grlc Makes GitHub Taste
Like Linked Data APIs

Albert Merono-Peniuelal2®9) and Rinke Hoekstrals3

1 Department of Computer Science,
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{albert.merono, rinke.hoekstra}l@vu.nl
2 Data Archiving and Networked Services, KNAW, Amsterdam, The Netherlands
3 Faculty of Law, University of Amsterdam, Amsterdam, The Netherlands

Abstract. Building Web APIs on top of SPARQL endpoints is becom-
ing common practice. It enables universal access to the integration favor-
able data space of Linked Data. In the majority of use cases, users cannot
be expected to learn SPARQL to query this data space. Web APIs are
the most common way to enable programmatic access to data on the
Web. However, the implementation of Web APIs around Linked Data is
often a tedious and repetitive process. Recent work speeds up this Linked
Data API construction by wrapping it around SPARQL queries, which
carry out the API functionality under the hood. Inspired by this devel-
opment, in this paper we present grlc, a lightweight server that takes
SPARQL queries curated in GitHub repositories, and translates them to
Linked Data APIs on the fly.

Keywords: SPARQL - Git - GitHub -+ Linked Data APIs - RESTFul

1 Introduction

Despite their known benefits for data integration, the Linked Data technologies
of RDF and SPARQL still operate in a niche. There is a gap with what aver-
age Web-applications and developers have come to expect. RDF and SPARQL
remain relatively unknown to the wider Web community. But they are still a
requirement for accessing Linked Data. Both have steep learning curves that
many developers refuse to face. The W3C specification of SPARQL 1.1 has a
limited adoption even within the Linked Data community [16]. Triggered by
requirements of Linked Open Data publishers, such as the UK government,' the
current best practice solution to this problem is the deployment of a custom Web
APT on top of a Linked Data source. For instance, as an interface to a SPARQL
endpoint. This use of APIs to apply the basic principle of encapsulation, and
their deployment in large scale Linked Data applications [4], has proved to solve
another problem: the expressiveness of SPARQL allows for highly inefficient or

Pronounced as in “garlic”, written lowercase with no vowels.
! https://github.com/UKGovLD)/linked-data-api.
© Springer International Publishing AG 2016

H. Sack et al. (Eds.): ESWC 2016 Satellite Events, LNCS 9989, pp. 342-353, 2016.
DOI: 10.1007/978-3-319-47602-5_48

https://github.com/UKGovLD/linked-data-api

grlc Makes GitHub Taste Like Linked Data APIs 343

just computationally expensive queries. Abstracting over curated, ‘well behaved’
queries allows for more efficient query answering and caching. It is an important
step in safeguarding query response times.

However, the deployment and configuration of a Linked Data API is still a
cumbersome task. Effective Linked Data APIs require careful management of
SPARQL queries, reliable storage, abundant documentation, and the overhead
of software maintenance. The latter has been recently addressed by Daga et al.
[1], who propose a system that builds API operations automatically by taking
a SPARQL query, a short description, and an endpoint location as input. How-
ever, the question of how to effectively store and organise such API-translated
SPARQL queries remains. As shown in this paper, users require organised APIs
that adapt to their existing query curation workflows. Moreover, such APIs might
need to coexist in systems where SPARQL queries are already being used by
other Linked Data applications. This requires a paradigm shift where not just
the data, but the queries themselves also become first class citizens.

In several Linked Data projects such as CEDAR [11] and CLARIAH-SDH 6]
we followed a practice of storing, curating, and publishing illustrative SPARQL
queries of their use cases using GitHub repositories. These queries are then used
by various client applications to access Linked Data. An analysis of GitHub shows
that this is quite common: it currently hosts at least 5000 SPARQL queries, and
potentially many more. A search on ‘sparql extension:rq’ produces 4987 results;
‘query extension:rq’ gives 4386 results. The seach for ‘rdf language:SPARQL’
returns over 46k results, and searching for ‘SELECT’ queries gives over 280k
files, but these include a large number of syntax templates used by Audacity,
Virtuoso and ClioPatria. From an e-Science perspective, sharing research ques-
tions as concrete queries on GitHub has a huge potential for the reproducibility
of research outcomes.

