
Chapter 11

INTEGRATING SIMULATED PHYSICS
AND DEVICE VIRTUALIZATION IN
CONTROL SYSTEM TESTBEDS

Owen Redwood, Jason Reynolds and Mike Burmester

Abstract Malware and forensic analyses of embedded cyber-physical systems are
tedious, manual processes that testbeds are commonly not designed to
support. Additionally, attesting the physics impact of embedded cyber-
physical system malware has no formal methodologies and is currently
an art. This chapter describes a novel testbed design methodology that
integrates virtualized embedded industrial control systems and physics
simulators, thereby supporting malware and forensic analyses of em-
bedded cyber-physical systems without risks. Unlike existing hardware-
based testbeds, the resulting soft industrial control system testbeds are
portable, distributable and expandable by design. However, embed-
ded system virtualization is non-trivial, especially at the firmware level,
and solutions vary widely depending on the embedded system architec-
tures and operating systems. This chapter discusses how the proposed
methodology overcomes the challenges to virtualizing embedded systems
and explores the benefits via a proof-of-concept implementation involv-
ing a Siemens MJ-XL variable step voltage regulator control panel.

Keywords: Cyber-physical systems, control systems, testbeds, virtualization

1. Introduction
Cyber-physical systems are computational systems that monitor and control

physical systems; they encompass control systems, sensor-based systems, au-
tonomous systems, robotic systems as well as higher-level supervisory, control
and human-in-the-loop systems. These complex, specialized and diverse sys-
tems exist at the core of industrial control systems, critical infrastructure assets,
operational technology networks and other utility networks. Hardware-based
cyber-physical system testbeds often are expensive to design and maintain,
especially in the case of critical infrastructure assets. This primarily limits

c© IFIP International Federation for Information Processing 2016

Published by Springer International Publishing AG 2016. All Rights Reserved

M. Rice and S. Shenoi (Eds.): Critical Infrastructure Protection X, IFIP AICT 485, pp. 185–202, 2016.

DOI: 10.1007/978-3-319-48737-3 11

186 CRITICAL INFRASTRUCTURE PROTECTION X

entire classes of vulnerability analyses, malware analyses, forensics and other
defensive research.

Analyzing memory corruption vulnerabilities in an embedded industrial con-
trol system often runs the risk of damaging or destroying (i.e., “bricking”) the
testbed hardware. Additionally, there are several techniques that attackers can
use to brick, disable or destroy embedded industrial control systems. These fac-
tors limit the ability of industrial control system testbeds to support malware
analysis and forensics research on embedded systems when the malware uti-
lizes such techniques. In turn, this limits the defender’s ability to analyze the
physics impact of sabotage-based embedded cyber-physical system malware.
These defensive challenges are becoming very significant as attacker sophistica-
tion increases. Indeed, attacker sophistication is growing rapidly as a result of
the availability of commercial penetration testing “exploit packs” from vendors
such as Core Impact, Metasploit and GLEG.

Despite decades of advocacy by experts and government authorities, “air-
gaps” are not utilized properly, supported by vendors or relied upon to safe-
guard industrial control systems and operational technology and utility net-
works. In 2011, the Director of the U.S. Department of Homeland Security’s
National Cybersecurity and Communications Integration Center (NCCIC) tes-
tified that: “In our experience in conducting hundreds of vulnerability assess-
ments in the private sector, in no case have we ever found the operations net-
work, the SCADA system or energy management system separated from the
enterprise network” [16]. This situation is not unique to the U.S. power grid
and there is compelling evidence that industrial control system vendors have
been intentionally moving away from the traditional airgap advice [2].

Standardized, smart grid automation protocols drive down operational costs
and are the new norm; however, this paradigm also drives down the difficulty
bar for industrial control system attackers [14]. Even if the protocols and
standards were perfect, vendor implementations would naturally have bugs
and vulnerabilities [9]. Attackers are also targeting utility networks through
Trojanized signed vendor firmware updates by directly targeting the supply
chain [11].

As cyber-physical systems become increasingly interconnected and linked to
the Internet and industrial control system operators and vendors adopt tradi-
tional information technology advancements for automation, it is imperative
that the defensive benefits of information technology somehow be leveraged
to secure cyber-physical systems. Virtualization, for instance, has given way
to malware sandboxing, dynamic malware and forensic analysis, honeypots,
cloud technologies, and more. However, the variety of processor architectures
and operating systems prevalent in cyber-physical systems is the primary bar-
rier to advancements of defensive information technology solutions for malware
sandboxing, static and dynamic analysis, and infection and attack remedia-
tion. The second barrier is knowledge about and experience with the complex
ways operational technology systems interact with, measure and control phys-
ical processes (e.g., electrical grids and oil, gas and water pipelines). Simply

Redwood, Reynolds & Burmester 187

removing malicious files or payloads from affected operational technology sys-
tems may not restore their overall functionality. Advances in physics simulation
and microprocessor emulators and simulators can address these barriers.

This research has two main contributions. The first is a detailed simulated
physics and embedded virtualization integration (SPAEVI) methodology that
marries physics simulation advances with microprocessor virtualization, emu-
lation and simulation to enhance industrial control system testbed capabilities.
The second is the detailed implementation of the SPAEVI methodology that
integrates a virtualized Siemens MJ-XL voltage regulator control panel within a
medium-fidelity physics simulation of arbitrary electric grids with GridLAB-D.

