
The Resource Action Language: Towards
Designing Reactive RDF Stores

Jean-Yves Vion-Dury and Nikolaos Lagos(&)

Xerox Research Centre Europe, Meylan, France
{jean-yves.vion-dury,nikolaos.Lagos}@xrce.xerox.com

Abstract. In an interconnected world such as the one envisioned by pervasive
computing, systems should be able to react to stimuli received from the envi-
ronment in a streaming fashion. Reactions may include not only performing
local updates, but also sending and asking for information from other systems,
waiting for responses, and requesting for changes. In this paper we give a short
introduction to the main principles of a language we are developing to achieve
that, ReAL. Key elements of ReAL in that context include the introduction of
explicit operators to deal with concurrency, nested transactions, and streams.
Based on these operators we show how interaction with external services could
be enabled. In the future we plan to evaluate further the most innovative
operators, define the semantics of ReAL, and analyze its relation to SPARQL,
the standard Semantic Web query language.

Keywords: Streaming � RDF query � Context � ReAL

1 Introduction

In an interconnected world such as the one envisioned by pervasive computing, sys-
tems should be able to react to stimuli received, for instance thanks to sensors, from the
environment. Reactions may include not only sending information but also asking for
information from other systems, waiting for responses, and requesting for changes in a
continuous, streaming fashion. Streaming extensions to the standard Semantic Web
query language (SPARQL) have been developed for dealing with continuous data
flows [1–5], with the most interesting in our context being EP-SPARQL [3] that uses
events as triggers of query execution. However, we observed that interaction with other
systems, and the effects on the design of a corresponding query language, have not
been explicitly considered up to now.

In this paper we give a short introduction to the main principles of a language we
are developing to bridge this gap, ReAL (Resource Action Language). The overall
objective is to provide a means for describing the dynamic behavior of RDF stores in a
streaming fashion, i.e. handle queries within a specific execution context, perform
(potentially transformative) actions on the store itself, and allow interaction with
external services. The design principles include.

• Offer an explicit mechanism of (nested) transactions, thus allowing the execution
context to be clearly defined at query time.

© Springer International Publishing AG 2016
H. Sack et al. (Eds.): ESWC 2016 Satellite Events, LNCS 9989, pp. 369–378, 2016.
DOI: 10.1007/978-3-319-47602-5_50

• Use a concurrency model to allow coordination with other services – we do that
based on a “Triple Space” derived from “Tuple Space” as formerly done in coor-
dination languages like Linda [6].

• Follow a streaming execution model to enumerate solutions one by one, thus
propagating solutions as soon as possible.

• Allow a synthesis of query and production-rule languages (to define actions and
their impacts within the query).

• Aim for modular and highly compositional programming structures (procedures).

In this paper we don’t target exhaustivity. In particular, many general purpose
primitive actions are missing, as we essentially focus on some of the most interesting
features of ReAL in our context. Other higher level actions (e.g. time-oriented and
memory-protection-oriented primitives) are work in progress.

We have to note here that ReAL can be seamlessly linked to the LRM upper level
ontology [7], being developed in the PERICLES project1. An example of such inte-
gration will be described in the paper. The LRM OWL ontology has been designed to
address dynamicity in the digital preservation field, with a focus on change manage-
ment through sophisticated model to handle intentional dependencies, versioning
mechanisms and reflexive metadata modeling. If ReAL is designed as a “natural
infrastructure” to support LRM based services, we do believe that its more fundamental
qualities are not bound to any particular data model.

2 Matching, Bindings and Basic Actions

Triples are represented through a syntax similar to the one adopted by the abstract
syntax of SWRL [8], using functional notation like predicate(subject, object). where
any of the three components can be an IRI using a prefixed form or a variable ?name.
The object component can additionally be a string like “3.1416”, a decimal/integral
number, or a symbol like true, false. Note that triples extended with language tags or
typing IRI are captured by an additional argument (separated by “|”), e.g.:

Based on this notation, we introduce next the most basic primitive constructs to
perform reading and writing in the RDF store. They constitute what we like to call
basic actions.

Simple reading. The following reading expression (illustrative)

rdf:typeð?sub; ?classÞ ð1Þ

will succeed if at least one solution can be read in the triple store. Solution here
designates all triples matching the expression. The result is of the form <boolean,
Binding>, where boolean (true or false) denotes whether a solution is found, and

1 http://pericles-project.eu/.

