Skip to main content

Highly Efficient Hybrid Protective Materials for Technically Complicated Systems in Natural Aggressive Conditions

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials
  • 663 Accesses

Abstract

Reviewed herein are recent achievements in the chemistry of protective processes and materials, development of technologies for protecting technical systems against destructive aggressive factors, and search for solutions to increase longevity and preserve integrity of the original material matrices impacted by natural and extreme factors. The focus is made on R&D in the field of functional protective coatings that have an “intelligent” response to degradation changes in the protective or surface protected. The experience in searching for protection solutions for such environments as atmospheric air, natural waters, and soils has been summarized. The document addresses the most effective systems and their respective protection principles providing protection of various technical systems against corrosion, biofouling, and thermal and ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Scantlebury D (1993) Corros Sci 35(5–8):1363–1366

    Article  Google Scholar 

  2. Schneider O, Kelly RG (2007) Corros Sci 49(2):594–619

    Article  Google Scholar 

  3. Jenkins ATA, Armstrong RD (1996) Corros Sci 38(7):1147–1157

    Article  Google Scholar 

  4. Cherezova EA, Mukmeneva NA, Arhireev VP (2012) Ageing and stabilization of polymers. Kazan National Research Technical University, Kazan, 140 p (Russia)

    Google Scholar 

  5. Mustafin FM et al (2007) Pipeline corrosion protection, vol 2. Nedra, St-Petersburg, 220 c. (Russia)

    Google Scholar 

  6. Abdullin IA et al (2006) Compounds with a polymer matrix. Kasane State Technological University, Kazan, 130 p (Russia)

    Google Scholar 

  7. Bukov N, Gorokhov R, Levashov A, Mnatsukanova J (2010) The resin compound for a protective anti-corrosion coating, barrier-type. Russian Patent RU 2394058 C2, 5 Aug 2010