In this paper, we investigate how the current practice of curating queries in
open GitHub repositories can be decoupled from the custom built applications
that use them to interact with Linked Data. This way we can to lower the costs
of (1) constructing APIs for Linked Data and (2) developing applications that
interact with Linked Data. Concretely, the contribution of this paper is:

— A mapping between a Swagger RESTful API specification and SPARQL query
repositories accessible through the GitHub API;

— a decorator syntax to enrich SPARQL queries in Git repositories with meta-
data about their intended use (Sect. 3.3); and

— a description of the grlc service, that automatically exposes such enriched
SPARQL queries in GitHub repositories as Linked Data APIs (Sect.4)

As for the rest of the paper, we survey relevant related work in Sect. 2, eval-
uate our approach in two use cases in Sect. 5, and conclude in Sect. 6.

2 Related Work

The organization and management of SPARQL queries is central to the study of
their efficiency, nature, and use at improving Linked Data applications. SPARQL

344 A. Merono-Penuela and R. Hoekstra

query logs have been used to study differences between queries by humans and
machines [13]. These logs are also useful to understand semantic relatedness
of queried entities [7]. Saleem et al. [14] propose to “create a Linked Dataset
describing the SPARQL queries issued to various public SPARQL endpoints”.
Loizou et al. [9] identify (combinations of) SPARQL constructs that constitute a
performance hit, and formulate heuristics for writing optimized queries. To the
best of our knowledge, no previous work addresses the use of collaborative code
platforms to ease deployment of Web APIs.

The Semantic Web has developed significant work on the relationship
between Linked Data and Web Services [3,12]. In [15], authors propose to expose
REST APIs as Linked Data. These approaches suggest the use of Linked Data
technology on top of Web services. Our work is related to results in the opposite
direction, concretely the Linked Data API specification? and the W3C Linked
Data Platform 1.0 specification, which “describes the use of HTTP for access-
ing, updating, creating and deleting resources from servers that expose their
resources as Linked Data”3. Kopecky et al. [8] address the specific issue of writ-
ing (updating, creating, deleting) these Linked Data resources via Web APIs.
However, our work is more related to providing Linked Data access interfaces
that function as SPARQL wrappers, like the OpenPHACTS Discovery Platform
for pharmacological data [4], and the BASIL server [1]. These approaches build
Linked Data APIs compliant with the Swagger RESTful API specification* on
top of SPARQL endpoints. Our contribution proposes an additional decoupling
of Linked Data APIs with SPARQL query curation infrastructures, in order to
lower the costs of building and maintaining such APIs.

3 From GitHub Repositories to Linked Data APIs

Git is becoming increasingly popular for maintaining projects that revolve
around other content than code: a wide variety of projects use Git reposi-
tories to store data and queries over them. This development can be largely
attributed to the popularity of GitHub®, a cloud-based Git repository hosting
service [10]. For example, we use GitHub to store important SPARQL queries
and templates for the CEDAR and CLARIAH projects. This has brought two
key outcomes. First, it contributes to better maintainability of the life cycle
of SPARQL queries. By leveraging git features and GitHub’s infrastructure,
queries become easily reusable (since they get unique, dereferenceable URISs),
their provenance better traceable [2], their development (through frictionless
branching) less error-prone, and their versioning effortless. Second, it lowers
coupling between SPARQL queries and applications, by separating their devel-
opment and maintenance workflows while keeping queries accessible. As a con-
sequence, queries are less frequently hard-coded and retyped. The goal of grlc

2 https://github.com/UKGovLD /linked-data-api.

3 https://www.w3.org/TR,/2015/REC-1dp-20150226//.
* https://github.com/OAI/OpenAPI-Specification.

5 https://github.com/.

https://github.com/UKGovLD/linked-data-api
https://www.w3.org/TR/2015/REC-ldp-20150226/
https://github.com/OAI/OpenAPI-Specification
https://github.com/

grlc Makes GitHub Taste Like Linked Data APIs 345

is to profit from this the decoupling of applications and queries to streamline
the infrastructure for building and exposing Linked Data APIs.

This section investigates how the organisational characteristics of GitHub
repositories can be used to build, manage and maintain a Swagger-spec compliant
API. First, in Sect. 3.2 we study the requirements of Swagger-compliant APIs and
map them to elements of the GitHub API. Since these elements are insufficient
for a complete API spec, in Sect. 3.3 we propose to complete it with non-intrusive
SPARQL decorators.