370 J.-Y. Vion-Dury and N. Lagos

http://pericles-project.eu/

Binding denotes the set2 of pairs (variable, term3). Failing queries always return <false,
{}>. A new Binding is streamed whenever a matching solution is found, and can be
defined as a mapping relating all variables (e.g. ?sub) to subterms such that the filtering
terms are made equal to the matching terms. In other words, a Binding represents the
substitutive solution that equates the filter to the instance. The substitution operation of
an expression e using a binding B is a new expression noted B(e). Note that the
expression (1) above, if changed into e.g.

rdf:typeðex:nantes�triptych; ex:ArtworkÞ ð1bÞ

could stream a unique solution (an empty binding {}) in a context where the triple is
indeed present in the RDF store.

Destructive reading. To express that you want not only to filter-out the RDF store,
but also to withdraw the matching solutions, you may use a “-” operator as a prefix.

� rdf:typeð?sub; ex:ArtworkÞ ð2Þ

Note that the store is immediately modified, so that unforeseen “side effects” may
occur when such an instruction is combined with others, even if those do not return any
solution eventually (this is one reason why nested transactions are relevant in ReAL, as
we will see later). Destructive reading may fail if the triple is write-protected (such
protection mechanisms will not be presented here).

Explicit inference invocation.When one needs to extract more complex information
from the store, he may use inference to stream solutions, thanks to the “!” prefix.

! rdf:typeð?sub; ex:ArtworkÞ ð3Þ

The type of inference is dependent on the context and on the configuration of the
corresponding infrastructure, but typically, it could exploit a background taxonomy or
ontology. For instance, provided that relations like rdfs:subClassOf (ex:VideoArt, ex:
Artwork) and rdfs:subClassOf (ex:SoftwareBasedArt, ex:Artwork) are included in the
underlying knowledge base, corresponding inference (based on the rdfs:subClassOf)
could be used to infer that the instances of ex:VideoArt and ex:SoftwareBasedArt are
solutions of query (3).

Writing triples. In order to insert a new triple inside the store, one may use the “+”
prefix:

þ rdf:typeðex:nantes�Triptych;ex:ArtworkÞ ð4Þ

When one wants to write a triple into the store, the operation might fail if: the triple
already exists; the triple is not well formed (remaining unbound variables, bad element
organization, such as a string placed at the subject position) - this is an error case; the

2 The set can be empty if the pattern does not involve any variable, or only jokers, noted ?
3 Here the term’s syntax is defined by the non-terminal BItem of the formal grammar provided in the
appendix. .

The Resource Action Language: Towards Designing Reactive RDF Stores 371

triple is write-protected (individual triples, or families of triples can be write-protected
by a lock - not developed here); the store forbids the writing of such triples (similarly,
one can specify access rights; not developed here). If the operation is successful, it will
stream a unique solution: the empty binding.

3 Blocking Actions

Reading and writing actions can be suspended until completion when specified with the
WAIT primitive. It means that the ReAL process will be suspended until the action can
be fulfilled in the current context. This is a powerful way to synchronize and com-
municate information between concurrent ReAL processes through the intermediary of
the RDF triple store (à la LINDA [6]). As an illustration, the three expressions below

WAIT rdf:type(ex:nantes-triptych, ex:Artwork)
WAIT -rdf:type(ex:nantes-triptych, ex:Artwork)
WAIT +rdf:type(ex:nantes-triptych, ex:Artwork)

will wait for the triple if not initially present at evaluation time. For the last one, a
writing action, the waiting process will not start if the problem is linked to a badly
formed triple issue (the action will just fail).

4 Stream-Based Logical Connectors

Considering that an expression becomes “true” if at least one solution exists, we
propose to consider our set of combinators (as described below) as being dual, each of
them being both a logical combinator and a stream-based composition operator as well.

AND. The binary combinator “AND” allows combining solutions from both
operands. An (e1 AND e2) expression first looks for solutions of e1; for each corre-
sponding binding B1, it is applied to e2 (applying a binding means doing a substitution:
if e2 shares variables with e1, they will be instantiated) and then the operator looks for
solutions for B1(e2) and streams them as results. As an illustration,

rdf:typeð?sub;ex:ArtWorkÞ AND ex:creatorð?sub;ex:BillViolaÞ ð5Þ

will stream the subject IRI for all art works by Bill Viola explicitly known in the RDF
store. Now, if we want to do a more powerful operation, for instance replacing the “ex:
BillViola” IRI with another one (where the IRI is more abstract and does not mention a
name), and specifying the artist’s name through the rdfs:label property:

ð6Þ

372 J.-Y. Vion-Dury and N. Lagos

The notation $iri is a syntactic sugar for FRESH(?iri), a primitive that streams fresh
and unique IRIs bound to the variable ?iri.

