
From Simulation Data to Test Cases for Fully
Automated Driving and ADAS

Christoph Sippl1,2(B), Florian Bock2, David Wittmann3, Harald Altinger1,
and Reinhard German2

1 Audi Electronics Venture GmbH, Sachsstr. 20, 85080 Gaimersheim, Germany
{christoph.sippl,harald.altinger}@audi.de

2 Department of Computer Science 7, Friedrich-Alexander-University,
91058 Erlangen, Germany

{florian.inifau.bock,reinhard.german}@fau.de
3 Chair of Automotive Technology, Technical University of Munich,

Boltzmannstr. 15, 85748 Garching, Germany
wittmann@ftm.mw.tum.de

Abstract. Within this paper we present a new concept on deriving test
cases from simulation data and outline challenging tasks when testing
and validating fully automated driving functions and Advanced Driver
Assistance Systems (ADAS). Open questions on topics like virtual sim-
ulation and identification of relevant situations for consistent testing of
fully automated vehicles are given. Well known criticality metrics are
assessed and discussed with regard to their potential to test fully auto-
mated vehicles and ADAS. Upon our knowledge most of them are not
applicable to identify relevant traffic situations which are of importance
for fully automated driving and ADAS. To overcome this limitation, we
present a concept including filtering and rating of potentially relevant
situations. Identified situations are described in a formal, abstract and
human readable way. Finally, a situation catalogue is built up and linked
to system requirements to derive test cases using a Domain Specific Lan-
guage (DSL).

Keywords: Virtual validation · ADAS · Fully automated vehicles ·
Simulation · Test case generation · DSL

1 Introduction

Today’s driver assistance functions and emergency systems help to avoid acci-
dents and support the driver in critical situations. As the system boundaries
are clearly defined, test cases can easily be specified. On the contrary, Advanced
Driver Assistance Systems (ADAS) and fully automated vehicles ensure safety
and comfort while driving in a normal mode. Here, defining all relevant test
cases poses problems for developers due to the large amount of dynamic objects,
including pedestrians and cyclists in urban traffic as well as the variety of prior-
ity rules and traffic guidance. So far, comprehensive test concepts and structured
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 191–206, 2016.
DOI: 10.1007/978-3-319-47443-4 12

192 C. Sippl et al.

test case generation, such as Equivalence Class Partitioning (ECP), Boundary
Value Analysis (BVA) and Predicate Testing improve the efficiency of software
testing as stated by Eo et al. [1], but are not well-suited to identify all possible
and relevant situations for fully automated vehicles and ADAS.

Therefore, simulation-based development and new concepts for virtual vali-
dation are needed, instead of testing new driving functions with the help of many
thousands of test kilometres. There are already numerous tools for simulation-
based function development and testing, thus driving simulators with realistic,
environment-sensitive behaviour of road users (e.g. pedestrians, cyclists and cars)
can be used to generate a huge amount of data. This data contain new situations,
which are relevant for testing certain driving functions. An automatic identifi-
cation of these situations and the comparison with an existing set of situations
in the test suite improve the overall test coverage of fully automated driving
functions and ADAS. Manual inspection and filtering of the relevant situations
or describing test cases is not recommended with respect to time and budget.

2 Related Work

In general, test cases are described by analysing the obligatory system require-
ments. In case of ADAS and fully automated driving functions, this can be done
by evaluating data, produced by model-based simulation or empirically collected
data. Zofka et al. [2] presented an innovative data-driven method and a con-
cept contrary to previous approaches in order to create critical traffic situations
from recorded sensor data. This concept allows reconstruction and parametriza-
tion of real world traffic scenarios. These reconstructed test scenarios can be
re-simulated by deviating parameters in order to evaluate and test ADAS com-
ponents. This approach may modify already observed and identified situations,
but cannot detect completely unknown events.