    Google Scholar 

  8. Bukov RG, Levashov AV, Xie Y, Revenko HSV, Panyushkin V (2009) Ecol Ind Russ 1:32–33

    Google Scholar 

  9. Montemor MF (2014) Surf Coat Technol 258(15):17–37

    Article  Google Scholar 

  10. Voinovich LB, Emelianenko AM (2008) Russ Chem Rev 77(7):S.619–S.638

    Google Scholar 

  11. Latthel SS, Gurav AB, Maruti CS, Vhatkar RS (2012) J Surf Eng Mater Adv Technol 2:76–94

    Google Scholar 

  12. Gnedenkov SV, Egorkin VS, Sinebryukhov SL, Boynovich LB et al (2014) Vestnik FEB RAS 2:C.52–C.61

    Google Scholar 

  13. Boynovich LB, Emelianenko AM, Komarov VB (2010) Electric 6:12–18

    Google Scholar 

  14. Talo A, Forséna O, Yläsaaria S (1999) Synth Met 102(1–3):1394–1395

    Article  Google Scholar 

  15. Sathiyanarayanan S, Muthukrishnan S, Venkatachari G, Trived DC (2005) Prog Org Coat 53(4):297–301

    Article  Google Scholar 

  16. Sathiyanarayanana S, Muthkrishnana S, Venkatachari G (2006) Electrochim Acta 51(28):6313–6319

    Article  Google Scholar 

  17. Pereira da Silvaa JE, Córdoba de Torresia SI, Torresi RM (2007) Prog Org Coat 58(1):33–39

    Article  Google Scholar 

  18. Syed Azim S, Satheesh A, Ramu KK, Ramu S, Venkatachari G (2006) Prog Org Coat 55(1):1–4

    Article  Google Scholar 

  19. Syed Azim S, Sathiyanarayanana S, Venkatacharia G (2006) Prog Org Coat 56(2–3):154–158

    Article  Google Scholar 

  20. Wang J (2002) Synth Met 132(1):53–56

    Article  Google Scholar 

  21. Gupta RK, Singh RA (2004) Mater Chem Phys 86(2–3)

    Google Scholar 

  22. Liu Z, Guo W, Daguang F, Chen W (2006) Synth Met 156(5–6):414–416

    Article  Google Scholar 

  23. Soaresa BG, Celestinoa ML, Magiolia M, Moreiraa VX, Khastgira D (2010) Synth Met 160(17–18):1981–1986

    Article  Google Scholar 

  24. Liu P (2008) Curr Opinion Solid State Mater Sci 12(1):9–13

    Article  Google Scholar 

  25. Patila RC, Radhakrishnan S (2006) Prog Org Coat 57(4):332–336

    Article  Google Scholar 

  26. Kalendováa A, Sapurinab I, Stejskalc J, Veselýa D (2008) Corros Sci 50(12):3549–3560

    Article  Google Scholar 

  27. Radhakrishnana S, Sijua CR, Mahantab D, Patilb S, Madrasc G (2009) Electrochim Acta 54(4):1249–1254

    Article  Google Scholar 

  28. de Souza D (2007) Surf Coat Technol 201(16–17):7574–7581

    Article  Google Scholar 

  29. Lamaka SV, Zheludkevich ML, Yasakau KA, Serra R, Poznyak SK, Ferreira MGS (2007) Prog Org Coat 58:127

    Article  Google Scholar 

  30. Tkachenko VN (2004) Electrochemical protection of pipeline networks. Stroyizdat, Moscow, 320 C. (Russia)

    Google Scholar 

  31. Norsworthy R (2009) In: Corrosion 2009, Atlanta

    Google Scholar 

  32. Fedrizzi L, Fürbeth W, Montemor F (2011) Self-healing properties of new surface treatments. Published by Maney Publishing on behalf of the European Federation of Corrosion and The Institute of Materials, Minerals & Mining, 305 p

    Google Scholar 

  33. Petrov NN, Koval TV, Shel’deshov NV, Bukov NN (2017) Prot Met Phys Chem Surf 53(1):133–138

    Article  Google Scholar 

  34. Sørensena PA, Dam-Johansena K, Weinellb CE (2010) Prog Org Coat 68(1–2):70–78

    Article  Google Scholar 

  35. Bi H, Sykes J (2016) Prog Org Coat 90:114–125

    Article  Google Scholar 

  36. Kolotovsky AN, Kuzbozhev AS, RV Agin et al (2009) Environmental protection in oil and gas sector. No. 3

    Google Scholar 

  37. Agin RV, Alexandrov Y (2010) Territory Neftegaz 2:C23–C26

    Google Scholar 

  38. Petrov NN, Koval TV, Falina IV, Gorokhov RV, Sheldeshov NV, Bukov NN (2015) Solid State Phenom 227:123–126. https://doi.org/10.4028/www.scientific.net/SSP.227.123

    Article  Google Scholar 

  39. Kokotov YuA (1980) Ion exchangers and ion exchange. Leningrad “Chemistry” Leningrad Branch, 152 p

    Google Scholar 

  40. Petrov NN, Koval TV, Koval IV, Gorokhov RV, Sakharov DI, Bukov NN, Sheldeshov NV (2014) Territory Neftegaz 9:S.30–S.34

    Google Scholar 

  41. Panyushkin VT, Mastakov AA (1983) J Inorg Salts Chem 28(5):1325–1327

    Google Scholar 

  42. Panyushkin VT, Mastakov AA (1983) J Inorg Salts Chem 28(11):2779–2782

    Google Scholar 

  43. Panyushkin VT, Mastakov AA, Pavlov PA (1996) Surface protection against ionizing radiation. B. Modern problems of ecology. Krasnodar, pp 47–50

    Google Scholar 

  44. Sokolov ME, Panyushkin VT (2004) Proceedings of the universities. North-Caucasian region. Nat Sci 4:S.64–S.66

    Google Scholar 

  45. Tooth VY, Berezhnitskaya AS et al (2002) Ukrainian Chem J 68(10):S.69–S.73

    Google Scholar 

  46. Panyushkin VT (1984) Spectroscopy coordination compounds of rare earth elements. Rostov University Press, Rostov-on-Don

    Google Scholar 

  47. Horrocks WD, Supkowski RM et al (1997) J Am Chem Soc 119:5972

    Article  Google Scholar 

  48. Panyushkin VT, Mastakov AA, Bukov NN, Nikolaenko AA, Sokolov ME (2004) J Struct Chem (1):173–174

    Google Scholar 

  49. Barthelemy BM, Kryuppa J (1985) Fire behavior of building structures. Translated from the French. Stroyizdat, Moscow, p 216