2. Related Work
This work builds on previous research [10]. Also, it leverages the testbed

taxonomy presented in [13], where operational technology networks and systems
are broken down into four layers:

Layer I: Sensors and actuators.

Layer II: Distributed controllers, which include programmable logic con-
trollers (PLCs), intelligent electronic devices (IEDs) and other forms of
programmable automation controllers (PACs).

Layer III: Supervisory and control systems, which encompass systems
that store process data and implement control schemes that manage the
lower levels.

Layer IV: Human-machine interfaces (HMIs), which enable human op-
erators to manage physical processes.

The methodology presented in this chapter requires the virtualization of real
firmware and software at Layers II, III and IV, although fully virtualized grid
networks are not necessary to realize the benefits of the methodology. Physics
simulation is integrated in Layer I. The remainder of this section discusses
previous work related to the four layers.

2.1 Testbeds
A number of SCADA testbeds have been developed by academic, government

and private entities [4, 5, 8]. The testbeds are used to find new vulnerabilities;
train engineers, incident responders and researchers; analyze attack patterns,
footprints and impacts; and develop innovative defenses. Testbeds commonly
fall into two categories: (i) real grid testbeds; and (ii) simulated grid testbeds
that commonly engage a real-time digital simulator for physics simulations and
digital-to-analog signal generators to support cyber-physical hardware integra-
tion. Generally, both groups focus on hardware-in-the-loop testing in Layers II
and III, and, thus, inherit all the aforementioned limits related to vulnerability
analysis, malware analysis, etc.

188 CRITICAL INFRASTRUCTURE PROTECTION X

The most notable testbed is the National SCADA Test Bed (NSTB). This
testbed, which comprises 17 test and research facilities, incorporates realistic-
scale control systems ranging across 61 miles of 138 kV transmission lines, seven
substations and various modeling tools. It connects other testbeds such as
the Critical Infrastructure Test Range at Idaho National Laboratory, Center
for SCADA Security at Sandia National Laboratories, Energy Infrastructure
Operations Center at Pacific Northwest National Laboratory and facilities at
Oak Ridge and Argonne National Laboratories. These testbeds largely rely on
real hardware for Layers I and II, and real software for Layer IV. Layer III
incorporates a mix of real and virtualized systems.

Joint academic and industry testbeds include ExoGENI-WAMS-DETER at
North Carolina State University [3], DETERLab at the University of Southern
California and the Trustworthy Cyber Infrastructure for the Power Grid facility
at the University of Illinois.

The ExoGENI-WAMS-DETER testbed has two layers. The first layer is a
hardware-in-the-loop setup comprising a real-time digital simulator integrated
with phasor measurement units from multiple vendors. The second is a cloud-
based virtual network based on ExoGENI+DETER to enable the simulation,
observation and management of arbitrary network topologies of phasor mea-
surement units using a real-time digital simulator to generate physics inputs.
The ExoGENI and DETER laboratories provide virtual networking of arbitrary
topologies to simulate power grid networks at any scale.

The Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) is a
large, diverse initiative that focuses on all areas of grid security research from
power generation and transmission to distribution and metering. It incorpo-
rates a real-time digital simulator for hardware-in-the-loop testing. Also, it has
a virtual power system testbed discussed below, which is a notable exception
to the categorization above.

Thornton and Morris [13] maintain that the testbeds described above are
not portable, expandable or distributable. Furthermore, only researchers with
hands-on access to the testbeds are able to perform research using the resources.

2.2 Physics Simulations
Commonly-used simulation software for electric power grid security research

include GridLAB-D, MATLAB Simulink and PowerWorld.
The Trustworthy Cyber Infrastructure for the Power Grid’s Virtual Power

System Testbed (VPST) utilizes PowerWorld software for its physics simula-
tions, real components for hardware-in-the-loop testing and the VPST-C sim-
ulator to model computer hardware, software and communications infrastruc-
tures. The VPST approach simplifies grids by fitting all devices, software and
processes to the ISO model. However, it does not appear to support embedded
system virtualization at Layer II [1].

Thornton and Morris [13] present a software-based approach for virtual
SCADA laboratory design utilizing Simulink. However, this work does not
involve the full virtualization of Layer II systems; instead, it only provides a

Redwood, Reynolds & Burmester 189

simulation of the ladder logic code of programmable logic controllers. There-
fore, the approach may not enable the testing and analysis of real zero-days,
exploits and malware designed for programmable logic controllers, such as the
infamous, still-unpatched, ladder logic remote code execution (RCE) vulnera-
bilities [9]. Nevertheless, Thornton and Morris provide valuable discussions of
process simulation, programmable logic controller emulation and analysis that
are relevant to this work.

