Fall Detection Based on Depth-Data in Practice

Christopher Pramerdorfer' ™), Rainer Planinc!, Mark Van Loock?,
David Fankhauser!, Martin Kampel', and Michael Brandstotter?

1 CogVis, Vienna, Austria
pramerdorfer@cogvis.at
2 Toyota Motor Europe, Brussels, Belgium

Abstract. Falls are a leading cause of accidental deaths among the
elderly population. The aim of fall detection is to ensure quick help
for fall victims by automatically informing caretakers. We present a fall
detection method based on depth-data that is able to detect falls reliably
while having a low false alarm rate — not only under experimental condi-
tions but also in practice. We emphasize person detection and tracking
and utilize features that are invariant with respect to the sensor position,
robust to partial occlusions, and computationally efficient. Our method
operates in real-time on inexpensive hardware and enables fall detection
systems that are unobtrusive, economic, and plug and play. We evaluate
our method on an extensive dataset and demonstrate its capability under
practical conditions in a long-term evaluation.

Keywords: Fall detection - Depth-data + Evaluation - Practice

1 Introduction

Falls are a major public health problem. Between 30 % and 60 % of US citizens
of age 65 or older suffer from falls each year, and 10 % to 20 % of these falls
result in serious injury, hospitalization, or death [1]. In fact, falls are the leading
cause of accidental death in this age group [2]. Immediate help and treatment of
fall-induced injuries is vital for minimizing morbidity and mortality rates [3,4].
However, statistically every other fall victim is unable to get back up without
help [2]. Falls are thus particularly dangerous to older persons that live alone.

To this end, there has been active research in the field of fall detection, with
the aim of detecting fall incidents and informing caretakers such as family mem-
bers or ambulance personnel automatically [4]. One approach to fall detection
is to employ optical sensors and computer vision. For example, several methods
based on video cameras have been proposed [4]. However, camera images con-
vey limited information in terms of scene geometry, reducing the robustness of
such methods. Moreover, cameras do not work in darkness, hence unobtrusive
fall detection during nighttime is not possible. Furthermore, camera-based fall
detection raises privacy concerns [5]. Active depth sensors do not have these
limitations. They work in darkness, measure distances from which scene geom-
etry can be recovered, and are robust to illumination changes and shadows.
A well-known example is the Microsoft Kinect.

© Springer International Publishing Switzerland 2016
G. Hua and H. Jégou (Eds.): ECCV 2016 Workshops, Part II, LNCS 9914, pp. 195-208, 2016.
DOI: 10.1007/978-3-319-48881-3_14

196 C. Pramerdorfer et al.

Several fall detection methods using the Kinect sensor have been proposed,
most of which utilize background subtraction [6] for person detection and height-
based features for fall detection. For instance, [5,7,8] analyze the centroid height
of persons, whereas [9] examine head heights. In [10] falls are detected based on
the spine height and orientation. Many methods (e.g. [5,11,12]) also incorporate
velocities, arguing that the vertical velocity of persons increases significantly
during falls. Dubey et al. [13] follow a different approach, extracting HU features
[14] from motion history images and using a SVM for classification. All these
methods reportedly perform well on simulated falls, but none were evaluated
extensively under real-world conditions.

These methods have limitations in practical use, in which falls must be
detected regardless of fall speed and ending pose. Under these circumstances,
velocity is not a reliable feature for fall detection. Falls may end in a sitting
position, but it seems that only [10] take such falls into account. Furthermore,
falls might be partially occluded or invisible due to the limited field of view,
a challenge that is not addressed by many of these methods. Several methods
(e.g. [5,8,9]) do not perform tracking nd thus do not support multiple moving
objects.

Some of the discussed methods also lack in terms of practicability. Those
presented in [7,13] seem to be too complex for real-time operation on inexpen-
sive hardware such as ARM-based single-board computers, which we consider
important to allow for a broad acceptance. The method presented in [9] is able
to do so but requires a wearable device, which is intrusive. The features used in
[9,13] are not invariant with respect to the sensor position, which restricts the
sensor placement and thus complicates the system setup.