Prior Schuldt and Menzel [3] presented a method to assign test cases auto-
matically to X-in-the-loop simulation techniques using quality criteria. In [4], a
modular virtual test repository is presented to reduce the number of required
test cases for validation of driving functions by systematic test case generation
with consistent test coverage. This approach improves the overall test process
by using simulation techniques and provides evaluation methods. However, using
this method, generated test cases are derived from predefined parameters which
have impact on the system specification and requirements, scenario catalogues
and existing guidelines and standards. Thus, complex and not yet identified
situations are not taken into account. Stellet et al. [5] summed up challeng-
ing tasks on testing fully automated vehicles and ADAS and worked out, why
automated driving functions cannot be tested by defining system level criteria.
Stellet et al. argue, that “such concepts are too simplistic for future continuously
intervening automated driving functions”. In their work, a number of research
questions are pointed out that remain unanswered to date. One of these questions
is: “How to overcome the dilemma of testing the entire complexity of real-world
traffic?”

From Simulation Data to Test Cases 193

To ensure consistent terminology regarding the terms scene, situation and
scenario we follow the definitions given by Ulbrich et al. in [6]. They reflected
various definitions and pointed out their understanding of the terms with regard
to fully automated driving. Reduced to the key facts and following the definition
given in [6], the terms are described as below:

Scene. “A scene describes a snapshot of the environment including the scenery
and dynamic elements, as well as all actors’ and observers’ self-representations,
and the relationships among those entities [...]”

Situation. “A situation is the entirety of circumstances, which are to be consid-
ered for the selection of an appropriate behavior pattern at a particular point of
time. It entails all relevant conditions, options and determinants for behavior. A
situation is derived from the scene by an information selection and augmentation
process based on transient [...] as well as permanent goals and values. Hence, a
situation is always subjective by representing an element’s point of view.”

Scenario. “A scenario describes the temporal development between several
scenes in a sequence of scenes. Every scenario starts with an initial scene. Actions
and events as well as goals and values may be specified to characterize this tem-
poral development in a scenario. Other than a scene, a scenario spans a certain
amount of time.”

Aim of This Work. This paper drafts a concept to derive system test cases
for black box testing from simulation data. In the first step of this concept, an
environment-sensitive behaviour simulation generates a large quantity of data.
Then, the simulation data is pre-filtered in order to identify traffic situations,
in which dynamic objects may affect the target vehicle. Upon our knowledge,
standalone criticality metrics experience limitations and might not be adequate
for a reasonable rating according virtual test and validation of fully automated
driving functions and ADAS. Thus, the pre-filtered data are rated by a new
factor to extract relevant situations. This new factor can be parametrised by
developer specifications or use case specific targets. Then, identified situations
are described formally and in an abstract way to build up a situation catalogue.
System requirements are linked to the situation catalogue to define test criteria
and derive a test suite from evaluated simulation results using a Domain Specific
Language. The situation catalogue linked to systems requirements represent the
input stimuli for system testing of fully automated vehicles and ADAS. The
generated test cases can be used during typical development stages e.g. Software
in the Loop (SiL), Hardware in the Loop (HiL), etc. A common simulation
environment might be Virtual Test Drive [7].

194 C. Sippl et al.

3 Traffic Conflict Techniques for Fully Automated
Driving

Traffic Conflict Techniques (TCT) have come a long way since they were intro-
duced in the late 1950s. Several studies have been conducted to evaluate traffic
conflicts and criticality metrics have been developed and extensively discussed
since the late 1970s. Amundsen and Hydn [8] defines a conflict as “an observa-
tional situation in which two or more road users approach each other in space
and time to such an extent that a collision is imminent if their movements remain
unchanged”. Time-To-Collision (TTC) [9] and Post-Encroachment-Time (PET)
[10], Deceleration-To-Safety-Time (DST) [11] and various modifications of TTC
and PET like Gap-Time (GT), the Proportion of Stopping Distance (PSD),
Time-To-React, Time-To-Maneuver and Initially-Attempt-Post-Encroachment-
Time (IAPT) became effective measurements for the rating of traffic conflicts
and the development of Collision-Avoidance-System (CAS) and Pre-Crash Sys-
tems (PCS). They are also used in the field of accident research. Rodemerk’s
[12] general criticality criterion represents a collision risk in potential collision
areas, using motion prediction models and the knowledge of the course of the
roadway. Common to all these metrics, they only calculate, whether a collision
or a conflict zone occurs if participating objects do not change their path or
speed. A rating of the traffic situation thus, can only be processed if there is an
imminent conflict or accident.