OR. This binary combinator propagates only the left substream if any. Otherwise, it
propagates the right one, if any.

UNION. This binary combinator propagates first the left substream if any. After-
wards, it propagates the right substream if any (meaning that it fails if both substreams
fail). Note that like the OR primitive, no junction is done between left and right terms.

NO. This combinator streams the empty binding if no solution is found for the
sub-expression, fails otherwise. Usage example:

NO rdf:typeð?x;rdfs:ClassÞ

FIRST. this unary operator evaluates its subexpression, and just streams the first
solution if any. Albeit the RDF store is not ordered, streams can be ordered, especially
when yielded by inference based queries.

LAST. Same behavior than FIRST, except that only the last solution is found. Note
that (i) it cannot work with infinite streams, and (ii) the substream is delayed until
completion since only the last solution is streamed.

REPEAT. Evaluate the subexpression but do not propagate any solutions. Fails if
the subexpression fails, returns the empty binding when the stream terminates. Usage
example:

Repeat can be parameterized by a counting parameter i.e. number of solutions. If
the number cannot be reached, the action will fail. For instance:

performs only one action. It is not equivalent to FIRST because REPEAT is
opaque. The expression below, will perform as many times as possible the actions of
the subexpression, and will return a binding giving the value of ?count, i.e. the number
of solutions.

TRUE. Streams the empty binding.
FALSE. Always fails (do not stream anything).
CALL some-IRI (i0 … ik >> o0 … on). This operator executes the actions defined

by some-IRI; parameters i0… ik are passed to the target environment; outputs o0 …
on, when defined, are used to rename the bindings streamed by the action if any.

The Resource Action Language: Towards Designing Reactive RDF Stores 373

SPAWN some-IRI (i0 … ik). This action is similar to the CALL action, except that
the action will be executed in a concurrent micro-thread, and cannot stream any
solution (one must use synchronized triples to exchange data). This is therefore an
asynchronous call, as opposed to CALL which is synchronous.

STOP some-IRI. This action stops a process (designated by some-IRI) but fails if
the process is not found or is not active anymore.

STOP some-IRI (msg-IRI). Same as the previous combinator, but a message will be
associated (msg-IRI, should be an IRI of a lrm:Message instance) to the lrm:Activ-
ityStopped event that will be attached to the RDF activity descriptor (aka some-IRI).

5 Transactions and Sandboxes

Example (6) may raise a problem when the store does not contain any artwork by Bill
Viola. In that case, the global action will fail (not returning any solution/binding) when
evaluating the third operand rdf:type(?subject, ex:Artwork) but however the store will
be eventually modified: a triple rdfs:label(_:b1,”Bill Viola”) will be inserted as a
side-effect. Indeed, the writing action (as specified by the second operand) is done
immediately, as explained in previous sections. One very obvious solution is to reorder
the operands:

ð6bÞ

Another more generic solution is to use a transaction: all transformative actions are
committed at each streamed solution, if any. If no solution is yielded, the transaction is
aborted and the store stays unchanged. The transaction is specified by enclosing square
brackets […], and transactions can be nested. A transaction is transparent (i.e. it always
propagates the substream).

ð6cÞ

A similar mechanism, called the sandbox, allows to confine all transformative
actions into a temporary substore which will be forgotten after evaluation, be it a
success or not (so it behaves like a transaction that is always aborted). It is denoted by
enclosing brackets {…} and like for transactions, it is transparent (it always propagates
the substream).

374 J.-Y. Vion-Dury and N. Lagos

6 Handling Graphs

Graphs can be viewed as a way to modularize RDF stores. We propose two combi-
nators to work with graphs: ON and IN. Their behavior is defined according to a
dedicated execution structure, namely, a stack of contexts (an RDF graph for instance
can be considered as a context). At the bottom of the stack, there is always the default
context (i.e. the context stack is never empty), and transformative actions (addition and
deletion of triples) are always performed in the context lying on the top of the stack.

ON \iri[or \var[factiong

If the first parameter is an IRI, it must designate an existing graph. If the parameter
is a variable, the graph will be created, and in extension to the standard RDF 1.1
semantics, a triple rdf:type(iri, rdf:Graph) will be created inside the top
context4. This (new) graph will be pushed on the stack, and will become the new active
context. The action associated with the ON operation will be undertaken and solutions
streamed up. Note that transformative actions (insertions and deletions) will only affect
the top context, however reading actions will explore the whole context stack in the
top-down direction.

