficulties in real-world settings and to propose further
work to render vision methods for assistive robots more and more robust.

The paper is structured as follows. After reviewing related work on model
learning, we introduce the robot system approach to learning an object model
and recognising the models in Sect. 2. Section 3 describes how the learned model
is used in the robotic search procedure to detect the object. And Sect.4 sum-
marises the results of the experiments, analyses the problematic cases and dis-
cusses possibly improvements.
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1.1 Related Work

Object modelling typically involves steps to accurately track the moving camera,
segment the object from the background, and post-processing such as global
camera pose optimisation and surface refinement. Approaches to learn models
of objects either use distinctive features or the shape of the object in an iterative
optimisation approach.

Regarding distinctive features, the most well-known methods are the Scale
Invariant Feature Transform (SIFT) [7]. The feature points are used to find
correspondences of object points in image pairs. This enables the registration
of RGB-D images for modelling an object or scene in general. For example,
in [8] the authors developed a Visual SLAM (Simultaneous Localisation and
Mapping) approach that tracks the camera pose and registers point clouds in
large environments. Distinctive points can also be used to directly reconstruct
models for object recognition. For example, Collet et al. [9] register a set of
images and compute a spare recognition model using a Structure from Motion
approach.

Another type of method to acquire a model of an object from multiple images
is based on the well established Iterative Closest Point (ICP) algorithm. For
example, Huber et al. [10] as well as Fantoni et al. [11] focus on the registration
of unordered sets of range images, while Weise et al. [12] track range images and
propose an online loop closing approach.

Objects are typically learnt by using a turntable, e.g., [13]. There are also
a few works that model objects in the hand of a robot. In [14] the authors
propose a robotic object modelling approach where the object and the robotic
arm are tracked with a variation of the articulated ICP approach. [15] tracks the
target object including a loop closure for adjusting the model points after a full
360 degrees rotation. And the authors in [16] proposed an efficient SLAM-based
registration method. Object models are built by selecting a volume of interest,
defined by a user as an input mask in one image, plus the height above the
support plane.

We extend these methods by allowing the user to handle and drive the mod-
elling steps. With this we make sure that constraints due to the modelling meth-
ods are handled by the robot system rather than an expert user as in the works
above. There is no need to select an object region or other expert input. It is
also not necessary to control the distance of the object to the camera, to seg-
ment objects from the background, and tracking uses fiducial markers. Further-
more, we directly link the learned model to the object detection step. Regarding
object detection, methods are numerous and a full review goes beyond the scope
of this workshop paper. Existing object detection methods consider the case
where a database of trained objects is used to match it with sensor data. Typi-
cally, the systems focus on individual algorithms that only work on objects with
specific object characteristics, e.g., point features for 3D opaque objects [17],
visual keypoint descriptor based systems like MOPED [9] for textured or [18] for
translucent objects. Users neither nor not want to know about object features
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or characteristics. Hence, we will use a method that combines known detection
methods for object detection.

2 Learning and Detecting Objects of Users

In the spirit of an assistive robot, learning of objects must be interactive. We
implemented this on our robot depicted in Fig. 1. To overcome practical issues
of object learning as indicated above, we devised a turntable that is mounted
within the robot body and that the robot can extract for this purpose. Earlier
trials with asking the user to put the turntable into the hand of the robot failed
since it is then difficult to obtain a repeatable location of the turntable in the
robot hand. In the following we outline the learning procedure.

First, the user has to call the robot to bring it in a position close to the user.
The user initiates the task of learning an object either by pressing the button on
the touch screen or a verbal command. The robot moves slightly from the user
using the depth image from the head to have sufficient clear space to be able to
extend its arm. It then grasps the turntable located on its body and presents
the turntable to the user in a position such that it can be reached conveniently.

In the next phase, the robot guides the user through the steps of learning the
object model. First, the robot asks the user to place the object on the turntable.
It then rotates executes a full rotation with the turntable while acquiring images
from its head RGB-D sensor. The robot then asks the user to turn the object
upside down and repeats the procedure. Finally the robot asks the use to take
the object from the turntable and it restores the turn table into the robot body.
This procedure takes about three minutes with the robot, where the arms moves
particularly slowly when it is retrieved and restored to make sure the arm moves
safely and will not hit the user or the environment.