Fully automated vehicles and ADAS have to process situation analysis and
interpretation. An adequate interpretation is done by taking all relevant dynamic
objects into account. Identifying these situations to process situation analysis
and interpretation, they have to be detected and rated much earlier than known
criticality metrics can provide. So, situations which may look harmless or initially
pose no danger might also be interesting for interpretation, due to environment
reasons and missing or vague traffic guidance. To be able to develop appropri-
ate strategies for fully automated driving, it is necessary to analyse complex
traffic situations at a time, when surrounding objects and their influence to the
target vehicle cannot be assessed by conflict and criticality metrics. Analysing
apparently uncritical, but complex traffic situations is inevitably to quantify a
situation as a whole and further information regarding the environment, objects
and traffic regulations have to be taken into account. A factor to calculate the
influence of surrounding objects and all relevant attributes of a situation to
the target vehicle due to its future actions can be used for a suitable situation
interpretation. This is indispensable for fully automated driving and ADAS,
especially in urban space. In addition, such a criterion enables new techniques
to identify situations in simulation data as well as real traffic data, which will
not be detected using well known conflict and criticality metrics. Junghans and
Saul [13] shows methods to detect atypical situations and actions like U-turn,
driving wiggling lines and traffic violations. As Detzer et al. [14] mentions “atyp-
ical situations refer to incident, which differ from the usual case, but most of
all present a danger to road users”, the situations Junghans and Saul are able

From Simulation Data to Test Cases 195

to detect are caused by driving actions and decisions of human drivers, that in
fully automated vehicle are not allowed to happen.

4 Concept

To derive test cases for fully automated driving and ADAS, we propose a mul-
tilayer concept as pictured in Fig. 1. This concept shows necessary steps from
an environment-sensitive behaviour simulation, an extraction of relevant situa-
tions through to the derivation of executable test cases. As seen in Fig. 1, step
1 shows an environment-sensitive behaviour simulation which generates a large
amount of data. In the next step, the generated data are filtered and individual
situations are rated to extract relevant situations for fully automated driving
and ADAS. Extracted situations are described formally and in a textual, human
understandable way, cf. step 3. In the fourth step, a situation catalogue is build
up with the help of the textual description. The situations of the catalogue
get linked to the formal scenario description. This enables an automated re-
simulation of individual situations afterwards. Using the situation catalogue and
system requirements, a test catalogue including tags to the formal description of
the situation catalogue can be derived as presented in step 5 of Fig. 1. The final
step of this concept is, extracting executable test cases automatically. Figure 1,
step 6 shows a linking to the formal scenario description. Having the tagging of
the derived test cases to the formal description, an automated simulation of the
test cases can be done. From an automation perspective, Step 1 to 4 can be easily
automated with respect to parameter specification (filters, etc.) which need to
be performed manually. The automation level of step 5 will depend on the level
of formalism used within requirements documents. From a todays practitioners
perspective this will be manual work. Step 6 might be automated using various
templates. In the following, the steps are described in detail and open challenges
are given.

4.1 Environment-Sensitive Behaviour Simulation

The first step of this concept is the generation of simulation data using a
probabilistic environment-sensitive behaviour simulation. A belonging scenario
description consists of a logical database for the environment description (e.g.

Fig. 1. Concept for deriving test cases from simulation data.

196 C. Sippl et al.

roads with their type and lanes, lane marking, traffic signs, etc.), dynamic ele-
ments (e.g. pedestrians, cyclists, vehicles, traffic lights), goals and values for
dynamic objects and actions and events (cf. Ulbrich et al. [6]). A scenario descrip-
tion can exist in different formats such as XML or HTML files. All participating
objects pursue individual goals controlled by behaviour models close to reality.
The scenario description, the behaviour models for the dynamic objects and the
logical database for the road network represent the input for the simulation and
the presented method.