IN \iri[or \var[factiong

The semantics are pretty much the same, except that IN builds a stack of one unique
context, the one given as parameter of the action. Therefore, transformative and reading
actions associated with the IN operations are all confined to the same unique graph (in
that sense, it is much more restrictive: it locally behaves like if the default store and
other graphs do not exist).

7 Summary and Ongoing Work

We have presented the main design principles of a query language for RDF stores
based on the notion of actions. We have presented several combinators to handle
concurrency, enable interaction with external services, and define the context of exe-
cution via the notion of nested transaction.

Currently we are working on:

• Experimenting the most innovative operators, especially the transactional and graph
related combinators (we expect the former to simplify greatly concurrent modifi-
cation and the latter to provide means for simple and efficient safety control
mechanisms).

• Decoupling completely ReAL from LRM. The current version of ReAL is still
dependent for some operators on the LRM ontology (they are both being developed
in the context of the same project, PERICLES). For instance, in the combinator

4 Actually, all named graphs will be associated with such a triple.

The Resource Action Language: Towards Designing Reactive RDF Stores 375

CALL some-IRI (i0 … ik >> o0 … on) the reference some-IRI must designate today
an instance of a specific LRM class (lrm:Action) which, by design, defines a unique
predicate lrm:body where the ReAL code describing the actions is inserted.
Figure 1 shows an example of such an instance which is used to invoke a certifi-
cation service for the versioning of an entity.

Line 237 in Fig. 1 defines the input signature, which must be matched with the
input parameters (order and cardinal of the list are both significant and must match; also
true for the output) given by the caller; the line 238 defines the output signature: these
parameters will be streamed back to the caller if solutions are found.

• Defining the formal semantics for ReAL.
• Analyzing the relation of SPARQL (and streaming variants) to ReAL.

The results of the above actions will be made available in the near future.

Acknowledgments. This work takes place in the framework of the PERICLES project which
received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement no. 601138. We thank our
colleagues and partners for the fruitful exchanges we shared. We also thank Mehreen Ikram and
Stéphane Jean for their valuable collaboration into bridging formally the semantics of the above
language with the one of SPARQL.

Fig. 1. Example of ReAL and LRM integration

376 J.-Y. Vion-Dury and N. Lagos

Appendix: EBNF Grammar

The Resource Action Language: Towards Designing Reactive RDF Stores 377

References

1. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF Streams
with C-SPARQL. SIGMOD Rec. 39(1), 20–26 (2010)

2. Calbimonte, J.-P., Jeung, H., Corcho, Ó., Aberer, K.: Enabling Query Technologies for the
Semantic Sensor Web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)

3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event
processing and stream reasoning. In: Proceedings of the Twentieth International World Wide
Web Conference on WWW 2011, India (2011)

4. Dehghanzadeh, S., Dell’Aglio, D., Gao, S., Della Valle, E., Mileo, A., Bernstein, A.:
Approximate continuous query answering over streams and dynamic linked data sets. In:
Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114,
pp. 307–325. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19890-3_20

5. Dell-Aglio, D., Della Valle, E., Calbimonte, J.P., Corcho, O.: RSP-QL semantics: a unifying
query model to explain heterogeneity of RDF stream processing systems. IJSWIS 10(4), 17–
44 (2015)

6. Wells, G.: Coordination languages: back to the future with Linda. In: Proceedings of the
Second International Workshop on Coordination and Adaption Techniques for Software
Entities (WCAT 2005), pp. 87–98 (2005)

7. Vion-Dury, J.-Y., Lagos, N., Kontopoulos, E., Riga, M., Mitzias, P., Meditskos, G.,
Waddington, S., Laurenson, P., Kompatsiaris, I.: Designing for inconsistency - the dependency-
based PERICLES approach. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) New Trends in
Databases and Inf. Systems, vol. 539, pp. 458–467. Springer, Heidelberg (2015)

8. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
semantic web rule language combining OWL and RuleML. W3C Member submission 21, 79
(2004)

9. PERICLES European project. http://www.pericles-project.eu/

378 J.-Y. Vion-Dury and N. Lagos

http://dx.doi.org/10.1007/978-3-319-19890-3_20
http://www.pericles-project.eu/

	The Resource Action Language: Towards Designing Reactive RDF Stores
	Abstract
	1 Introduction
	2 Matching, Bindings and Basic Actions
	3 Blocking Actions
	4 Stream-Based Logical Connectors
	5 Transactions and Sandboxes
	6 Handling Graphs
	7 Summary and Ongoing Work
	Acknowledgments
	Appendix: EBNF Grammar
	References