In this paper, we present a fall detection method that aims to address these
shortcomings. Our method can detect slow and partially occluded falls as well
as falls ending in a sitting position. We utilize the available distance informa-
tion to recover the geometry of objects in an invariant and efficient way, which
enables discriminative features for person and fall detection. Automatic calibra-
tion enables plug and play operation and flexibility in terms of sensor placement,
facilitating the installation. In order to minimize the hardware costs for end users,
our method was designed to be efficient enough to run on inexpensive hardware
such as the Raspberry Pi 2 or the Odroid Cl4. Our method supports vari-
ous inexpensive off-the-shelf depth sensors including those based on PrimeSense
technology (e.g. Kinect 1, Asus Xtion, Orbbec) and Kinect 2.

We evaluate the performance of our fall detection method using a compre-
hensive test dataset as well as a large publicly available dataset. Furthermore,
we present results of a long-term study carried out under real-world conditions.
The results show that our method is able to detect even challenging falls reliably
while having a low false alarm rate in practice (around one false alarm per week).

This paper is organized as follows. Our fall detection method involves the
steps (i) automatic calibration and scene analysis, (ii) motion detection, (iii)
person detection and tracking, and (iv) fall detection, which are presented in
Sects. 2, 3, 5, and 6, respectively. Experimental results are presented in Sect. 7,
and conclusions are drawn in Sect. 8.

Fall Detection Based on Depth-Data in Practice 197

2 Automatic Calibration and Scene Analysis

Our fall detection method is flexible in terms of sensor placement in order to
facilitate the system setup and support plug-and-play; the only requirement is
that a part of the floor must be visible to the sensor. In order to achieve plug-and-
play functionality, we perform automatic sensor calibration at system startup in
order to estimate the sensor position and orientation. On this basis, we locate
areas in which reliable fall detection is possible, and detect scene objects.

2.1 Automatic Calibration

The purpose of automatic calibration is to recover the sensor extrinsics (posi-
tion and orientation). This is accomplished using ground floor detection. Our
algorithm for this purpose is based on filtering using normal vectors followed by
iterative RANSAC [15] plane fitting. We found this method to be more reliable
than alternatives [16] in case of significant floor occlusions.

Floor detection is accomplished by first converting a depth map D from the
sensor to an organized point cloud C in camera coordinates (organized means
that the structure is preserved, so that D(u,v) and C(u,v) correspond). This
allows us to estimate normals N efficiently,

N(u,v) = —n(u, v)/[[n(u, v)[|2
n(u,v) = (Clu+ 1,v) — C(u,v)) x (C(u,v+ 1) — C(u,v)). (1)

We then discard all points whose normal vectors do not coincide with the sen-
sor tilt, which is assumed to be between 0° and 60° downwards. This assumption
is general enough to allow for flexible sensor positioning and enables us to discard
points that cannot possibly represent the floor. This increases the robustness and
efficiency of the subsequent floor detection step.

In order to detect the floor plane reliably in presence of furniture and clutter,
we iteratively find the best-fit plane for the remaining points using RANSAC and
remove all inliers. This procedure continues until the number of inliers decreases
below a threshold. This generally leads to several detected planes. As the sensor is
located at the origin of the camera coordinate system, the plane that corresponds
to the floor is that with the largest distance to the origin.

The equation of this plane, (a,b,c,d) with ||(a,b,c)||]2 = 1, is then used to
recover the extrinsics; the sensor height is d and the orientation corresponds to
the rotation that maps (0,1,0) (the normal vector of the floor plane in world
coordinates, assuming that the positive Y axis points upwards) to (a, b, c).