As Fig. 1 shows, we designed a squared turntable which enables robust and
accurate camera pose tracking relative to the turntable. Hence, any kind of object
regardless of its texture or shape can be learned. Next, we summarise the model
learning method using the acquired images.

2.1 Learning Object Models on a Turntable of the Robot

Given the positions of the turntable from tracking its pose, object learning is
based on RTM - Toolbox for Recognition, Tracking and Modelling of Objects
presented in [19] and available on-line (http://www.acin.tuwien.ac.at/?id=450).
It operate as follows. First RGB-D images are captured and the camera pose
is tracked with respect to the region of interest (ROI) covering the object and
the squared turn table. Since the robot pose is known this ROI can be easily set
using a depth segmentation around the known pose of the turntable.

Two algorithms, namely an image key point based pose tracking pipeline
and an Iterative Closest Point (ICP) approach are implemented to estimate the
camera motion. Both algorithms are state of the art and allow robust camera
pose tracking. Additionally, we implemented the non-linear pose optimization
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proposed by Fantoni et al. [11], which compensates the drift. A final filtering
step using a weighted voxel grid inspired by KinectFusion [20] is used to sub-
sample and smooth the reconstructed object point cloud. Results of learned
RGB-D models are shown in Fig. 2. It shows rendering of eight objects from the
textured 3D model.

Fig. 2. Examples of models obtained from a set of images when rotating the object.
The models are stored as textured 3D point clouds.

The RTM toolbox for object modelling and recognition [19] works best with
object distances of about 80 to 160 cm using the standard Kinect. It can also
be used with other RGBD sensors. Since resolution drops significantly at larger
distances, models will then not be as accurate but modelling is possible.

2.2 Detecting Objects Using the Learned Object Model

For object detection we adopt a method that recently solved several databases
for 3D object recognition [21]. We select this method since it combines in an
optimisation framework the advantages of local and global methods of object
recognition and proved to be effective by fully solving several challenges in data-
bases for the first time. This serves the purpose of handling methods that can
detect different types of objects with different characteristics such as with and
without texture as outlined above.

The method is based on a combination of different recognition pipelines,
each exploiting the data in a different manner and generating object hypothe-
ses that are later fused in a Hypothesis Verification stage [22] that globally
enforces geometric consistency between model hypotheses and the scene. Such a
scheme boosts the overall recognition performance as it enhances the strength of
the different recognition pipelines while diminishing the impact of their specific
weaknesses. Specifically, the currently implemented pipelines take advantage of
the multi-modality of the RGB-D data:
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— A semi-global 3D descriptor representing an extension of CVFH approach [23]
based on the colour, shape and object size cues. Regarding the segmentation
stage required by the semi-global pipeline, we adopted the standard plane
segmentation methods as available in the Point Cloud Library [24].

— A 2D local descriptor, SIFT [7], which is able to generate object hypotheses
with associated 6 DOF (Degrees of Freedom) pose by back-projection of the
2D keypoint locations into the 3D space.

— A 3D local descriptor, SHOT [25] aimed at establishing correspondences
between model and scene surface patches.

Given the object models as learned above, also detection works best in distances
up to two metres. As will be explained in the procedure below, we used the
proper distance to define appropriate search locations. The view angle is given
due to the fixed height of the robot and a good angle down onto the table. Note,
that object orientation can still be random since the full viewing sphere od the
object has been model. An evaluation of object detection over distances is part
of future work.

3 Procedure for Robotic Object Detection

Ideally the robot is able to search for the object of interest in any environment.
However this would mean to autonomously create a sequence of view points that
cover the full 3D environment. Such methods are not yet available [26]. Using the
human model, the search should also take into account previously seen object
locations and rooms, semantic information on where typically a specific object
is located, or contextual information from the room structure that may bais the
object search.