3.1 The Swagger Specification and User Interface

The OpenAPI Specification, previously known as the Swagger® Specification,
is a standard” specification for machine-readable data structures that describe,
produce, consume, and visualize RESTful Web services. Given such a data struc-
ture, a variety of tools can generate API code, documentation, and test cases.

The OpenAPI specification allows for the declarative description of API
resources, such as operation names (called paths), their human-readable descrip-
tions, available access methods (e.g. HTTP GET, POST), parameters, available
output formats, and expected responses. The standard is ongoing work, and
there exists abundant documentation on all supported features®. Client appli-
cations can read these declarative resource descriptions, and consume services
without knowledge about their specific implementations. The Swagger UI” is an
example of such a client application. It reads Swagger service specifications, and
produces a web-base user interface that displays the contents of the API and
offers a variety of ways of interaction.

3.2 Mapping Swagger and GitHub

We propose to align the metaphor of the repository with that of the API since
both share abstract notions of organizing files and operations in a way that is
meaningful for their users. For this reason, in this section we study a possible
mapping between the two. Table1 shows the mapping between the attribute
requirements of the Swagger RESTful API specification (see Sect.3.1), and how
these correspond with either attributes of the GitHub API (repository organi-
sation elements) or attributes of the SPARQL usage decorator (usage metadata
elements). The latter are discussed in Sect. 3.3.

3.3 SPARQL Decorators

To complete the mapping of the GitHub API to the Swagger RESTful API speci-
fication shown in Table 1, we propose SPARQL decorators (or tags) to add meta-
data in queries as comments. These decorators are used by grlc to build more

5 See http://swagger.io/ and https://github.com /swagger-api.

" See https://openapis.org).

8 For a complete overview of the specification, see http://swagger.io/specification/.
9 See https://github.com/swagger-api/swagger-ui.

http://swagger.io/
https://github.com/swagger-api
https://openapis.org/
http://swagger.io/specification/
https://github.com/swagger-api/swagger-ui

346

A. Merono-Penuela and R. Hoekstra

Table 1. Mappings between the Swagger RESTful API and the GitHub API/SPARQL
decorators. Such decorators, and the query itself, are parsed through accessing any file
with the extension . rq in the repo via GET http://raw.githubusercontent.com/:owner/:

repo/master/

Swagger attribute | Scope Description Mapping

Swagger version API Version number of Static: independent of the LDA.
compliant Swagger Currently version 2.0 of the
RESTful API Swagger RESTful API spec is
specification supported

API version API Version number of the GitHub API: last repo release
API from the release API through GET

/repos/ :owner/:repo/
releases/latest

Title API Title of the API GitHub API: name of the

repository through GET
/repos/:owner/:repo

Contact name API Author and contact GitHub API: login name of the

information repository owner through GET
/repos/:owner/ :repo

Contact URL API URL to be followed for | GitHub API: link to the HTML

additional information page of the repository owner
through GET
/repos/:owner/:repo

License API License under which Repository file: a link to the
the API is released raw LICENSE file of the repo if it

exists; empty otherwise

Host API Host name to compose | grlc parameter: supplied host
the API calls name in grlc’s configuration;

localhost by default

Base path API Base path to compose GitHub API: the string
the API calls /:owner/:repo in GET

/repos/:owner/ :repo

Schemes API Supported schemes to Static: http is supported
compose the API calls

Path name Operation | Name of the API GitHub API: the file name,
operation without the extension, of any .rg

file found in the repository

Path method Operation | HTTP method for the Static: GET is supported
operation (GET, POST)

Path tags Operation | Tags under which the SPARQL decorator: the parsed
operation will be list of the decorator tags in .rg
classified files

Path description | Operation | Description of the API | SPARQL decorator: the parsed
operation description decorator in .rq files

Path parameters | Operation | Parameters of the SPARQL decorator: all
operation parameter placeholders parsed in

the query (see Sect. 4)
Path responses Operation | Responses of the SPARQL decorator: response

operation

codes on success, datatypes of
parameters (see Sect. 4)

http://raw.githubusercontent.com/:owner/:repo/master/
http://raw.githubusercontent.com/:owner/:repo/master/

grlc Makes GitHub Taste Like Linked Data APIs 347

accurate and descriptive Linked Data APIs (see Sect.4). We assume SPARQL
queries organised as . rq files in git repositories. Each of these files will translate
into an API operation. We propose to comment them in the first file lines, with
the syntax depicted in the following example!?:
#+ summary: A brief summary of what the query does