2.2 Scene Analysis

Once the extrinsics are estimated, we convert a depth map to a point cloud in
world coordinates and detect scene objects via height-based point classification;
a point is classified as part of an object if its height is between 30 cm and 90 cm,

198 C. Pramerdorfer et al.

which includes beds, couches, and other resting accommodations. Object detec-
tion is carried out periodically in order to support scene changes at runtime.
Furthermore, we analyze the scene in order to determine which regions qualify
for reliable fall detection. This is the case if both fallen and upright persons in
a considered region would be in the field of view of the sensor.
The information obtained during scene analysis is utilized for person state
prediction (Sect.6.1), and for visual feedback on the sensor setup (Fig. 1).

Fig. 1. Scene visualization after automatic calibration and scene analysis. The detected
floor is shown in blue, scene objects are yellow, and regions in which reliable fall
detection is impossible are shaded (e.g. left side of the image). (Color figure online)

3 Motion Detection

Falls are characterized by motion. For efficiency, we therefore consider only areas
in which motion occurs. This is achieved by means of background subtraction,
i.e. motion is detected by comparing image frames to a background model that
represents the static parts of the scene [17]. Depth maps are well-suited for
this purpose as they encode distances and are thus robust to clothing color
and illumination changes [18]. On the other hand, this implies that background
subtraction must be sensitive in order to reliably capture fallen persons, which
are close to the background. To this end, we propose a distance-dependent noise
model that ensures that fallen persons are detected reliably.

The noise model described in this section is optimized for PrimeSense sensors,
but adaption to other sensors such as Kinect 2 is straightforward.

3.1 Noise Model and Pixel Classification

In [19] it was found that the random measurement errors of the Kinect increase
quadratically with distance d, with an RMSE of ey ~ 1.425 - 1076d2. We uti-
lize this information to derive a distance-dependent noise model for background

Fall Detection Based on Depth-Data in Practice 199

subtraction by approximating the noise of the sensor at object distance d as a
normal distribution with g = 0 and ¢ = e4. On this basis, we cast pixel clas-
sification as a novelty detection problem; a pixel with value v is classified as
foreground if (i) v differs by more than 3e,, from the corresponding background
model value m, and (ii) if v — m is negative. The second condition encodes the
fact that foreground objects must always appear in front of the background. This
effectively suppresses ghosts (foreground areas due to background changes [17]).

In order to account for the fact that our noise model is an approximation,
as well as increased sensor noise at object borders, we perform morphological
erosion with a small structuring element after all pixels are classified.

Our distance-dependent noise model and pixel classification methods ensure
a high sensitivity and thus that moving objects are captured reliably throughout
the measuring range, while at the same time suppressing noise.

3.2 Background Model

As our noise model is unimodal and depends only on the object distance, we
employ a background model in the form of a single matrix that represents the
central tendency of the observed measurements in every pixel. This model is
simple to process and maintain, which is important considering the limited com-
putational resources available. As the noise model is already known, an initial
training phase is not required. In fact, our method only requires a single frame
for initialization; the observed pixel values of the first frame constitute the initial
values of the background model. Model pixels that are zero (which denotes an
unsuccessful measurement) are inpainted.

Under practical conditions, the background might change over time, which
must be accounted for by updating the background model. To this end, we
periodically compare every pixel value v # 0 of the current frame with the
corresponding background model value m; m is increased if m < p and decreased
if m > p. This causes m to converge towards the temporal median [20].

Such gradual update strategies entail a compromise in terms of the update
rate; high rates cause unmoving foreground objects to disappear quickly (which
can hinder fall verification) whereas low rates cause persistent errors in case of
background changes. To overcome this problem, we employ a second, complemen-
tary means for updating the model; we periodically test for whether v—m > 3e,,
and, if so, set m := v. This method effectively compensates background changes
and allows us to keep the gradual update rate low.

4 Conversion to Plan-View Space

A key characteristic of our fall detection method is that all analysis is done
in plan-view space [21]. This space, which resembles a synthetic top-view of
the scene under orthographic projection, is well-suited for fall detection for two
reasons. First, it represents the scene geometry in a concise way, allowing real-
time operation on low-end hardware. Second, it is invariant with respect to the

200 C. Pramerdorfer et al.

(a) depth map (b) point cloud (c) height map

Fig. 2. Transformation of foreground pixels (green) to plan-view space. (Color figure
online)

sensor position and orientation, enabling invariant features for person and fall
detection as well as facilitating the system setup.