Redwood et al. [10] have developed a physics simulation integrated with
Layer III and IV devices for real-time anomaly detection based on changes to
the physics. GridLAB-D was utilized to simulate the physics and real software
was used for the human-machine interface and smart IEC 68150 switch imple-
mentation. The advantage of physics-based intrusion detection is that attacks
can be detected regardless of their stage, properties or vectors, and sabotage-
based attacks can be identified regardless of whether they are delivered by so-
phisticated zero-day exploits or script kiddies who manipulate human-machine
interfaces. However, GridLAB-D suffers from poor fidelity in terms of physics
simulations and cannot model phasors, harmonics and other transients in real
time.

Approaches that utilize real-time digital simulators for physics simulations to
support hardware-in-the-looptesting are not modular, portable or distributable.
However, they do offer physics simulations at the highest levels of fidelity.

2.3 Emdedded Virtualization
Embedded virtualization is a relatively small, but rapidly growing field. Its

primary applications are smartphones and tablets, aerospace avionics (with the
PikeOS hypervisor) and automobiles (Automotive Open System Architecture).

Operational technology systems vary significantly in hardware and software
compared with information technology systems. Operating systems that are
common in operational technology deployments include variants of Linux, Vx-
Works, Windows Embedded, dozens of propietary operating systems and real-
time operating systems, raw firmware level binaries, and so on.

Hardware options span processor families from Intel, ARM, Atmel, Texas
Instruments, IBM PowerPC, Motorola Freescale, MIPS, Siemens C166, Hi-
tachi/Renesas and numerous peripherals and analog devices. With the notable
exception of SATCOM’s space plug-and-play architecture (SPA) driver model,
embedded cyber-physical system peripherals, sensors and actuators do not fol-
low a plug-and-play driver model and, therefore, require individual attention.
As a result, embedded system virtualization solutions for industrial control and
SCADA systems are not widespread.

Adopting and/or modifying an architecture emulator or simulator may be
necessary to virtualize a target device. An emulator is designed to recreate the
original functionality of target hardware. Software executing on an emulator
should perform exactly as if it were running on the target hardware. Simulators
are designed to recreate the original functionality of the software or hardware,
and are, thus, imitations. The end results are often very similar, but the im-

190 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 1. SPAEVI methodology workflow.

plementations of emulators and simulators are very different. Emulators often
meet the requirements for virtualizing embedded systems, but many commer-
cial simulators are considered to be compatible if they simulate enough of the
underlying hardware.

Embedded emulation is historically associated with in-circuit emulation,
which involves the use of a hardware device (e.g., JTAG debugger) or in-circuit
emulator to debug the software on the embedded hardware. For the purpose
of this work, it is considered to be a pure software-based emulation, because it
involves no hardware. Several embedded system emulation options exist; the
most notable is the open-source Multi Emulator Super System (MESS), which
is the basis for the Multiple Arcade Machine Emulation (MAME) Project.

While embedded system virtualization is not new, the simulated physics and
embedded virtualization integration (SPAEVI) methodology presented in this
chapter is novel in that it combines embedded virtualization and simulated
physics. It builds on previous work [10] and offers several benefits beyond
traditional virtualization technologies.

3. SPAEVI Methodology
The simulated physics and embedded virtualization integration (SPAEVI)

methodology is designed to produce portable, expandable and distributable
software-based testbeds, primarily for embedded systems. Thus far, SPAEVI
efforts have focused on single-core embedded systems; multi-core embedded
systems impose additional challenges that are outside the scope of this work.
Embedded virtualization is not new; however, the novel, methodical integration
of a physics simulator with virtualized embedded systems is the core of the
SPAEVI methodology. This section provides details about the methodology
and presents a proof-of-concept implementation and experimental results.

3.1 Overview
Figure 1 presents the SPAEVI methodology workflow. The first step in the

methodology is to acquire the firmware for the target device and know the
processor(s) on which it executes. Vendors typically release firmware patches
online; however, most vendors do not disclose any details about the processors
that execute the firmware. In the event customer service or online research do

Redwood, Reynolds & Burmester 191

not reveal processor details, the target hardware can be inspected to read the
identifying numbers on the processors.

3.2 Reverse Engineering Requirements
This section outlines the SPAEVI tasks that satisfy the reverse engineering

requirements for each device.

Understanding Machine-Specific Register Usage. Machine-speci-
fic registers are significant to the SPAEVI methodology because they are used to
locate the lowest levels of the embedded firmware at which sensor inputs and
actuator outputs occur. Processors have unique registers, dubbed machine-
specific registers, outside the general purpose register set that are used for a
variety of internal and external tasks, including timing, I/O, exceptions, chip
selects, addressing, ports, watchdogs and more. By studying the processor user
manual, it is possible to identify the machine-specific registers that facilitate
I/O.

Accessing the machine-specific registers usually involves: (i) special instruc-
tions; or (ii) a fixed region of addressable memory that is reserved for the inter-
nal functionality of the processor. In the latter case, the high end (0xFFF...)
region of memory is typically reserved for machine-specific registers in most
systems. Furthermore, these registers are typically given unique titles for each
processor. However, all the non-general-purpose registers are typically identi-
fied as machine-specific registers.

In the case of special instructions, machine-specific registers may appear in
disassembled code with unique mnemonics, but are often executed only in the
privileged or supervisory modes. Malware analyses of x86 systems generally do
not focus on the machine-specific registers because malware typically resides
outside low-level drivers, the BIOS and kernel code.