A target vehicle continuously moves along defined routes and further dynamic
objects react situationally according to each other and to the target vehi-
cle. Regarding the use case and implemented functions, the subject vehicle
is also able to react situational. Thus, this simulation method with realistic,
environment-sensitive behaviour models tries to model the complexity of real-
world traffic and generates data. These data include probabilistic relevant, not
known situations which have to be tested to ensure full and consistent vali-
dation of highly connected and automated vehicles. This simulation will be
operated continuously and generates data by executing the dynamic elements
plans (actions, paths, events, etc.). As the simulation continues, new situations
will occur, which do not need to be scripted in advance and might represent a
realistic scenario. Thus, randomly generated data might be too extensive to be
analysed manually.

It is possible to include a driving simulator to this environment-sensitive
behaviour simulation. This enables human interactions while the simulation
process. Thus, driving studies in a virtual environment can be done and gener-
ated data can be evaluated afterwards. This overcomes limitations of behaviour
models and a wider range of variations of included situations can be achieved.

The outcome of the simulation run contains states, positions and circum-
stances of every dynamic object and element for every frame. Depending on the
development process and granularity of the used model and functions for the ego
vehicle, the simulation results may also contain sensor views, output of control
units or bus messages. This can be achieved by linking for example a HiL sim-
ulator. These extracted simulation results then are processed by the following
steps of this concept.

Exemplary Situation. In order to acquire a feel for the conceptual approach,
we have taken out an exemplary traffic situation in urban space. Throughout,
this situation will be picked up in the following to exemplify specific steps. The
environment-sensitive behaviour simulation is not restricted to simulate urban
traffic scenarios. Also highway traffic can be simulated.

Exemplary Situation: Urban Traffic. We presuppose a X-intersection (cf. Fig. 2).
The target vehicle (object 1) plans to turn left while the oncoming traffic (object
2) has got a green traffic light signal. Beside that, a pedestrian crossing, also
regulated by traffic lights has got a green traffic light signal too. A pedestrian
(object 3), located on a pedestrian walk leading to the pedestrian crossing, moves
straight forward to the crossing.

From Simulation Data to Test Cases 197

Fig. 2. Exemplary situation which is of importance for situation interpretation and
cannot be detected by well known criticality metrics in case of certain circumstances.
(Color figure online)

Open Challenges. As this environment-sensitive behaviour simulation is able
to produce data, there are some open questions to be answered. To get a better
representation of reality and improve the following overall process, a verifica-
tion has to be done, whether an adequate number and variations of scenes were
generated. A verification can be done in two ways, via logging and checking
afterwards or online analysis. If an online analysis is done, the simulation has
to provide editing specific parameters while it is running. To guarantee a wide
range of relevant situations in the simulation results, it would be conceivable to
include variations during the simulation process. This can be done by automated
editing the behaviour models while the simulation runs or define periodic recur-
ring elements on specific points of the environment and different states of the
behaviour models. Also a challenging task is the reset and roll back of individual
elements during the simulation process, if they run into crashes or deadlocks.

4.2 Extracting Relevant Situations

Pre-filtering. For fully automated vehicles, relevant situations contain all
objects, elements and circumstances that may affect the vehicle in its trajec-
tory planning. As strategy to apply situation analysis and plan future actions,
we suggest the concept of manoeuvre spaces. Manoeuvre spaces describe abut-
ting areas divided by stopping lines and logical points, where traffic guidance
requires an analysis and interpretation of the situations and, if necessary, an
adaptation of the driving actions. Manoeuvre spaces result from existing stop-
ping lines at intersections and lane junctions caused by traffic guidance and
logical stopping points resulting from “turning while conditional compatibility”.
Required information therefore can be extracted from the used logical datasets
(e.g. OpenDrive [15], RoadGraph [16]). For an example, we extracted manoeuvre
spaces for a simulated complex intersection (cf. Fig. 3). The source format was
an XODR-file following the OpenDrive specification. The visualisation was done
by using Unity 3D1.
1 Unity 3D is a game and graphic development platform to build high-quality 2D and

3D games and visualisations [17].