Foreground pixels are mapped to plan-view space by first reprojecting them
to world coordinates. The resulting points are then downsampled along the X
and Z axes (the positive Y axis points upwards) and discretized to obtain plan-
view coordinates. In this process, several points may be mapped to the same
plan-view coordinates, and different means for consolidating these points to a
single scalar result in different scene representations. We employ two kinds of
these representations, occupancy maps O and height maps H [22]. The former
encode the number of points mapped to each plan-view coordinate, whereas the
latter store the largest observed Y coordinates [21,22]. Figure 2 illustrates the
process of height map generation. After conversion, both maps are smoothed
using a Gaussian filter to compensate for rounding effects.

Occupancy and height maps are complementary with regard to person detec-
tion. The former are robust to sensor noise but not to occlusions, while the latter
are robust to partial occlusions but susceptible to noise. To this end, we set all
occupancy and height map pixels whose occupancy is below a threshold to 0,
which is a reliable method for noise removal [22,23].

5 Person Detection and Tracking

Our fall detection method includes an effective person detection and tracking
stage. This enables reliable analysis even if there are multiple moving objects
(e.g. persons or pets) in the scene. This stage entails two steps, the detection of
persons in the current frame, and tracking of persons over time.

5.1 Person Detection

We perform person detection on a per-region basis in plan-view space. For this
purpose, we find all connected components in the binary height map H > 0,
which are then classified as (non-)persons. For classification we use a vector
f of four features that encode object geometry: (i) occupied area (number of

Fall Detection Based on Depth-Data in Practice 201

plan-view pixels), (ii) object height (0.95th quantile of height map values), (iii)
object density (0.95th quantile of occupancy map values), and (iv) object shape
(side ratio of the bounding box). These features have a clear interpretation, are
efficient to compute, and robust with respect to person position and orientation.

Classification is performed by a random forest [24] that was trained on about
20,000 frames depicting persons and other foreground objects such as chairs,
rollators, and pets. The frames were extracted from a subset of sequences in
our test dataset (Sect.7.1), and foreground objects were manually segmented to
obtain ground-truth data. The frames depict persons performing various activi-
ties, including walking, using a wheelchair or rollator, sitting, and lying, in order
for the classifier to recognize persons regardless of pose. The frames depict per-
sons at varying levels of occlusions in order to obtain a classifier that is robust
in this regard. Random forest hyperparameters were cross-validated.

Random forest classifiers are well-suited for our task because they generalize
well [24], are efficient, and predict class-conditional probabilities Pr(P|f).

5.2 Tracking

The goal of the tracking step is to associate person regions (those for which
Pr(P = 1|f) > 0.5) between frames. For this purpose, we represent each person
region R; by a feature vector x; = (c;;f;), which is utilized for computing
association costs. ¢; = (z;, z;) is the location (center of mass) of R;,

cj = Z(OI(RJ») > O(p)p. (2)

PER;

The goal is thus to associate n person regions in the current frame with m
regions in the previous frame in a way that minimizes a global association cost.
Our per-sample association cost w;; incorporates both proximity and feature
similarity of the associated regions R; and R;, and is defined as

3)

s — {al lei = cslla +aa I = £l if lles = ejllz < te
! 00 otherwise.
The factors aq, as weight the impact of proximity and feature similarity, while
t. accounts for the fact that the velocity of persons is limited.

In order to be able to solve the resulting optimization problem efficiently,
we demand that m = n and that each track must be assigned to a different
region. This results in a linear assignment problem, which can be solved using
the Hungarian algorithm [25]. We ensure that m = n (which is not always the
case because persons may enter or leave the view at any time) by introducing
dummy regions [26]. Before association, the location of regions of the previous
frame are predicted for the current frame using Kalman filters [27].