In the case of fixed memory machine-specific registers, the registers typically
do not appear in a disassembler with unique mnemonics, but instead can be
identified by the region of addressable memory they occupy.

Understanding how firmware uses the machine-specific registers for I/O re-
quires the enumeration of the machine-specific registers of the processor that
facilitate I/O, followed by their enumeration in the disassembled firmware.
This enables the machine-specific registers that are not utilized by the device
firmware to be excluded from further consideration. After enumerating the
machine-specific registers that facilitate I/O, it is necessary to reverse engineer
“up” the cross-reference chain from the drivers and subroutines in order to map
and understand how the registers are actually used.

Understanding BIOS, Bootup and Kernel Space. Before thor-
oughly reverse engineering and mapping the use of I/O machine-specific reg-
isters, it is necessary to reverse engineer the BIOS code, which is usually at
or near the entry point to the firmware binary. The BIOS code typically con-
figures, initializes, pings and/or tests the system I/O using the I/O machine-

192 CRITICAL INFRASTRUCTURE PROTECTION X

specific registers. It also configures chip selects (i.e., direct memory addressing),
I/O direction pins and purposes, as well as interrupts, exceptions, timeouts and
the stack. These details are essential and further narrow down how the I/O
machine-specific registers are utilized by the device.

Additionally, the BIOS and bootup code in most embedded firmware per-
form various integrity, timing and system checks during the boot process, which
may impede the full boot of a virtualized embedded system. For example, a
device often checks if its sensors, actuators, modules and/or peripherals are
properly connected and operating; this is typically documented in the installa-
tion manual of the device and the processor user manual. It may be necessary
to use breakpoints, hooks or binary patching to bypass the checks in order to
force the firmware to fully boot up in the virtualized environment.

The bootstrap or bootloader may unpack and boot to a backup driver if
startup checks fail; this may require an operator to insert a serial or USB
cable to configure or flash the firmware. Operating systems likewise perform
configuration, initialization, timing and integrity checks. Default settings and
configurations are usually detailed in the device manual, although such checks
may need to be bypassed as well.

Finally, a fully booted kernel usually ends up in a main loop that handles
I/O. The I/O model can provide valuable guidance – these models usually fall
into three main categories: (i) polling; (ii) interrupts; and (iii) direct memory
access driven I/O. Note that it is not necessary to fully reverse engineer the
kernel nor is it necessary to fully boot into a stable kernel to utilize the benefits
of the SPAEVI methodology.

Mapping I/O Interactions and Handling. After understanding how
the BIOS initializes and configures the I/O for the architecture, and enumer-
ating the machine-specific registers in the disassembled code, it is necessary
to reverse engineer each enumerated subroutine. Reverse engineering “up”
the cross-references to subroutines reveals the context in which each machine-
specific register in question is utilized. The chain of functions may span across
drivers, kernel system calls, library function code and userland application code.

This process helps discover the purpose of the I/O machine-specific registers
because it is common to find logging, protocol and even leftover ASCII debug-
ging strings. Fortuitously, these strings were in the exact same subroutines in
the proof-of-concept system developed in this research. The strings helped im-
mediately identify the purpose of the I/O machine-specific registers and, thus,
no cross-referencing was required.

3.3 Virtualization Requirements
Cyber-physical system virtualization requires accurate temporal and instruc-

tion set simulation or emulation of the processor, its I/O handling, machine-
specific-registers and peripherals. Furthermore, the virtualization platform
should execute the raw firmware of the target device. Additionally, it must
be able to handle firmware extraction and memory region initialization.

Redwood, Reynolds & Burmester 193

Processor families often have multiple variants, all of them founded on a base
instruction set and processor features (e.g., pipeline size, I/O model, timing
module and peripheral modules). If no simulator or emulator exists for the
processor of the target hardware, then a simulator or emulator for a processor
in the same family may serve as a suitable starting point.

3.4 Integration Requirements
Integration requires an accurate virtualization platform and the mapping

of the I/O machine-specific registers. Hooking or breakpointing the code that
performs I/O enables the integration of relevant inputs and control outputs
with the physics simulator. For a Layer II device, the inputs come from sen-
sors and may be pre-processed by various FPGAs; the outputs are signals to
actuators. The only thing virtualized by the SPAEVI methodology is the main
processor. It is not necessary to reverse engineer or virtualize digital signal
processors, FPGAs and microprocessors that handle analog I/O because they
can be digitally integrated via the SPAEVI methodology.

3.5 Benefits
The SPAEVI methodology provides some novel benefits:

Dynamic Analysis of Embedded Cyber-Physical Systems: Dy-
namic analysis is the foundation of modern malware analysis methodolo-
gies. The ability to provide dynamic analysis capabilities for embedded
cyber-physical systems is a novel contribution of the SPAEVI methodol-
ogy. This aspect is discussed in detail later in this chapter.

Physics Impact Analysis: Integrating the interaction of a virtualized
embedded cyber-physical system with a simulated electric grid is the core
of the SPAEVI methodology and it provides novel physics impact analysis
capabilities. However, the fidelity of a chosen physics simulation directly
affects the benefits provided by the SPAEVI methodology. A SPAEVI
implementation with a physics simulator that does not simulate down to
the harmonics cannot detect or analyze an attack that maliciously triggers
harmonics or similar line transients in a power grid.