#+ method: GET
#+ endpoint: http://example.org/sparqgl

#+ tags:
#+ - UseCasel
#+ - Awesomeness

This indicates the summary of the query (which will document the API
operation), the http method to use (GET, POST, etc.), the endpoint to send
the query, and the tags under which the operation falls in. The latter helps to
keep operations organized within the API. In addition, we suggest to include two
special files in the repository. The first is a LICENSE file containing the license
for the SPARQL queries and the API. The second is the endpoint. txt file,
with the URI of a default endpoint to direct all queries of the repository. When
parsing the repository (see Sect. 4) the target endpoint will be the one indicated
by the #+ endpoint decorator, the endpoint.txt file, or http://dbpedia.
org/sparql, in this order of preference.

4 grlc

grlc!! is a thin gateway that automatically builds complete, well documented,
and neatly organized Linked Data APIs on the fly, with no input required from
users beyond a GitHub user and repository name. To do so, it implements the
GitHub API mappings proposed in Sect. 3.2, and uses the SPARQL decorators
described in Sect. 3.3. The public online instance of grlc is located at http://
grlc.io/.

grlc provides three basic operations: (1) generates the Swagger spec of
a specified GitHub repository; (2) generates the Swagger UI (see Sect.3.1) to
provide an interactive user-facing frontend of the API contents; and (:3) trans-
lates http requests to call the operations of the API against a SPARQL end-
point with several parameters. If the GitHub repository at https://github.com/:
owner/:repo contains decorated SPARQL queries, gr1c uses these, together with
organisational repo information from the GitHub API, to build the API interface
automatically. Assuming that grlc is running at :host, these operations are
available at the following routes:

— http://:host/:owner/:repo/spec: JSON Swagger-compliant specifi-
cation, using the mappings of Sect. 3

— http://:host/:owner/:repo/api-docs: Swagger-Ul, rendered using
such mappings, as shown in Fig. 1.

10" Additional examples can be found at https://github.com/CEDAR-project/Queries
and https://github.com/CLARIAH /wp4-queries.
1 Source code at https://github.com/CLARIAH /grlc.

http://dbpedia.org/sparql
http://dbpedia.org/sparql
http://grlc.io/
http://grlc.io/
https://github.com/:owner/:repo
https://github.com/:owner/:repo
https://github.com/CEDAR-project/Queries
https://github.com/CLARIAH/wp4-queries
https://github.com/CLARIAH/grlc

348 A. Merono-Penuela and R. Hoekstra

Fig. 1. Screenshot of the Swagger user interface generated by grlc

— http://:host/:owner/:repo/:operation?p_l=v_1...pn=v.n:
http GET request to :operation with parameters pq, ..., p, taking values
Vlyeeey Un

grlc composes the Swagger spec as follows: (1) the user requests the URI
http://:host/:owner/ :repo/spec12 to a host running grlc; (2) grlc
issues the http GET request to the GitHub API at https://api.github.
com/repos/ :owner/ : repo, using the owner and repo names indicated in the
previous step; (3) for each .rq file described in the response, grlc derefences
https://raw.githubusercontent.com/:owner/:repo/master/file.rq to get the SPA-
RQL file contents; (3) grlc parses these file contents to extract: (a) the values of
the decorators (if any), and (b) any parameter placeholders in the query; (4) grlc
uses all the gathered data to compose the Swagger spec, and returns it to the client
as JSON. The composition of the Swagger Ul is analogous: first the JSON spec is
composed and, after, it is used to render the Swagger UI template'®.

4.1 Parameter Mapping

It is often useful for SPARQL queries to be parameterized. This happens when
a resource in a basic graph pattern (BGP) can take specific values that affect
the result of the query. Previous work has investigated how to map these values
to parameters provided by the API operations [1,4].

grlc is compliant with BASIL’s convention for Web API parameters map-
ping'4. This means that some “parameter-declared” SPARQL variables of a
query are interpreted by grlc as parameter placeholders. Hence, operations of the

12 Requested from any http compliant client: a Web browser, curl, etc.

3 https://github.com/swagger-api/swagger-ui.