202 C. Pramerdorfer et al.

6 Fall Detection

Fall detection comprises the steps state prediction, event detection, and fall
verification. The purpose of the first step is to estimate the state of every person
that is being tracked. These state predictions are analyzed over time in order to
detect events such as falls. This follows an optional verification step that aims
to reduce the false alarm rate via long-term and scene analysis.

State and event detection are carried out in a probabilistic framework. This
allows our method to report reliable event confidence scores, enabling caretakers
to balance the trade-off between sensitivity and specificity. These scores are also
used for automatic event filtering and routing. For instance, our method can be
configured to send all fall events with a confidence greater than 0.5 via mail, and
additionally send a text message if the confidence is greater than 0.9.

6.1 State Prediction

Persons can be in the following states: (i) Fallen (in a pose typical for fallen
persons, such as lying or sitting), (ii) Active (any other pose), and (iii) Rest-
ing (being on top of a resting accommodation). State prediction is carried out
independently in each frame. For this purpose, we define two binary random
variables A and R, with A = 1 and A = 0 representing the Active and Fallen
state, respectively, and R encoding whether the person is resting or not.

To predict Pr(A), we reuse the feature vector f. f is discriminative for this
purpose as it encodes geometrical properties that change significantly due to falls.
For prediction we employ a binary random forest classifier that was trained on a
subset of the frames used to train the person classifier (those depicting persons).

Pr(R = 1) is calculated as the fraction of the area occupied by a person that
overlaps with scene objects. In order to ensure that falls beneath such objects
(which is possible in case of tables) are correctly detected, person areas must be
located above object areas in order to affect Pr(R = 1).

We are mainly interested in Pr(4A = 0, R = 0), which corresponds to the
condition of a person after a fall that should be detected. Assuming that A and
R are independent, this joint distribution factorizes to Pr(A = 0)Pr(R = 0). Let
Pa and Pr denote Pr(A =1, R =0) and Pr(A = 0, R = 0), respectively.

6.2 Event Detection

Falls and other actions performed by humans are temporal in nature. We thus
utilize the available tracking information and detect falls and related events via
temporal analysis, based on recently observed person states.

Before performing event detection, we integrate state predictions from recent
frames in order to increase their reliability. This is motivated by the observation
that the state of a person is unlikely to change between frames. For instance, if a
person is Active in frame f —1, they are likely to be Active in frame f as well. We
considered different temporal models such as Markov chains for modeling this
circumstance, but found that simply averaging state probabilities in a short time

Fall Detection Based on Depth-Data in Practice 203

window leads to comparable results while being more efficient. In mathematical
terms, we thus compute e.g.

—1
7)f+_15 Pf—t 4
A _BZ A > ()
t=0

with with P£ being P4 in frame f, and 8 € N defining the time window.

On this basis, we analyze the temporal evolution of 73:{ and P}r in order
to detect two types of events, falls and recoveries. A fall event is triggered if
the maximum over P in a time interval around the current frame f exceeds a
specified threshold,

Pr=max(PL, . PLT L PITY S tp, (5)

A recovery event signals that a person managed to get back up again after a fall,
i.e. if P} > tp, and if a fall event occurred recently for the same person.

We do not analyze the velocity of persons for fall detection, because doing so
would prevent us from being able to reliably detect slow falls or falls originating
from a position other than upright (e.g. persons rolling out of the bed). In fact,
we detect falls solely based on the person pose; if a person lies or sits on the
floor for several seconds, a fall event is triggered. This has the advantage that
persons that fell outside the field of view can still trigger a fall event (and thus
receive help) by crawling into the field of view.

6.3 Fall Verification

The purpose of fall verification is to reduce the false alarm rate. Fall verification
consists of three tests that are carried out if a fall event is triggered. All tests
can be disabled independently. Test 1 suppresses multiple fall alarms that occur
in quick succession for the same person, unless corresponding recovery events
occur in between. Test 2 suppresses a fall event if there is another Active person
in the scene at the time the event occurs (i.e. if help is already available). Test 3
suppress a fall event if a recovery event is registered for the same person within
one minute, i.e. if the person was able to recover on their own.