Physics-Based Intrusion Detection: Physics-based intrusion detec-
tion for symbolic cyber-physical honeynets is described in [10]. The proof-
of-concept implementation involved a smart IEC 68150 distribution sub-
station switch integrated with GridLAB-D. The approach requires the
accurate integration of networking in the virtualization platform, other-
wise the target cannot communicate using the necessary protocols. In
theory, the SPAEVI methodology can provide this benefit. However, net-
work handling for the MJ-XL in Trace32 has to be implemented in order
to realize physics-based intrusion detection for embedded cyber-physical
systems.

194 CRITICAL INFRASTRUCTURE PROTECTION X

4. Proof-of-Concept System
The SPAEVI proof-of-concept system comprises the Siemens MJ-XL voltage

regulator control panel, selected because it controls the electric grid in a com-
plex manner. The device technically could be categorized as a programmable
logic controller; however, it predates the IEC 61131 Standard published in De-
cember 1993. It was built using the Diablo C compiler (with timestamps of
1990, 1992 and 1993). It uses the legacy RTXC real-time operating system,
which is no longer supported and may be considered abandonware. Also, it
uses the DNP3 protocol for remote monitoring and control.

Exploitation and access control bypass details are not presented in this chap-
ter. Additionally, the reverse engineering details of the target outside of the
I/O integration for the SPAEVI implementation are not presented. In any case,
these details would be unique to each device and would not serve to clarify the
methodology. Determining the processors that run the MJ-XL was a difficult
task because the vendor meticulously omitted all mention from the manuals,
brochures and documentation. However, this problem was solved after purchas-
ing a used unit on eBay and inspecting the hardware. The device firmware,
which was found on the vendor website, is in the Motorola S-record format.

4.1 Reverse Engineering
The SIEMENs MJ-XL control panel main board processor is a Motorola

MC68332. The MC68332 is part of the 68K (i.e., CPU32) family of processors.
This processor handles several aspects of I/O, including the front key pads,
configuration/update front serial port, as well as the 48 screw-in connectors
on the back for interfacing with a voltage regulator. The communications
module daughterboard facilitates the device’s remote control via DNP3 over
three network options: (i) fiber; (ii) legacy serial; and (iii) GSM. The focus in
the proof-of-concept development was to discover which I/O machine-specific
registers in the MC68332 read the sensor inputs and control the actuators in
the voltage regulator.

The machine-specific registers in the MC68332 occupy a fixed 2K region of
memory spanning from FFFA00 to FFFFFF. They belong to three main modules
(i.e., on-chip peripherals): (i) system integration module (SIM); (ii) queued
serial module (QSM); and (iii) timing processor unit (TPU).

The system integration module handles key internal functionality, including
chip selects, interrupts, system protection logic, watchdogs and external bus
support.

The queued serial module handles the device’s front data port via a serial
communications interface (SCI) for configuring and flashing the firmware, and
the connection to the communications module daughterboard via the queued
serial peripheral interface (QSPI). The serial communications interface is con-
figured by SCCR0 and SCRR1, which set the baud clock and bits per frame,
respectively. In theory, virtualizing the serial port of the serial communications
interface would enable the Siemens configuration software to be used to config-

Redwood, Reynolds & Burmester 195

ure the virtual device, although the stability and baud clock synchronization
could be problematic.

The timing processor unit provides several channels of I/O to a separate
2KB block of RAM.

Table 1 enumerates some of the I/O machine-specific registers. Counting
the number of times the machine-specific registers are used reveals the I/O
functionalities used by a device. By analyzing the pin direction assignment
registers, it is possible to determine the channels used for input and output.

The Motorola S-record binary format explicitly dictates the entry point into
the unpacked firmware binary, which corresponds to the beginning of the BIOS.
Reverse engineering the BIOS code quickly revealed the configuration of the
chip selects; these are noted in Table 1 for CS1 to CS9.

Reverse engineering the cross-references to the code that uses the machine-
specific registers for I/O reveals how the firmware handles sensor inputs, and
more importantly, actuator control outputs to move the regulator taps. The
MJ-XL patent [15] and installation manual provide the valid ranges of the in-
puts, which served as a reference for virtualization I/O integration and testing.
Ultimately, the chip selects initialized in the BIOS were vital to determining
the I/O machine-specific register mapping. Table 2 presents the final results.

4.2 Virtualization
Several platforms were considered for creating the virtualization of the tar-

get. Specifically, the Trace32 sim68k, MAME, easy68k, turbo68k and other
simulators were examined. However, the Trace32 sim68k simulator has the
most accurate and detailed model for the MC68332 processor and on-chip pe-
ripheral modules. Furthermore, it has the most feature-laden breakpoints, en-
abling the CPU to be frozen and external operating system commands to be
executed.

4.3 Simulated Physics Integration
GridLAB-D currently has some fidelity limitations. For example, it cannot

simulate sub-second events in the mode utilized for the SPAEVI integration
(real-time mode). Nevertheless, it was possible to integrate the necessary sensor
inputs to the virtualized device, primarily three-phase voltage and current.
GridLAB-D allows the configuration of the regulator taps for each phase, band
center and width of the desired voltage, time delays for taps to move, current
and voltage transducer ratios, and much more. The top controls were the
primary actuators considered in the SPAEVI proof-of-concept.