The actual robot implementation used a simple search procedure, based on
the optimization of a cost function. As a prerequisite, several “search locations”
per room have to be defined in the map during the initialization phase. These
search locations are defined with the users and comprise tables and shelves where
to detect the objects of interest. This may seems as a restriction at first, but
be aware that algorithmic solutions are difficult [26] and would still need to
capture the semantics of rooms and objects, both open research topics. Hence,
in a first practical approach to evaluate real-world object detection, this seems
a fair approach until more advanced methods become available. What comes
close to include these semantics is the approach taken in [27], where the labels
of items in the rooms [28] are taken to generate search locations on the fly.

If an object has to be searched for, the cost function is evaluated for every
search location. The locations are then sorted according to their corresponding
cost, which yields the optimized search procedure for the object. The cost func-
tion takes several aspects into account, such that a good trade-off between the
probability of the object being found at a search location and the time it takes
to get there can be found. While the different locations are searched by the robot
one-by-one, the probabilities of the object being there are permanently updated
depending if the object has been found or not.
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Moreover, a penalty term is added to locations which are in the same room as
the user, as we assume that the object is most likely located in a different room
which should therefore be searched first. If a room cannot be reached because
the path is blocked, the costs for all search locations in that room are increased
such that these locations are considered last during the search procedure.

This comes close to using a semantic scene segmentation algorithm. The
purpose of such an approach is to generate a segmentation of the scene, visible
by the head Kinect, into semantically meaningful parts, like floor, wall, table,
shelf, etc., e.g., [29]. Using the additional knowledge of the semantic segmen-
tation result, the search procedure for objects could be further automated and
optimized, without the need of specifically labelled search locations. Instead,
the robot figures out itself, where possible object locations might be (objects are
most likely located on tables, shelves...) and where it has to navigate to in order
to be able to detect them. The knowledge could be exploited even further, to
generate complete semantic maps of the environment, allowing the user to send
the robot to automatically detected places like the table in the living room.

The proposed method uses this knowledge only insofar as it fits planes as part
of the fitting procedure. The selection is given by the pre-set search locations.
This is also necessary to obtain an evaluation of the detection methods and not
mix detection with semantic labelling or view point selection.

The scenario we evaluate is the request of a user to detect a specific object.
An example is given in Fig.3. The evaluation procedure takes the image and
detection is run versus all stored object models using the global hypothesis ver-
ification framework [21]. In a last step it uses the generated object detection
hypothesis in a verification step, where the model is fit to the data. If this
fit gives a confidence above 95 percent, the detection is reported as successful.
Other detections with lower probabilities are not considered since most of the
time found to be not correct. A thorough evaluation of this initial procedure is
future work. In the following we describe the experiments conducted in more
detail.

Fig. 3. Example of a search procedure. The task is to search for the red mug. When
entering the room, two other locations are closer and searched first. Other known
objects are found and their location is stored for future search operations.
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4 Experiments

The tests for the object detection scenario were conducted in three environments
that were built and furnished to resemble home settings. Systematic tests in a
user home could not yet be made, since permitted time at the user sites was too
short. The three test environments have been an office setting, where objects of
daily use have been arranged in typically cluttered scenes (Envl), an ambient
assisted living (AAL) laboratory that has been built with the purpose to resemble
an older user home (Env2), and a living room setting specifically designed for
testing assistive robot capabilities (Env3).

When conducting user trials with older adults, we defined search positions
related to tables or boards where the users would typically place objects (anony-
mous, paper submitted). We replicated this procedure by defining four search
positions in each of the three environments.

During the experiments for object detection the robot will navigate to the
position that has the highest probability to find the object. This will use the
knowledge of where the object has been seen before respectively knowledge about
the typical rooms where a certain object is found. The robot will plan the shortest
path to the selected search position to reduce unnecessary power usage.