4 See https://github.com/the-open-university /basil /wiki/SPARQL-variable-name-
convention-for- WEB-API-parameters-mapping.

https://raw.githubusercontent.com/:owner/:repo/master/file.rq
https://github.com/swagger-api/swagger-ui
https://github.com/the-open-university/basil/wiki/SPARQL-variable-name-convention-for-WEB-API-parameters-mapping
https://github.com/the-open-university/basil/wiki/SPARQL-variable-name-convention-for-WEB-API-parameters-mapping

grlc Makes GitHub Taste Like Linked Data APIs 349

1 SELECT (SUM(?pop) AS ?tot) FROM <urn:graph:cedar-mini:release> WHERE {
2 ?0bs a gb:Observation.

3 ?0bs sdmx-dimension:refArea ?_location_iri.

4 ?0bs cedarterms:Kom ?_kom_iri.

5 ?0bs cedarterms:population ?pop.

6 ?slice a gb:Slice.

7 ?slice gb:observation ?obs.

8 ?slice sdmx-dimension:refPeriod ?_year_integer.

9 ?0bs sdmx-dimension:sex ?_sex_iri.

10 ?0bs cedarterms:residenceStatus ?_residenceStatus_iri.
11 FILTER (NOT EXISTS {?obs cedarterms:isTotal ?total }) }

Listing 1.1. Example of a parametrized SPARQL query (prefixes ahave been omitted).

1 | SELECT DISTINCT ?_sex_iri FROM <urn:graph:cedar-mini:release> WHERE {
2 ?0bs sdmx-dimension:sex ?_sex_iri. }

Listing 1.2. Rewritten query by grlc to retrieve plausible values for the parameter
?_sex_iri.

form http://:host/:owner/:repo/:operation?p_1=v_1...pn=v.n,
are executed by grlc by: (1) retrieving the raw SPARQL query from https://
raw.githubusercontent.com/:owner/:repo/master/:operation.rq; and (2) rewrit-
ing this query by replacing the placeholders by the parameter values vy, ..., v, sup-
plied in the API request. After this, the query is submitted to the endpoint indi-
cated by the methods described in Sect. 3.3. The endpoint results are forwarded
to the client application.

An example of such a parameterized query'® is shown in Listing 1.1. SPARQL
variable names staring with ?_ and ?__ indicate mandatory and optional para-
meters, respectively. If they end with iri or integer, they are expected to
be mapped to IRIs and literal (integer) values, respectively. These parameters
are replaced by the user provided parameter values vq,...,v, by grlc’s query
rewriting engine.

Parameter Enumerations. In order to guide the user at providing valid para-
meter values, grlc tries to fill the enumeration get->parameters->enum
attribute of an operation in the Swagger specification. This (optional) attribute
contains an array with all possible values that a parameter can take. To gener-
ate this enumeration, grlc sends an additional SPARQL query to the endpoint,
replacing the original BGP by the triple pattern where the parameter appears.
For instance, to fill the enumeration of parameter ?_sex_iri in Listing1.1,
grlc retrieves its plausible values from the endpoint with the query shown in
Listing 1.2. Figure2 shows an example of how the Swagger UI displays these
plausible parameter values.

5 The original query can be found at https://github.com/CEDAR-project/Queries/
blob/master /residenceStatus_params.rq.

https://raw.githubusercontent.com/:owner/:repo/master/:operation.rq
https://raw.githubusercontent.com/:owner/:repo/master/:operation.rq
https://github.com/CEDAR-project/Queries/blob/master/residenceStatus_params.rq
https://github.com/CEDAR-project/Queries/blob/master/residenceStatus_params.rq

350 A. Merono-Penuela and R. Hoekstra

Parameters

Parameter Value

residenceStatus | nhttp:j/lod.cedar-project.nljvocabjcedar-residenceStatus#AltijdAanwezig | T}

sex ¥ _http://purl.org/linked-data/sdmx/2009/code#sex-F
p://purl.org/link

kom http://lod.cedar-project.nljvocabjcedar-Kom#Binnenkom [

location hittp://www.gemeentegeschiedenis.nljamco/10002 [

year 1859 |

Fig. 2. Screenshot of the Swagger user interface rendering parameter enumerations
generated by grlc

4.2 Content Negotiation

grlc supports content negotiation at two different levels: by request, and by
URL. By request, grlc checks the value of the Accept header in incoming
http requests. By URL, grlc checks whether a route calling an API operation
ends with a trailing .csv, .json or .html.

In both cases, the corresponding Accept http header is used in the
request to the SPARQL endpoint, delegating support of specific content types
to each endpoint. When the response from the server is received, grlc sets the
Content-Type header of the client response to match that received by the
endpoint, and therefore it only proxies both requests and responses.

4.3 Caching

Building a Swagger specification retrieving data from the GitHub API can be a
costly operation. One GitHub request is needed to retrieve the repository con-
tents; n additional GitHub requests are needed for the n queries in the repos-
itory; and m extra endpoint requests per query are required when such query
contains m parameters. Thus, the performance of grlc can be severely affected
by cumulative network latency.

In order to mitigate this cost, grlc implements a simple cache that maintains
the following data structure:

{ <repo_uri> : { ’'date’ : <date>, ’'spec’ : <spec> } }

<repo_uri> is the URI of a requested GitHub repository; <date> is the timestamp
at which grlc generated the Swagger spec for that repository for the last time; and
<spec> is the JSON data structure containing the Swagger spec itself.

Every time there is an incoming request to generate a spec for the repository located
at <repo_uri>, grlc checks whether there is a cached spec for <repo_uri> in the

grlc Makes GitHub Taste Like Linked Data APIs 351

cache. If there is, grlc compares: (a) the date at which the repository <repo uri>
was updated for the last time, by requesting the value of pushed.at to the GitHub
API; and (b) the date <date> of the cached spec. If the cached copy is more recent
than the last GitHub update, grlc’s cache is up to date and the cached spec can be
used instead of generating it from scratch.'® If there is no <repo_uri> in the cache,
or its date is older than the last GitHub update, the spec is generated from scratch, as
described in Sect. 4, and the cache is updated. This makes grlc about 20 times faster
to generate API specs, at the cost of building them from scratch when the cache is
empty or outdated.

5 Preliminary Evaluation

In this section we evaluate requirements satisfied by grlc in two use cases.

Dutch Historical Census Data. The CEDAR project!” has published the Dutch his-
torical censuses (1795-1971) as 5-star Linked Data [11]. Key queries and templates to
interrogate this dataset are available at GitHub!'®. These queries are used in various
client applications'®2°. Before grlc, we decided to implement a minimal effort Web
API using our own instance of BASIL?'. However, the queries needed to be retyped
in the system, and caused ramifications with respect to the ones in our existing appli-
cations. Moreover, it was not possible to mimic the organisation these queries had
in the original GitHub repo in the API spec. After grlc, we could create this API
without interfering with the original applications and queries, effectively reusing them.
Furthermore, grlc permitted an ecosystem where SPARQL and non-SPARQL savvy
applications coexist.

Born Under a Bad Sign. In CLARIAH??, querying structured humanities data from com-
bined sources is central. This particular use case focuses on validating the hypothesis
that prenatal and early-life conditions have a strong impact on socioeconomic and health
outcomes later in life, by using 1891 census records of Canada and Sweden. These were
converted to Linked Data with QBer [6], and analyzed in the statistical environment R.
Before grlc, loading the data to be analyzed implied the manual download of a SPARQL
query resultset in a file, and then loading this file in R. This was mitigated with the R
SPARQL package [5]. However, this resulted in hard-coded, hardly reusable, and diffi-
cult to maintain queries. After better organising these queries in a GitHub repository,
an API using them became immediately available through grlc. As shown in Fig. 3, the
R code became clearer due to the decoupling with SPARQL; and shorter, since a curl
one-liner calling a grlc enabled API operation sufficed to retrieve the data.

16 Note that the cache currently does not track updates to the underlying data. This
means that the parameter enumerations ‘grlc’ generates can become outdated for
more dynamic datasets.

17 http://www.cedar-project.nl/.

'8 https://github.com/CEDAR-project/Queries.

19 YASGUI-based browsing: http://lod.cedar-project.nl/cedar/data.html.

20 Drawing historical maps with census data: http://lod.cedar-project.nl/maps/
map_CEDAR_women_1899.html.

2! https://github.com/the-open-university /BASIL.

22 http://clariah.nl/.

http://www.cedar-project.nl/
https://github.com/CEDAR-project/Queries
http://lod.cedar-project.nl/cedar/data.html
http://lod.cedar-project.nl/maps/map_CEDAR_women_1899.html
http://lod.cedar-project.nl/maps/map_CEDAR_women_1899.html
https://github.com/the-open-university/BASIL
http://clariah.nl/

352 A. Merono-Penuela and R. Hoekstra

library(RCurl)

canada <- getURL("http://grlc.clariah-sdh.eculture.labs.vu.nl/clariah/wp4-
canada <- read.csv(textConnection(canada))

sweden <- getURL("http://grlc.clariah-sdh.eculture.labs.vu.nl/clariah/wp4
sweden <- read.csv(textConnection(sweden))

fit_canada_base <- lm(log(hiscam) ~ log(gdppc), data=canada)
fit_canada <- lm(log(hiscam) log(gdppc) + I(age”2) + age, data=canada)
fit_sweden_base <- lm(log(hiscam) ~ log(gdppc), data=sweden)
fit_sweden <- lm(log(hiscam) log(gdppc) + I(age”2) + age, data=sweden)

Fig. 3. The use of grlc makes Linked Data accessible from any http compatible
application

6 Conclusion and Future Work

In this paper we presented grlc, a novel approach to automatically build Linked Data
APIs by using SPARQL queries stored and documented in git repositories. Our app-
roach addresses two pitfalls of current practice in constructing Linked Data APIs: (1)
the coupling of SPARQL curation workflows and the API infrastructure, which hampers
query reuse and forces query retyping and ramifications; and (2) the common lack of
organisation in Linked Data APIs. grlc maps the Swagger specification with GitHub
API features and a proposed SPARQL decorator notation, and builds and maintains
Linked Data APIs automatically with minimal effort. We argue that this approach
enables a better coexistence of SPARQL and non-SPARQL savvy applications, and
allows developers to switch their efforts from API infrastructure to applications.

We plan to extend this work in several ways. First, we will support additional repos-
itory elements and SPARQL decorators. Second, we will add compatibility with other
collaborative coding platforms, like Bitbucket and GitLab, enabling private APIs and
authentication. Third, we will investigate ways to map API results pagination and the
SPARQL keywords LIMIT and OFFSET. Fourth, we will investigate the use of grlc-
built APIs for the retrieval of generic endpoint metadata (schema, VoID, etc.) without
the need of SPARQL. Finally, we plan to create a grlc companion to facilitate the cura-
tion of SPARQL queries in Git repositories.

Acknowledgments. This work was funded by the CLARIAH project of the Dutch
Science Foundation (NWO) and the Dutch national programme COMMIT. The work
on which this paper is based has been supported by the Computational Humanities
Programme of the Royal Netherlands Academy of Arts and Sciences. For further infor-
mation, see http://ehumanities.nl. We want to thank the reviewers for their valuable
comments and suggestions.

References

1. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar approach for building web APIs
on top of SPARQL endpoints. In: Services and Applications over Linked APIs and
Data SALAD2015 (ISWC 2015), vol. 1359, CEUR Workshop Proceedings (2015).
http://ceur-ws.org/Vol-1359/

http://ehumanities.nl
http://ceur-ws.org/Vol-1359/

10.

11.

12.

13.

14.

15.

16.

grlc Makes GitHub Taste Like Linked Data APIs 353

De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P., Mannens,
E., Van de Walle, R.: Git2PROV: Exposing version control system content as
W3C PROV. In: Poster and Demo Proceedings of the 12th International Seman-
tic Web Conference (2013). http://www.iswc2013.semanticweb.org/sites/default/
files/iswc_demo_32_0.pdf

Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures (2000)

Groth, P., Loizou, A., Gray, A.J.,, Goble, C., Harland, L., Pettifer, S.:
API-centric linked data integration: the open PHACTS discovery platform
case study. Web Semant.: Sci. Serv. Ag. World Wide Web 29, 12-18
(2014). http://www.sciencedirect.com/science/article/pii/S1570826814000195, life
Science and e-Science

van Hage, W.R., with contributions from: Tomi Kauppinen, Graeler, B., Davis,
C., Hoeksema, J., Ruttenberg, A., Bahls., D.: SPARQL: SPARQL client (2013).
http://CRAN.R-project.org/package=SPARQL. Rpackageversionl.15