The MJ-XL processor uses a global variable at 0x100050 (initially set to
0xFFFF) to craft the control signal to the tap control actuator. Depending on
whether the tap actuator is raised or lowered, the signal is ANDed and ORed
by a mask, and then moved to the actuator control chip select 0x82000 as
follows:

196 CRITICAL INFRASTRUCTURE PROTECTION X

Table 1. Enumeration of I/O machine-specific registers.

MSR Address Times Used Summary
PORTQS FFFC14 0 Not used by device

PQSPARS FFFC16 4
Pins Select GPIO or QSPI. It

is always 01111011.

DDRQS FFFC17 4
PORTQS Data Direction

Register. Always
11111110.

SPCR0 FFFC18 24 Frequently Used
SPCR1 FFFC1A 48 Frequently Used
SPCR2 FFFC1C 24 Frequently Used
SPCR3 FFFC1E 4 Rarely Used
SPSR FFFC1F 29 Frequently Used

RR[0:F] FFFD00-1F 6+ RX RAM
TR[0:F] FFFD20-3F 18+ TX RAM
CR[0:F] FFFD40-5F 17+ COMMAND RAM

Serial Port MSR Stats (Data port on front panel)
SCCR0 FFFC08 10
SCCR1 FFFC0A 17+
SCSR FFFC0C 20 Tells if SCI has data
SCDR FFFC0E 19 SCI Data buffer

MC68332 System Integration Module (SIM) MSR Stats
CS1 FFFA50 1 Maps to 0x100000
CS2 FFFA54 1 Maps to 0x80800
CS3 FFFA58 1 Maps to 0x80000
CS4 FFFA5C 0
CS5 FFFA60 1 Maps to 0x84000
CS6 FFFA64 0
CS7 FFFA68 1 Maps to 0x81000
CS8 FFFA6C 1 Maps to 0x81800
CS9 FFFA70 1 Maps to 0x82000

MC68332 Timing Processor Unit (TPU) MSR Stats
TPUMCR FFFE00 4

TICR FFFE08 1
HSRR0 FFFE14 12 Used with CS 5&9
HSRR1 FFFE16 9 Used with CS 5&9

Redwood, Reynolds & Burmester 197

Table 2. MJ-XL chip select I/O map.

Chip
Select

Base Address (DMA
MAPPING)

Z Config
Reverse engineering &

Mapping notes
1 0x100000 256k 16bit System RAM CHANNEL
2 0x80800 2k 8bit DISPLAY SCREEN 2
3 0x80000 2k 8bit DISPLAY SCREEN 1
5 0x84000 2k 8bit TX/RX VRC SENSORS
7 0x81000 2k 16bit KEYPRESS CONFIRM
8 0x81800 2k 16bit KEYPRESS INPUT
9 0x82000 2k 16bit VRC CONTROL TX

00023DD4 pea (aRaise_2).l ;"Raise" (Raise Tap)

00023DDA jsr print_to_display

...

00023E00 ori.w #%0000011111111111,($100050).l

00023E08 andi.w #%1111110111111111,($100050).l

00023E10 move.w ($100050).l,($82000).l ;Send Control Signal to Tap

00023E1A clr.w (_ADC_CHANNEL_SELECTOR_0x100190).l

00023E20 bra.w loc_24038

Similar code is used to command the actuator to lower the tap position:

00023E24 pea (asc_2477C). ;"Lower" (Lower Tap)

00023E2A jsr print_to_display

...

00023E52 ori.w #%0000011111111111,($100050).l

00023E5A andi.w #%1111101111111111,($100050).l

00023E62 move.w ($100050).l,($82000).l ;Send Control Signal to Tap

00023E6C clr.w (_ADC_CHANNEL_SELECTOR_0x100190).l

00023E72 bra.w loc_24038

In order to integrate the tap actuator controls with the GridLAB-D simula-
tion, breakpoints were placed at lines 0x00023E10 and 0x00023E62 as well as
other lines of code that interact with 0x82000. The breakpoint runs a script or
command outside of the Trace32 sim68k that, in turn, passes the tap control
signal to an intermediate wrapper. This wrapper parses the signal and controls
the tap object in GridLAB-D.

Handling the semantics of how control signals are intended to control devices
is the primary challenge during integration, mainly because the semantics are
unique to each device. In the code above, it is apparent that bits 10 and 11
of the signal are flipped differently by the AND operation. Using these two
cases as reference points, it is possible to reverse engineer and integrate other

198 CRITICAL INFRASTRUCTURE PROTECTION X

variations of how 0x82000 is controlled. Handling the sensor inputs takes more
care because the analog-to-digital channels are each pinged and then read from
individually, as follows:

0002422A moveq #3,d0

0002422C move.l d0,-(sp)

0002422E clr. -(sp) ;Push 0 for channel #0

00024230 jsr PING_AND_READ_SENSOR_BY_ID

00024236 addq.l #8,sp

00024238 move.l d0,d5 ;Sensor value in d0

0002423A move.l d5,-(sp) ;Push sensor value

0002423C pea (aAdcCh08d) ;"ADC CH0=%8d"

00024242 pea (_0x108F1C_ADC_CHANNEL_BUFFER).l

00024248 jsr SENSOR_INPUT_DRIVER

The last function call to SENSOR INPUT DRIVER uses the arguments to
look up the global settings table (not shown) in order to obtain the destination
to store the corresponding sensor value. The destination is calculated based on
a combination of the output of PING AND READ SENSOR BY ID and the
string identifying the sensor source (e.g., ADC CH0=%8d). It is beneficial, but
not always necessary, to integrate the sensor inputs when implementing the
SPAEVI methodology.