7 Results and Discussion

We evaluate our fall detection method on an extensive dataset of test sequences
and assess its false alarm rate under real-world conditions in a long-term study.

7.1 Performance Under Experimental Conditions

In order to study the fall detection performance, we compiled a dataset of 579
test sequences. These sequences depict persons that simulate different types of
falls (following the protocol shown in Table1) and various activities of daily

204 C. Pramerdorfer et al.

living (e.g. using a wheelchair or rollator, sitting, cleaning). The sequences were
recorded in an attempt to capture as much variability that occurs in practice as
possible (e.g. different persons, rooms, and locations; partially visible or occluded
actions; interaction with scene objects such as chairs). The dataset includes
the CVL dataset [10], which contains 80 fall sequences and 64 sequences with
activities of daily living. In total, there are 146 fall incidents in our dataset.

Table 1. Protocol for simulating fall incidents. Our dataset covers all combinations.

Property Values

Activity prior to fall | Walking, standing, sitting

Fall against Nothing, wall, unmovable object, movable object
Fall direction Forward, backward

Partially occluded No, yes

Walking aid No, yes

For evaluation, we apply our fall detection method on every test sequence
and compare the number of reported fall events to the ground-truth information.
On this basis, we compute the precision and recall of our method at varying fall
event confidence thresholds ¢p, (between 0.5 and 0.95). The precision is the
fraction of triggered fall events that correspond to an actual fall, while the recall
is the fraction of falls in the dataset that were detected by our method. We
use the same configuration for all sequences and disable fall verification test 3
(Sect. 6.3) as most test sequences are shorter than one minute.

Figure 3 shows the resulting recall vs. precision graph. At ¢p,. = 0.5, seven of
the 146 falls were undetected for the following reasons. In three cases there was
significant sensor noise that caused motion detection to fail. This noise occurs
only initially and is thus unlikely to affect the fall detection performance in
practice. The remaining four falls were particularly challenging because they
were from a sitting position, only partially visible, and partially occluded.

18 false alarms were registered at ¢p, = 0.5, all of which were due to objects
that were left in the scene. In the cases that lead to these false alarms, these
objects were considered as persons due to person classification and tracking
errors. These errors happened when persons moved large objects such as rollators
and chairs while being partially outside the field of view and/or occluded.

Figure 3 illustrates the benefit of the event confidence scores reported by
our method: they allow users such as caretakers to balance the trade-off between
sensitivity and specificity according to their needs by setting ¢p,. accordingly. We
note that our method reliably assigns high confidence scores (greater than 0.8)
to all but partially invisible or occluded falls. Figure 4 illustrates two challenging
test sequences, one that is handled correctly and one that causes a false alarm.

In order to provide a comparison with other fall detection methods, we addi-
tionally evaluated our method on the public CVL dataset [10]. To our knowledge,

Fall Detection Based on Depth-Data in Practice 205

1= - _

0.95 - |
=
2
R
o
—
[a W)

0.9 B

| | | 1
O'850.5 0.6 0.7 0.8 0.9 1
Recall

Fig. 3. Recall vs. precision of our fall detection method on the test dataset. The graph
was obtained by varying t», € {0.5,0.6,0.7,0.8,0.85,0.9,0.95}.

(a) limited field of view (b) wheelchair

Fig. 4. Challenging test sequences. Left: A fall that is both partially occluded and
in a region with limited field of view. Despite these challenging conditions, the fall is
detected successfully with a confidence of 58 %. Right: A wheelchair remains at the
border of the view, triggering a false alarm with a low confidence. (a) limited field of
view (b) wheelchair.

this is the largest public fall dataset available. Our method triggered no false
alarms and detected 78 out of 80 falls that occur in this dataset. Both false
negatives were caused by the strong sensor noise mentioned before. Method [10]
detected all falls, but only half of the CVL dataset was used for evaluation.

7.2 Performance Under Real-World Conditions

At the time of writing, we are performing a long-term evaluation of our fall
detection method in nursing and assisted living homes, i.e. under real-world con-
ditions. In this section, we report the results obtained in a period of six months.