198 C. Sippl et al.

Fig. 3. Extracted manoeuvre spaces (grey surfaces) for a simulated intersection.

After extracting manoeuvre spaces in a defined area or radius around the
subject vehicle, the localisation and association to the traffic lanes is neces-
sary. The objective of the localisation and mapping to its corresponding traffic
lane is to calculate, which lanes are reachable and following the lane of the tar-
get vehicle, if traffic regulations are going to be upheld. This can be expected,
because fully automated vehicles have to act rule-consistently. Furthermore, as
fully automated vehicles already know their actual route, only traffic lanes along
the planned route have to be taken into account.

Simultaneously, all dynamic objects and elements have to be extracted and
included. After that, the detected objects will be mapped to their related traf-
fic lane or (traffic) surface, similar to the mapping of the subject vehicle to
its traffic lane. Then, for every object an estimation for future trajectories or
future occupied areas will be calculated. This is done by using motion predic-
tion models (cf. [18–23]). Using motion prediction models afterwards, instead
of using the implemented behaviour model for simulation, for pre-filtering has
got advantages. Motion prediction models give different results than simulation
behaviour models. Behaviour models take their surrounding and circumstances
into account and plan their actions situationally. Motion prediction models esti-
mate possible trajectories and future occupied areas on the basis of observed
behaviour and give multiple estimated actions, assessed by a probability value.
Due to use case or developer requirements, motion prediction models should be
able to be adapted, e.g. how they take traffic light states and traffic regulations
into account.

In conjunction with a defined temporal forecast, one can figure out poten-
tial overlapping zones with the computed manoeuvre spaces of the subject car.
By having this information, the current scene can be reduced to its relevant
objects according to a defined temporal forecast. The filtered situation now rep-
resents the relevant dynamic objects for the target vehicle and in which future
manoeuvre it might be influenced by other objects.

The pre-filtering parameters can be edited by the developer in a configuration
file. Using this, specific requirements or use cases can be included and different
types of situations can be identified. It is possible, taking only pedestrians, other
vehicles or cyclists into account or reduce the simulation results due to specific

From Simulation Data to Test Cases 199

traffic routes or environments like intersections, pedestrian crosswalks, acceler-
ation lanes, traffic light regulations, etc. It is also possible to filter individual
situations, e.g. targets vehicles camera field of view. Situations can be found,
where e.g. a defined number of pedestrians are in the field of view of the camera
or dynamic objects have a defined orientation to the target vehicle.

Rating Traffic Situations. The influence of identified relevant objects to
the target vehicle is calculated by extracting the information when overlapping
manoeuvre spaces will be reached by the target vehicle. The extracted time will
be adapted to the estimated motions of the dynamic objects and a probabil-
ity of occupancy can be calculated. The exact definition and calculation of the
probability of occupancy will be part of a future publication. So, every manoeu-
vre space gets a probability for being occupied by a dynamic object when the
target car approaches. A calculated high probability of occupancy for a manoeu-
vre space at a specific point of time does not imply, that this manoeuvre space
was crossed by a dynamic object in the further simulation process. It merely
indicates, that this situation would have been of importance for the situation
analysis and interpretation at a certain point of time. By having a probability
and the extracted time when the target vehicle will reach the manoeuvre space,
developers have the possibility to filter the simulation data due to a tempo-
ral forecast or a pre-defined probability of occupancy will be exceeded. To pick
up the thought of an evaluation framework, the probability of occupancy can
be expanded by including worst case assumptions like traffic rule violation and
atypical behaviour. Furthermore, the probability of occupancy can be linked or
expanded by already known criticality metrics, if a collision course exists by
estimated trajectories of the dynamic objects.