4.4 Verification of Benefits
Several sophisticated, sabotage-based, malicious test payloads were designed

and analyzed in order to verify the defensive benefits of the SPAEVI method-
ology. No actual exploits were designed nor were any vulnerabilities or access
control bypasses sought. Specifically, the efforts focused only on return-oriented
programming (ROP) payloads, which for defensive analysis, require the highest
fidelity in a virtualization platform. Additionally, embedded industrial control
systems usually have no defenses for such attacks [6].

Return-oriented programming is an exploit development methodology that
works across all computer architecture paradigms, from von Neumann to Har-
vard. Typically, payloads partially use return-oriented programming and par-
tially use traditional code injection to handle complex operations (e.g., facili-
tating remote command and control for attackers). However, in the case of an
embedded system, if a payload is simply designed to achieve a physical effect,
then it can typically re-use existing code that handles the sensors and actuators
of the system being attacked.

After thoroughly mapping the I/O subroutines, a return-oriented payload
compiler [12] was used to generate specific actuator actions. Each actuator
device, in turn, can be tagged with a meta-description that details how the
physics is changed. The return-oriented payload compiler, dubbed the Phys-
ical Effect Payload Compiler (PEPC), was used in several experiments. It is

Redwood, Reynolds & Burmester 199

Figure 2. Payload experiment results.

important to note once again that a return-oriented payload is distinct from
an actual exploit on a target.

4.5 Results
The Physical Effect Payload Compiler was scripted to maliciously and arbi-

trarily move the regulator taps. The IEEE 13 Node Test Feeder model [10] was
used in the experiments and the MJ-XL was modeled as a 4.16KV, 3.9MW
voltage regulator that feeds a distribution network. By default, the configured
range of possible voltage regulation was ±10% and the per-tap change was
dictated by this range divided by the number of tap positions. A tap in the
maximum position (16) indicates a 10% increase and the minimum position
(−16) indicates a −10% decrease.

Several payload experiments were conducted. Figure 2 presents the results
of three experiments. The payload effects in Figure 2 were directly caused by a
return-oriented programming payload executed by the virtualized firmware in
the SPAEVI testbed. Note that the effects were designed to be delayed by a few
seconds between each change using NOP gadgets in order to visually present
the data.

Note that Figure 2 shows the power fluctuations in Watts. Payload 1 flips
Taps A and C to the maximum position while Tap B is moved to the minimum
position, following which the inversion begins. The malicious fluctuations can
force up to ±10% maximum increase or decrease in the voltage level. The
malicious regulation also affects the phase angle; the experiments cause up to
±1.20�phase angle shift per phasor. Additionally, the other phasors do not
change and can be forced into precise, minor phase angle imbalances. Theoret-

200 CRITICAL INFRASTRUCTURE PROTECTION X

ically, these physical fluctuations, while dependent on the device configuration,
may represent a “profile” for potential malicious effects.

After further reverse engineering, it was discovered how to place any tap in an
arbitrary position with a 76-byte return-oriented programming chain per tap.
It was possible to indefinitely hold a tap in the maximum or minimum position
with a single return-oriented programming payload of eight bytes. These statis-
tics are useful in terms of footprint and sophistication because single-purpose
payloads require minimal footprints, but sophisticated, arbitrary control of
an embedded cyber-physical system requires much more. With polymorphic
return-oriented programming chains, the cost per arbitrary tap chain would
be much less than 76 bytes per change. Malicious regulator fluctuations can
induce other transients into a grid that GridLAB-D does not have the fidelity
to model.

In some instances, as in the case of the IEEE model, the phase angle and
voltage fluctuations may be problematic for an electric grid. However, infras-
tructure redundancies, constraints and implementations may be resilient to a
single device misbehaving within the described “profile” of physics changes.
Breakers, fuses, protective relays and even phase angle regulators may pro-
tect against such malicious effects. However, if a grid relies on homogenous
redundancies, a single exploit can be trivially leveraged against all redundant
systems simultaneously, amplifying the potential for harm instead of protecting
against it. Indeed, heterogeneous, diverse technologies controlling an electric
grid should be declared best practices as far as cyber security is concerned.
Relying on a single vendor for a specific type of device across a power grid,
exposes the grid to zero-day exploits against all susceptible targets simultane-
ously. This would also be true for n-day exploits due to poor patching practices
in industrial control systems.