206 C. Pramerdorfer et al.

During this time, 53 of our fall detection systems were active for 5,246 full days
in total (125,904h). To our knowledge, this is the first long-term evaluation of
a depth-data-based fall detection method.

For evaluation purposes, we labeled all fall events with a confidence greater
than 0.6 in this timeframe as true positives or false positives (false alarms), using
event visualizations generated by our method. We labeled 164 fall events as true
positives as they were triggered by persons that were lying or sitting on the floor
for longer than one minute. No falls were registered by the caretakers in the
evaluation period. This means that these events were likely caused by deliberate
actions, although it is possible that some were caused by actual falls after which
the persons were able to recover on their own. As such, the results reported in
this section do not directly correspond to the sensitivity of our method.

Figure 5 summarizes the results, which were obtained by dividing the number
of true and false positives by the number of active days. During the considered
six-month period, there were 0.14 false alarms with a confidence greater than 0.6
per day on average (i.e. per 24 h of system uptime). This amounts to a single false
alarm per week at this confidence threshold. Most false alarms were again caused
by objects (e.g. chairs or walking aids) that were left in the scene. Another major
cause of false alarms was a large dog that would sometimes appear similarly to
a fallen person in the depth data.

0.14 —e— true positives H
—m— false positives
g 010} .
2 0.08 | |
 0.06 1
eS|
0.04 |- i
0.03¢ i
0.02 |- N
0.01 | ‘ |
0.6 0.7 0.8 0.9 1

Fall confidence threshold ¢p,.

Fig. 5. Average number of true positives and false positives of our fall detection method
per day under real-world conditions.

Our fall detection method assigned a low confidence score to a large fraction
of these false alarms, so that increasing the threshold to 0.7 almost halves the
false alarm rate. Doing so decreases the true positive rate by around one-third
in relative terms, affecting mainly falls ending in a sitting position.

Fall Detection Based on Depth-Data in Practice 207

Even with conservative confidence thresholds, the false alarm rate is low
enough in practice to impose little additional workload for caretakers, and allows
a single caretaker to supervise many of our fall detection systems simultaneously.

7.3 Computational Efficiency

Our fall detection method was designed to be efficient enough to run on inex-
pensive low-end hardware. It achieves more than 30 fps on an Odroid C1+ single
board computer, which has a price of only $32 at the time of writing.

In practice, we limit the sframerate to 15 so that two fall detection instances
can run in parallel, enabling simultaneous fall detection in two rooms. This does
not decrease the fall detection performance (all results reported in this section
were obtained using this framerate).

8 Conclusions

We have presented a fall detection method that analyzes depth data in order to
achieve a high sensitivity and specificity under real-world conditions, as verified
in a comprehensive performance evaluation. Our method addresses limitations of
existing depth-based fall detection methods in terms of sensitivity (inability to
detect slow, sitting, or occluded falls) and practicability (high hardware costs,
complicated or restrictive system setup), and provides reliable fall confidence
scores as additional information for caretakers.

Future work will concentrate on further increasing the fall detection perfor-
mance of our method. To this end, we are continuing to extend our test dataset
in order to obtain more data for classifier training and evaluation. We also plan
to improve our algorithms by modeling occlusions explicitly in order to improve
person detection and state prediction performance.

References

1. Rubenstein, L.Z.: Falls in older people: epidemiology, risk factors and strategies
for prevention. Age Ageing 35, 1137-1141 (2006)

2. Porter, R.S.: The Merck Manual of Diagnosis and Therapy. Wiley, New York (2011)

3. Noury, N., Rumeau, P., Bourke, A., OLaighin, G., Lundy, J.: A proposal for the
classification and evaluation of fall detectors. IRBM 29(6), 340-349 (2008)

4. Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: principles and
approaches. Neurocomputing 100, 1-9 (2012)

5. Rougier, C., Auvinet, E., Rousseau, J., Mignotte, M., Meunier, J.: Fall detec-
tion from depth map video sequences. In: Proceedings of International Conference
Smart Homes and Health Telematics, pp. 121-128 (2011)