    Google Scholar 

  50. Vakhitova LN, Kalafte KK, Lapushkin MP, Femenko PA (2007) Paints and coatings and their application, No. 7–8, with 81–85

    Google Scholar 

  51. Alexandrov AC (2007) Golden nanovek. Construction No. 6, with 6–7

    Google Scholar 

  52. O’Neill (1986) Feire ratardant heints. Rev Curr Lit 9(291)

    Google Scholar 

  53. Aseeva RM (1981) Stammering GE burning plastics. M Science

    Google Scholar 

  54. Nenakhov SA, Pimenov VP (2010) Fire and explosion safety. Sci Tech J 8:11–25

    Google Scholar 

  55. Krashennikov MV (2008) Fire and explosion safety. T-17:36–38

    Google Scholar 

  56. Oleynikov KB, Trotsenko PA, Matsitskaya AB, Zybina OA, Mnatsakanov CC (2008) Chem Ind 85(1):S.49–S.52

    Google Scholar 

  57. Shuklin SG, Didik AA, Bystrov SG (2004) Chem Fiber 3:28

    Google Scholar 

  58. Nenakhov SA, Pimenov VP (2010) Fire and explosion safety. 19(3):14–16

    Google Scholar 

  59. Antonov AB, Reshetnikov IS, Khalturinsky HA (1999) Russ Chem 68(7):S.663–S.667

    Google Scholar 

  60. Paterson Jones JK (1975) J Appl Polym Sci 19(6):1539–1547

    Article  Google Scholar 

  61. Yang C-P, Lee T-M (1987) J Appl Polym Sci 34(8):2733–2745

    Article  Google Scholar 

  62. Jeelin L, Reagse E (1984) Polym Sci: Polym Chem Ed 22(7):1707–1715

    Google Scholar 

  63. Andreas F (1966) Skora St Plaste Kautschuk 13(8):S.451–S.453

    Google Scholar 

  64. Green J (1984) Plastics compounding, November/December, pp 30–40

    Google Scholar 

  65. Kishore K, Mohandas K (1983) J Fire Sci 1(2):155–157

    Article  Google Scholar 

  66. Levashov A, Kasatkina T, Bukov N, Revenko V (2014) Ecol Ind Russ 1:S.24–S.27

    Google Scholar 

  67. Rivett P (1965) J Appl Chem 15(10):469–476

    Article  Google Scholar 

  68. Londen AM, Johnson S, Govers GJ (1975) J Paint Technol 47(6):62–68

    Google Scholar 

  69. Karpov VA, Kovalchuk JL, Poltarukha OP et al (2003) The climatic and biological resistance of materials. GEOS, Hanoi, pp 88–90

    Google Scholar 

  70. Railkin AI (1998) Colonization processes and protection against biofouling. State University, St.-Petersburg, p 272

    Google Scholar 

  71. Karpov V, Kovalchuk Y, Poltarukha O, Ilyin I (2007) M.: Association of Scientific Knowledge KMK, 156 p

    Google Scholar 

  72. Chambers LD, Stokes KR, Wals FC (2006) Surf Coat Technol 201:3642–3652

    Article  Google Scholar 

  73. Yebra DM, Kiil S, Dam-Johansen K (2004) Prog Org Coat 50(2):75–104

    Article  Google Scholar 

  74. Omae I (2003) Chem Rev 103:3431–3448

    Article  Google Scholar 

  75. Chumakovsky NN (2006) Ecology of the Kuban region. Krasnodar, 187 p

    Google Scholar 

  76. Robert L (1981) Anal Chem 53:921–923

    Article  Google Scholar 

  77. Thouvenina M, Perona J-J, Charreteurb C et al (2002) Prog Org Coat 44(2):75–83

    Article  Google Scholar 

  78. Reference

    Google Scholar 

  79. Petrov NN, Kasatkina TB, Shkabara NA et al (2011) Adv Mater 5:1–5

    Google Scholar 

  80. Petrov NN, Gorohov RV, Musorina TN et al (2012) Mater Sci Appl 3(2):116–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Panyushkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Panyushkin, V., Petrov, N., Sokolov, M., Bukov, N. (2017). Highly Efficient Hybrid Protective Materials for Technically Complicated Systems in Natural Aggressive Conditions. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_58-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_58-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics