
Towards Model Construction Based on Test
Cases and GUI Extraction

Antti Jääskeläinen(B)

Department of Pervasive Computing, Tampere University of Technology,
PO Box 553, 33101 Tampere, Finland

antti.m.jaaskelainen@tut.fi

Abstract. The adoption of model-based testing techniques is hindered
by the difficulty of creating a test model. Various techniques to automate
the modelling process have been proposed, based on software process
artefacts or an existing product. This paper outlines a hybrid approach
to model construction, based on two previously proposed methods. The
presented approach combines information in pre-existing test cases with
a model extracted from the graphical user interface of the product.

Keywords: Model extraction · Model-based testing · Software testing

1 Introduction

Model-based testing is a testing methodology that automates the generation of
tests as well as their execution. In a typical approach, the tester first creates a
formal model (such as a state machine) that depicts the behaviour of the system
under test (SUT). The model is then explored by an automated tool in order to
generate a sequence of actions to be used as a test. Models can also be used to
otherwise support the testing process, such as in inspections.

A significant drawback of model-based testing is the skill and effort required
in modelling. Creating a model that covers all the relevant aspects of the SUT,
does so correctly, and is otherwise suitable for test generation, is no small task.

Various methods for easing or partially automating the modelling process
have been proposed. Models can be generated from different artefacts of the soft-
ware process, or the artefacts used directly as test models. Suitable candidates
include specifications [10] and pre-existing test cases [9,14]. Alternatively, mod-
els can be extracted from an existing product, either the source code [4,13,15],
the structure and functionality of the graphical user interface (GUI) [1,6,11,12],
or other known behaviour [7,8]. Many of these methods also use the results of
the generated tests to further hone the model.

This paper outlines a hybrid model construction method based on test cases
and information extracted from the GUI. Information on the correct behaviour
of the SUT in specific states is found in the test cases, and the states can be
combined based on information gleaned from the GUI. In this way, weaknesses of
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 225–230, 2016.
DOI: 10.1007/978-3-319-47443-4 15



226 A. Jääskeläinen

each method can be compensated for with the strengths of the other. Hopefully,
the new method could reduce the effort required to produce a useful test model.

The rest of the paper is structured as follows: Sect. 2 presents the two model
construction methods that act as the basis for the new approach, which is out-
lined in Sect. 3. Section 4 considers the potential benefits of the approach. Finally,
Sect. 5 concludes the paper with a more general discussion.

2 Automated Model Construction

The approach of this paper builds on two previously presented methods for
constructing models to describe the SUT. The first is based on combining test
cases into a model, the second on examining the GUI of the system.

2.1 Synthesis from Test Cases

The model synthesis process proposed in [9] is based on pre-existing test cases
that are linear sequences of automatically executable steps (keywords), and con-
sists of five phases: First, keywords used in test cases are identified and classified.
Second, part of the information in the test cases (such as input data) is separated
into variables. Third, an initialization sequence for the test model is prepared.
Fourth, important states in the test cases are identified manually. Finally, the
actual merging of the test cases takes place.

In the merging phase, the linear state sequences of the test cases are combined
into a more complex model by merging some of the states with each other.
The previously identified common states in the test cases are trivially merged.
However, states in different test cases may also be combined if they are reached
by the same sequence of keywords, which suggests that the cases are in fact
handling the same part of the SUT. Separating input data into variables allows
states to be combined even if the stored inputs would actually leave the system
in different states, as the data can be combined back into the model afterward.

Although this method works, it relies on a significant amount of manual
effort. In particular, the separation of variables requires significant work and
skill [9]. Also, the tester has to confirm the merges between the test cases man-
ually, as the state sequence method may generate false positives [9]. Thus, the
practicality of the method as presented is questionable.

2.2 Extraction from GUI

As an example of methods that extract a model out of a GUI we consider Mur-
phy, a tool that examines the GUI of an application, tries out different functions,
and builds a model to describe its observations [1]. It can use various methods
to access the GUI, or crawl through it. The publicly available version [5] pro-
vides crawlers that use Windows APIs or cycle through GUI controls with the
tabulator key. The constructed model is a graph with a node for each observable
state of the application.



Towards Model Construction Based on Test Cases and GUI Extraction 227

Murphy starts out at desktop, and launches the application with a predefined
command. These two application states, not running and just launched, form the
two first nodes in the constructed graph. In each GUI state, Murphy maps out
the controls found in it. Then it proceeds to try out a control, such as clicking
a button, and considers the resulting state of the GUI. A given state of the
application is identified by the controls that can be found in its GUI, while
ignoring the data such as the contents of text labels. Based on these, Murphy
will either create a transition to an existing node or add a new node to the graph.
Extraction can be performed in multiple runs starting from the desktop, with
the results combined into a single graph.

Visual inspection of the extracted models can be very helpful in finding errors,
and the models can support manual testing of the application [2]. They can also
be used for automated regression testing by comparing the extracted models
between different versions of the application or using an extracted sequence as a
smoke test for the next version [2]. That said, their usefulness for test generation
is limited: they can make no difference between an erroneous feature and a correct
one, and contain no verifications of the system state beyond finding the expected
controls in the GUI. Also, specific input data has to be added into the extraction
script manually, as it cannot be inferred from the GUI.

3 Combined Methodology

Both approaches described above have their drawbacks. In the test case synthesis
method, the test cases provide detailed information of what can and should
happen in different situations, but constructing a model out of them is difficult.
In the GUI extraction method, a graph to describe the SUT can be constructed
with little manual effort, but its understanding of the SUT is limited. But what
if the two were combined?

If we have a ready set of test cases when we begin the extraction process, then
we can track the actions taken in the GUI within the cases. For each node of the
constructed graph, we will have a set of test cases that reach the corresponding
SUT state at a specific point of their execution. Then, we can examine the next
steps in those cases for information on the current state of the SUT and the
actions available in it. The process could work as follows:

1. Before extraction, establish a correspondence between the keywords within the
test cases and actions supported by the extraction crawler. This is trivial if the
two use the same mechanism for accessing the GUI, and should be doable with
any mechanisms that understand the structure of a GUI. Also, make note of
any keywords used to verify the state of the SUT without changing it.

2. At the beginning of an extraction run, start with the full set of test cases at
their initial states. When the extractor performs an action, examine the cases
to see if they would execute the corresponding keyword next, skipping past
any keywords that do not change the state of the SUT. Advance these cases
past that keyword, and discard the other cases in the set. Make a note that
this node can be reached by the remaining test cases at their current stage.



228 A. Jääskeläinen

3. At each node, examine the test cases that can reach it. Any verifications
performed by the test cases at this node can be added into the model. Also,
the next keywords in the cases should be executable in the GUI, even if the
crawler fails to find a corresponding control. In particular, test data in the
cases, such as the parameter of a type text keyword, can be used as an input.

This process produces a model that incorporates and combines both the
information extractable from the SUT and that present in the test cases. It may
even contain functionality present in neither, if the test cases provide the crawler
access to a part of the GUI it could not reach on its own.

4 Potential Applications

Combining the test case synthesis and GUI extraction methods as described
above offers several potential benefits. Either of the test cases or the extracted
model can be used to support a testing approach based on the other. The result-
ing model can also act as a basis for a manually maintained test model.

If the testing process is based on test cases, their coverage can be increased
with the information extracted from the GUI. With the extracted information,
it is possible to tell when two test cases reach the same SUT state, or when a test
case loops back into a state it has already visited. By using the model for test
generation, it is possible to reach a state by a keyword sequence taken from one
test case and continue with a sequence from another, even if such a combination
does not occur in any of the original cases. A model that loops back into itself at
several points can be particularly useful in robustness testing: properly directed,
a test run can continue indefinitely without simply repeating a single sequence
of keywords over and over.

Conversely, in a testing process based on the extracted model, the test cases
can improve the quality of that model. They can improve model coverage by
supplying performable actions that cannot be identified in the GUI, and in par-
ticular by providing realistic test data. Also, the verifications in the test cases
improve the ability of the model to detect errors.

Finally, the constructed model can support a move to proper model-based
testing, where the tests are generated from the model. Creating a test model
can be a daunting task, especially if a fairly complete product already exists, so
that the model cannot be developed incrementally as new features are added.
In this situation, a method for automatically constructing a preliminary model
can be helpful, even though some augmentation and refactoring is likely to be
required. A model extracted purely from the GUI can already be useful here,
but the increased coverage and verifications added by the test cases can take
this support further.



Towards Model Construction Based on Test Cases and GUI Extraction 229

5 Discussion

The previous sections have outlined a method for constructing models based
on information in test cases and the GUI of the SUT. The resulting models
can be used to improve test coverage in a testing approach based on test cases,
or to better support static analysis and exploratory techniques. The method
is language-independent, and only requires the SUT to have a GUI that can
be handled by test automation. Obviously, it assumes the existence of some
manually created test cases, and is thus primarily suited for testing approaches
that will have those anyway. Practical experience will be required to see whether
writing test cases specifically for this method could be worthwhile.

As presented here, the GUI extraction part of the process is based on the
Murphy tool. However, there is nothing tool-specific in the approach itself, and
other tools can be used, as well. The basic requirement is that the tool can
distinguish different GUI events from each other, so that they can be matched
with those occurring in the test cases. The test cases must naturally have a
similar level of abstraction.

At this point, a prototype tool for the methodology is under development.
The prototype can be used to estimate the practicality of the approach, although
it will likely be unable to handle complex applications due to the limitations in
the crawler component of the freely available version of Murphy [5]. For industrial
use, integration with a professional quality test execution tool will be required.

There is likely also room for improvement in the methodology presented here.
For example, it may be possible to factor out inputs from the test cases so that we
could produce separate models for the control graph and saved data. Detecting
the input data as identical output later on should be simple, but potential effects
of data on the control graph could be more difficult to identify, and modified
versions of the data impossible to recognize without domain knowledge. Likewise,
it remains to be seen whether the Murphy approach of ignoring data in the GUI
when identifying states is the best solution for the new method.

If the test cases have been created using action words and keywords [3], it
might be possible to import these two tiers of abstraction into the constructed
model. Presenting the model at a higher level of abstraction could make analysing
it significantly easier, and produce a better basis for a full-fledged test model.

Acknowledgements. Funding by Ulla Tuominen Foundation is gratefully acknowl-
edged.

References

1. Aho, P., Suarez, M., Kanstrén, T., Memon, A.M.: Industrial adoption of automati-
cally extracted GUI models for testing. In: Chaudron, M., Genero, M., Abrahão, S.,
Pareto, L. (eds.) Proceedings of the 3rd International Workshop on Experiences
and Empirical Studies in Software Modelling (EESSMod 2013), CEUR-WS, vol.
1078, pp. 49–54. CEUR Workshop Proceedings, October 2013



230 A. Jääskeläinen

2. Aho, P., Suarez, M., Kanstrén, T., Memon, A.M.: Murphy tools: utilizing extracted
GUI models for industrial software testing. In: O’Conner, L. (ed.) Proceedings of
the 7th International Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2014), pp. 343–348. IEEE Computer Society, Los Alamitos
(2014)

3. Buwalda, H.: Action figures. In: Software Testing and Quality Engineering Maga-
zine, pp, 42–47, March/April 2003

4. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases
for specification mining. In: Proceedings of the 19th International Symposium on
Software Testing and Analysis (ISSTA 2010), pp. 85–96. ACM, New York, July
2010

5. F-Secure: GitHub - F-Secure/murphy (2014). https://github.com/F-Secure/
murphy. Accessed June 2016

6. Grilo, A.M.P., Paiva, A.C.R., Faria, J.P.: Reverse engineering of GUI models for
testing. In: Proceedings of the 5th Iberian Conference on Information Systems and
Technologies (CISTI 2010), pp. 1–6. IEEE Computer Society, Los Alamitos, June
2010

7. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol.
2306, pp. 80–95. Springer, Heidelberg (2002). doi:10.1007/3-540-45923-5 6

8. Hungar, H., Margaria, T., Steffen, B.: Test-based model generation for legacy sys-
tems. In: Proceedings of the 2003 International Test Conference (ICT 2003), vol.
2, pp. 150–159. IEEE Computer Society, Los Alamitos, September–October 2003

9. Jääskeläinen, A., Kervinen, A., Katara, M., Valmari, A., Virtanen, H.: Synthesizing
test models from test cases. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol.
5394, pp. 179–193. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01702-5 18

10. Ma, C., Du, C., Zhang, T., Hu, F., Cai, X.: WSDL-based automated test data
generation for web service. In: Kawada, S. (ed.) Proceedings of the International
Conference on Computer Science and Software Engineering (CSSE 2008), pp. 731–
737. IEEE Computer Society, Los Alamitos (2008)

11. Memon, A., Banerjee, I., Nagarajan, A.: GUI ripping: reverse engineering of graph-
ical user interfaces for testing. In: van Deursen, A., Stroulia, E., Storey, M.A.D.
(eds.) Proceedings of the 10th Working Conference on Reverse Engineering (WCRE
2003), pp. 260–269. IEEE Computer Society, Los Alamitos (2003)

12. Memon, A.M.: An event-flow model of GUI-based applications for testing. Softw.
Test. Verif. Reliab. (STVR) 17(3), 137–157 (2007)

13. Silva, J.C., Silva, C., Gonçalo, R.D., Saraiva, J., Campos, J.C.: The GUISurfer
tool: towards a language independent approach to reverse engineering GUI code.
In: Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2010), pp. 181–186. ACM, New York, June 2010

14. Xie, T., Notkin, D.: Mutually enhancing test generation and specification infer-
ence. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 60–69.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24617-6 5

15. Yang, W., Prasad, M.R., Xie, T.: A grey-box approach for automated GUI-model
generation of mobile applications. In: Cortellessa, V., Varró, D. (eds.) FASE
2013. LNCS, vol. 7793, pp. 250–265. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37057-1 19

https://github.com/F-Secure/murphy
https://github.com/F-Secure/murphy
http://dx.doi.org/10.1007/3-540-45923-5_6
http://dx.doi.org/10.1007/978-3-642-01702-5_18
http://dx.doi.org/10.1007/978-3-540-24617-6_5
http://dx.doi.org/10.1007/978-3-642-37057-1_19
http://dx.doi.org/10.1007/978-3-642-37057-1_19

	Towards Model Construction Based on Test Cases and GUI Extraction
	1 Introduction
	2 Automated Model Construction
	2.1 Synthesis from Test Cases
	2.2 Extraction from GUI

	3 Combined Methodology
	4 Potential Applications
	5 Discussion
	References