This research verifies that a SPAEVI testbed can support dynamic malware
analysis and forensics for Layer II to IV systems. All the effects discussed above
were caused by real return-oriented programming payloads that maliciously
abuse device firmware and, thus, make the results tangible. Furthermore, the
SPAEVI methodology offers incident responders with portable testbed systems
for malware sandboxing, incident response, physics impact analysis and other
defensive research in the area of industrial control systems.

5. Conclusions
The novel SPAEVI testbed design methodology for integrating virtualized

embedded industrial control systems and physics simulators facilitates malware
and forensic analyses of embedded cyber-physical systems without risks. Un-
like existing hardware-based testbeds, the SPAEVI industrial control system
testbeds are portable, distributable and expandable by design. The benefits of
the SPAEVI methodology span the domains of incident response, forensics, at-
tack characterization, vulnerability analysis, sandboxing and defensive applica-
tions. The case study involving a virtualized Siemens MJ-XL voltage regulator
control panel integrated with a medium-fidelity physics simulation of arbitrary

Redwood, Reynolds & Burmester 201

electric grids using GridLAB-D conclusively demonstrates the benefits of the
SPAEVI testbed design methodology.

References

[1] D. Bergman, D. Jin, D. Nicol and T. Yardley, The virtual power system
testbed and inter-testbed integration, Proceedings of the Second USENIX
Conference on Cyber Security Experimentation and Test, 2009.

[2] E. Byres, #1 ICS and SCADA Security Myth: Protection by Air Gap,
Tofino Security, Lantzville, Canada, 2012.

[3] A. Chakrabortty, Y. Xin and A. Hussein, A U.S.-wide DETER-WAMS-
ExoGENI testbed for wide-area monitoring and control of power systems
using distributed synchrophasors, presented at Cyber-Physical Systems
Week, 2015.

[4] C. Davis, J. Tate, H. Okhravi, C. Grier, T. Overbye and D. Nicol,
SCADA cyber security testbed development, Proceedings of the Thirty-
Eighth North American Power Symposium, pp. 483–488, 2006.

[5] G. Dondossola, F. Garrone and J. Szanto, Supporting cyber risk assess-
ment of power control systems with experimental data, Proceedings of the
IEEE/PES Power Systems Conference and Exposition, 2009.

[6] I. Evans, Analysis of Defenses Against Code Reuse Attacks on Modern
and New Architectures, M.E. Thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 2015.

[7] Freescale Semiconductor, MC68332 User’s Manual, Chandler, Arizona
(cache.freescale.com/files/microcontrollers/doc/user_guide/MC
68332UM.pdf), 2004.

[8] A. Giani, G. Karsai, T. Roosta, A. Shah, B. Sinopoli and J. Wiley, A
testbed for secure and robust SCADA systems, ACM SIGBED Review,
vol. 5(2), article no. 4, 2008.

[9] E. Leverett and R. Wightman, Vulnerability inheritance in programmable
logic controllers, Proceedings of the Second International Symposium on
Research in Grey-Hat Hacking, 2013.

[10] O. Redwood, J. Lawrence and M. Burmester, A symbolic honeynet frame-
work for SCADA system threat intelligence, in Critical Infrastructure Pro-
tection IX, M. Rice and S. Shenoi (Eds.), Springer, Heidelberg, Germany,
pp. 103–118, 2015.

[11] P. Roberts, Industrial control vendors identified in Dragonfly attack,
The Security Ledger (securityledger.com/2014/07/industrial-con
trol-vendors-identified-in-dragonfly-attack), July 4, 2014.

[12] E. Schwartz, T. Avgerinos and D. Brumley, Q: Exploit hardening made
easy, Proceedings of the Twentieth USENIX Conference on Security, 2011.

202 CRITICAL INFRASTRUCTURE PROTECTION X

[13] Z. Thornton and T. Morris, Enhancing a virtual SCADA laboratory using
Simulink, in Critical Infrastructure Protection IX, M. Rice and S. Shenoi
(Eds.), Springer, Heidelberg, Germany, pp. 119–133, 2015.

[14] A. Timorin, SCADA Strangelove: SCADA deep inside, presented at the
Balkan Computer Congress, 2014.

[15] J. Trainor, C. Laplace, M. Bellin and M. Hoffmann, Man-Machine Inter-
face, United States Patent 5,844,550, 1998.

[16] Subcommittee on National Security, Homeland Defense and Foreign Op-
erations of the Committee on Oversight and Government Reform, Cyber
Security: Assessing the Immediate Threat to the United States, Serial No.
112–55, U.S. House of Representatives (112th Congress, First Session),
Washington, DC, May 25, 2011.

	11INTEGRATING SIMULATED PHYSICS AND DEVICE VIRTUALIZATION IN CONTROL SYSTEM TESTBEDS
	1. Introduction
	2. Related Work
	2.1 Testbeds
	2.2 Physics Simulations
	2.3 Emdedded Virtualization

	3. SPAEVI Methodology
	3.1 Overview
	3.2 Reverse Engineering Requirements
	3.3 Virtualization Requirements
	3.4 Integration Requirements
	3.5 Benefits

	4. Proof-of-Concept System
	4.1 Reverse Engineering
	4.2 Virtualization
	4.3 Simulated Physics Integration
	4.4 Verification of Benefits
	4.5 Results

	5. Conclusions
	References