The tests in user homes also indicated that objects are often found in clutter
rather in the first test scenes such as Fig. 3. For our test we set up each scene
with clutter. We also place one or multiple known objects on the table to check if
more than one known object can be detected. We count objects only if they are
within the robot’s field of view at the search position. When the robot arrives
at the search positions, it starts the recognition and records, which objects were
recognized, which object were not recognized, and where an object was falsely
reported (false positives). We conducted 10 trials for each search place. Figure4
gives four examples scenes indicating the typical clutter, object occlusions, back-
ground illumination, and other effects that render object detection difficult in a
natural environment.

We used 12 respectively 14 different objects in the three scenarios. For three
environments this results in a total of 1080 trials where the robot autonomously
navigated to one of the search locations and initiated the detection of all of the
learned objects.

Table 1 summarises the results for the objects, the three environments and
gives a summary. There have been no false positives—the method was tuned to
not falsely report object detections. On the other hand, this leads to more objects
going undetected. In the tables we report the number of successful detection out
of the multiples of 10 trials each (different for each object between 10 and 50
trials). We report only positive detections, since the procedure as outlined above
uses a verifications step that is very confident to select the correct object given
the viewing of an object is satisfactory. An extension to work with less likely
hypothesis is a good extension as indicated by the reviewers.

On first view the overall result of 52 % detection rate is not satisfactory. On
the other hand, the task is indeed challenging and individual methods would
rank much lower since specialised on one type and characteristics of objects
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Fig. 4. Four example images showing the objects and the scenes with clutter. Note
that objects can have very different viewpoints and scenes include cases with strong
background that render detections difficult to infeasible.

only. A comparison to other methods is not directly feasible. As of today, there
is no other modelling tool available that would allow a robot to obtain an object
model and move in the environment to detect the object. A similar attempt has
been made by learning objects from the robot in [30], but the robot navigates
around objects rather than moves it with the robot arm and only a partial
viewing sphere is captured.

Table 2 summarises results for the three different environments. Performance
is similar. While the detection results of slightly more than half the objects are
not impressive, this result was expected and reflects the present state-of-the-art
in object detection methods when applied to the wild and in realistic settings.
Furthermore, we know from the detection methods that feature-less objects such
as toilet paper and water boiler are difficult to distinguish from the background.
Similar difficulties give handbags if they are rather feature-less like the one used.
On the other hand, larger objects with clear texture such as the ketchup, Mueller
bottles, and tea box exhibit the expected satisfactory to good results.
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Table 1. Summary of detection rate for each object and environment (Env# where
# is 1 to 3; EnvAll refers to the sum of all three Environments). The numbers in the
table give the successful detections of the target objects out of the 10 to 50 trials. In
total 1080 object detections would have been possible.

Object Envl Env2 Env3 EnvAll Rate
Asus Xtion box 0 10| 20 20 12 40| 32 700,46
Cisco telephone 20 40 21 40| 30 40 71 120 0,59
Cleaning agent bottle 11 30| 20 30| 28 30| 59 90 | 0,66
Felix ketchup bottle 10 10 17 20 27 30/0,9
Handbag 1 10/ 0 40| 16 50| 17 100 | 0,17
Muellermilch bottle banana | 20 30 1 20| 30 30 51 800,64
Muellermilch bottle choco 20 40| 20 20 30 30| 70 900,78
OpenCV book 25 30| 13 40 1 10| 39 800,49
Red mug with white dots 33 40 11 40 0 10| 44 900,49
Strands mounting unit 10 20 1 200 O 10 11 500,22
Tea box 9 20| 34 40| 24 40| 67 100 | 0,67
Toilet paper roll 0 30 0 30 0 600
Water boiler 0 10 0 1010
Yellow toy car 29 40| 20 30| 21 40| 70 110 | 0,64
Total 188 | 360|178 |360]192 |360|558 1080 | 0,52

Table 2. Summary of detection rate for the three environments.

Environment | # of different objects | # of trials | Detection rate
1 14 360 52,2
2 12 360 494
3 12 360 53,3
Total 14 1080 51,7

4.1 Discussion

When analysing the results, there are several factors that explain the many cases
where objects are not detected.