Hoekstra, R., Merofio-Penuela, A., Dentler, K., Rijpma, A., Zijdeman, R., Zand-
huis, I.: An ecosystem for linked humanities data. In: Proceedings of the 1st Work-
shop on Humanities in the Semantic Web (WHiSe 2016), ESWC 2016 (2016, under
review)

Huelss, J., Paulheim, H.: What SPARQL query logs tell and do not tell about
semantic relatedness in LOD. In: Gandon, F., et al. (eds.) ESWC 2015. LNCS, vol.
9341, pp. 297-308. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25639-9_44
Kopecky, J., Pedrinaci, C., Duke, A.: Restful write-oriented API for hyperdata
in custom RDF knowledge bases. In: 2011 7th International Conference on Next
Generation Web Services Practices (NWeSP), pp. 199-204, October 2011

Loizou, A., Angles, R., Groth, P.: On the formulation of performant SPARQL
queries. Web Semant.: Sci. Serv. Ag. World Wide Web 31, 1-26 (2015).
http://www.sciencedirect.com/science/article/pii/S1570826814001061

McMillan, R.: From collaborative coding to wedding invitations: github is going
mainstream. Wired Magazine, 9 February 2013. http://www.wired.com/2013/09/
github-for-anything/all

Merono-Penuela, A.; Guéret, C., Ashkpour, A., Schlobach, S.: CEDAR: the Dutch
historical censuses as linked open data. Semant. Web - Interoper. Usabil. Appl.
(2015, in press)

Pedrinaci, C., Domingue, J.: Toward the next wave of services: linked services for
the web of data. J. Univ. Comput. Sci. 16(13), 1694-1719 (2010)

Rietveld, L., Hoekstra, R.: Man vs. machine: differences in SPARQL queries. In:
Proceedings of the 4th USEWOD Workshop on Usage Analysis and the Web
of of Data, ESWC 2014 (2014). http://usewod.org/files/workshops/2014 /papers/
rietveld_hoekstra_usewod2014.pdf

Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked
SPARQL queries dataset. ISWC 2015. LNCS, vol. 9367, pp. 261-269. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25010-6_15

Speiser, S., Harth, A.: Integrating linked data and services with linked data ser-
vices. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,
De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170-184.
Springer, Heidelberg (2011)

Vandenbussche, P.Y., Aranda, C.B., Hogan, A., Umbrich, J.: Monitoring the sta-
tus of SPARQL endpoints. In: 12th International Semantic Web Conference on
Proceedings of the ISWC 2013 Posters and Demonstrations Track (ISWC 2013),
pp. 81-84. CEUR-WS (2013)

http://www.iswc2013.semanticweb.org/sites/default/files/iswc_demo_32_0.pdf
http://www.iswc2013.semanticweb.org/sites/default/files/iswc_demo_32_0.pdf
http://www.sciencedirect.com/science/article/pii/S1570826814000195
http://CRAN.R-project.org/package=SPARQL
http://dx.doi.org/10.1007/978-3-319-25639-9_44
http://www.sciencedirect.com/science/article/pii/S1570826814001061
http://www.wired.com/2013/09/github-for-anything/all
http://www.wired.com/2013/09/github-for-anything/all
http://usewod.org/files/workshops/2014/papers/rietveld_hoekstra_usewod2014.pdf
http://usewod.org/files/workshops/2014/papers/rietveld_hoekstra_usewod2014.pdf
http://dx.doi.org/10.1007/978-3-319-25010-6_15

	grlc Makes GitHub Taste Like Linked Data APIs
	1 Introduction
	2 Related Work
	3 From GitHub Repositories to Linked Data APIs
	3.1 The Swagger Specification and User Interface
	3.2 Mapping Swagger and GitHub
	3.3 SPARQL Decorators

	4 grlc
	4.1 Parameter Mapping
	4.2 Content Negotiation
	4.3 Caching

	5 Preliminary Evaluation
	6 Conclusion and Future Work
	References