6. Brutzer, S., Hoferlin, B., Heidemann, G.: Evaluation of background subtraction
techniques for video surveillance. In: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1937-1944 (2011)

7. Auvinet, E., Meunier, J.: Head detection using Kinect camera and its application to
fall detection. In: Proceedings of International Conference on Information Science,
Signal Processing and Their Applications, pp. 164-169 (2012)

208

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

C. Pramerdorfer et al.

. Dubois, A., Charpillet, F.: Automatic fall detection system with a RGB-D cam-

era using a hidden Markov model. In: Proceedings of International Conference on
Smart Homes and Health Telematics, pp. 259-266 (2013)

. Kepski, M., Kwolek, B.: Fall detection using ceiling-mounted 3D depth camera,

pp. 640-647 (2014)

Planinc, R., Kampel, M.: Robust fall detection by combining 3D data and fuzzy
logic. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part II. LNCS, vol.
7729, pp. 121-132. Springer, Heidelberg (2013)

Kumar, D.P.; Yun, Y., Gu, [.Y.H.: Fall detection in RGB-D videos by combin-
ing shape and motion features. In: Proceedings of International Conference on
Acoustics, Speech and Signal Processing, pp. 1337-1341 (2016)

Yun, Y., Gu, I.Y.H.: Human fall detection in videos via boosting and fusing statis-
tical features of appearance, shape and motion dynamics on Riemannian manifolds
with applications to assisted living. Comput. Vis. Image Underst. 148, 111-122
(2016)

Dubey, R., Ni, B., Moulin, P.: A depth camera based fall recognition system for
the elderly. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part II. LNCS, vol.
7325, pp. 106-113. Springer, Heidelberg (2012)

Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory
8(2), 179-187 (1962)

Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381-395 (1981)

Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision
on non flat road geometry through V-disparity representation. In: IEEE Intelligent
Vehicle Symposium, vol. 2, pp. 646-651. IEEE (2002)

Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and prac-
tice of background maintenance. In: Proceedings of IEEE International Conference
on Computer Vision, pp. 255-261 (1999)

Pramerdorfer, C.: Evaluation of kinect sensors for fall detection. In: Proceedings of
TASTED Conference on Signal Processing, Pattern Recognition and Applications
(2013)

Khoshelham, K., Elberink, S.: Accuracy and resolution of kinect depth data for
indoor mapping applications. Sensors 12(2), 1437-1454 (2012)

McFarlane, N., Schofield, C.: Segmentation and tracking of piglets in images. Mach.
Vis. Appl. 8(3), 187-193 (1995)

Beymer, D.: Person counting using stereo. In: Proceedings of Workshop on Human
Motion, pp. 127-133 (2000)

Harville, M.: Fast, integrated person tracking and activity recognition with plan-
view templates from a single stereo camera. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pp. 398-405 (2004)

Munoz Salinas, R.: A Bayesian plan-view map based approach for multiple-person
detection and tracking. Pattern Recogn. 41(12), 3665-3676 (2008)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1), 83-97 (1955)

Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithm and Com-
plexity. Prentice Hall, Upper Saddle River (1982)

Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans.
ASME J. Basic Eng. 82(D), 35-45 (1960)

	Fall Detection Based on Depth-Data in Practice
	1 Introduction
	2 Automatic Calibration and Scene Analysis
	2.1 Automatic Calibration
	2.2 Scene Analysis

	3 Motion Detection
	3.1 Noise Model and Pixel Classification
	3.2 Background Model

	4 Conversion to Plan-View Space
	5 Person Detection and Tracking
	5.1 Person Detection
	5.2 Tracking

	6 Fall Detection
	6.1 State Prediction
	6.2 Event Detection
	6.3 Fall Verification

	7 Results and Discussion
	7.1 Performance Under Experimental Conditions
	7.2 Performance Under Real-World Conditions
	7.3 Computational Efficiency

	8 Conclusions
	References