— Limited dynamic range of the camera: often the robot enters a room and on
the other side is a table. Looking against windows introduces highlights and
reflections and renders objects dark. For robot navigation purposes we used
high dynamic range cameras that improve but not resolve this case. Similarly,
object detection methods need a mechanism to evaluate if the image in itself
has feasible dynamic range and in principle allows to detect an object.
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— Specific limits of sensitivity: sunlight through the window renders the depth
image void. Similar to above, detecting these cases and reverting to methods
that rely on other modalities will be the better robot system approach. Even
better cameras and sensor will have specific characteristics that are better
handled from a system perspective.

— Limited resolution of depth camera: non-textured objects are detected using
the depth image. The resolution of the depth channel of present range cameras
is much smaller than of colour images. Particularly with increasing distance,
and this may well be the far end of the table, detection results deteriorate
quickly. This cries for alternative sensors or using other approaches to over-
come this issue.

For all the cases above, assistive vision approaches may profit most if the robot
system exploits its mobility to select better view points and uses all its contex-
tual knowledge about the environment for pruning hypothesis. The robot could
exploit far and close range methods and purposively combine weak hypotheses
by getting closer. It could detect other objects and use priors. And certainly, the
robot will also profit from more advanced methods of reliably detecting objects
in images, in particular objects of very different characteristics such as with and
without texture, simple and complex shapes, or single and many colours.

Finally, the steady advance in camera technology brought us already to the
level where we are right now. Hence, we can expect more and more advances and
improvements in the near future from this side alone. Still, camera technology
alone will not solve the case. The complementarity of methods and the exploita-
tion of the robot system and the knowledge about the environment it has needs
to be exploited in a much more rigorous fashion.

5 Conclusions

In this paper we investigated the scenario of assisting older adults with a
method to learn their favourite objects and to detect the learned objects in
a home environment. To this end we adapted a method to learn the object
autonomously from the robot using a turntable and a clear procedure to guide
the user through the learning method. We then spent considerable effort to run
the robot autonomously to 1080 locations and view a given setting with small
navigation uncertainties. Navigation in itself was fond to be accurate within a
few centimetre and less than one degree. What we tested was the detection of
up to 14 target objects using a set of four pre-set search locations with the small
navigation uncertainties in three different environments.

We challenged the system by using target objects that had different charac-
teristics with and without texture, single and multiple colours, and basic and
more elaborate shapes. Adapting a method that globally optimises over multi-
ple hypothesis we combines three detection methods to cope with these different
object characteristics.

The results show that even a combination of methods achieves hardly sat-
isfactory results. The analysis of the results indicates that camera properties
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are not sufficient: both dynamic range and resolution are the main reasons for
missed detections in a non optimal setting. Having control over object size, set-
ting and image quality would render result much better. However these factors
are difficult to control in an open home setting.

On the contrary, on of the intansion of this workshop paper is to contribute
to the discussion on how vision methods that are typically trained on an image
database can be made more suitable to the open settings on robots. The study
indicates that present object detection methods are getting useful for assistive
robots in a home setting but further work is needed.

Future work should have a look at the practical challenges posed in actual
home settings. One such challenge is to locate objects that are visible but in
the image the resolution, illumination situation or clutter do not allow present
methods to detect the object. Following an idea presented already a decade ago
in [31] we might use the cognitive power of humans to aid in detecting the target
objects and learn from these detections. While in itself a cumbersome approach
that will need a lot of user interaction, older adults indicated that they would be
interested to help the robot. An ease-to-use interface with potentially indicated
object hypotheses may be one option. We could here use less likely detections
that may also include false positives, but users would be very quick to select
the correct object. In this way the robot would learn both correct and false
detections and could improve its object detection capability.

We see this only as starting a deeper discussion of the discrepancy between
databse driven research and the open settings a robot would approach in homes.
There is the need to make explicit the type of objects that can be handled by a
certain method, discuss methods that integrate other methods, and—we think
most of all—how to better exploit the contextual knowledge a robot has about
a scene to improve detection results. Given a robot system it seems much more
obvious to detect and exploit scene context rather than detecting it in an image
alone.
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