Exemplary Situation: Identify the Situation. Known criticality metrics cannot
rate the exemplary situation (cf. Sect. 4.1, Fig. 2), if the target vehicle is standing
or driving with a certain speed, because an imminent collision does not exist. This
situation, is of importance for situation interpretation, because of various ways
to challenge this traffic situation and plan future actions. For example, the target
vehicle waits until the oncoming traffic has passed, then continues the planned
route with enough speed to pass the pedestrian walk, before the pedestrian
reaches the crosswalk. Another possibility is to wait until both objects (2 and 3)
have passed. Applying motion prediction models and the concept of manoeuvre
spaces, this situation will be identified as relevant. Concerning the used motion
prediction model, the estimated trajectory of the pedestrian (object 3) will cross
the planned trajectory of the target vehicle (object 1). Also the oncoming traffic
(object 2) will intersect the planned trajectory of the target vehicle. For this
situation a high probability of occupancy will be calculated and the situation
will be automatically detected.

Executing Relevant Situations. After pre-filtering and rating situations
according to the use case or developer specifications, relevant situations have to

200 C. Sippl et al.

be extracted. Therefore, the probability of the occupancy (and possibly a linked
criticality metric) can be seen as a search criterion, which has to be parametrized
by the developer. So, situations which exceed a defined value of probability or
criticality can be found and extracted from a huge amount of simulation results.
In order to get the outset of the situation, the related scene has to be reduced to
its relevant objects and circumstances. Decisions of actions of the participating
objects (cf. Ulbrich et al. [6]) have to be taken into account.

Open Challenges. As the concepts allows filtering and extracting relevant
situations for interpretation, there are still some limitations. If multiple dynamic
objects in one situation are viewed on their own and might be rated as “not
relevant”, certain circumstances of these objects and their combination might
be relevant for situation interpretation. Also a specific sequence of events, like
atypical behaviour, might become interesting for situation analysis. An open
task is to extend the suggested concept, to be able to detect such situations or
sequences of events.

4.3 Describing Executed Situations

Formal Situation Description. After the extraction of relevant situations
from simulation data, the situations have to be described formally to enable fur-
ther automated processing like comparison to other situations. A formal descrip-
tion for situations consists of the sum of its elements, its corresponding concre-
tised parameters and the sequence of events. A formal description language may
follow a scheme like the one given by Geyer et al. in [24].

Exemplary Situation: Formal Description. As an example for a formal descrip-
tion of the exemplary situation we used a XML based format. Because this
example should demonstrate how a formal description can be done, the descrip-
tion of the situation is reduced to the key facts:

<!DOCTYPE FORMAL DESCRIPTION SITUATION #1>
<infrastructure>

<trafficlight name="tl1" type="simple"
pos="45,25,4" state="green"/>

<trafficlight name="tl2" type="advanced"
pos="-45,20,4" state="green"/>

<trafficsign type="stop" pos="45,-25,3"/>
<trafficsign type="stop" pos="-45,25,3"/>

</infrastructure>
<dynamic>

<person name="p1" pos="-45,-30,2" direction="2" speed="1.5"/>
<car name="car1" pos="50,20,2" direction="3" speed="20"/>
<car name="car2" pos="-50,-20,2" direction="2" speed="10"/>

</dynamic>

From Simulation Data to Test Cases 201

Abstract Situation Description. To be better understandable by humans, we
recommend a textual description generated from the formal scenario description
(cf. Fig. 1, step 3). An advantage of a textual description of a relevant situation
is, that additional information (e.g. obstacle in lane, vehicles in front in the same
lane, traffic light states, ...) in plain text can be added. This textual description
is tagged with the formal scenario description. So, predefined scenario element
sets (e.g. traffic jam, cut in object, pedestrian crosswalks) for re-simulation,
readable in an easy way for developer, can be executed. Using scenario based
development, intended system behaviour for re-simulation and test cases can
directly be derived, based on the abstract situation description in combination
with the tagged formal scenario description.

Exemplary Situation: Textual Description. After generating the formal descrip-
tion, a textual and human understandable description of the identified situation
can be extracted automatically. For an example, a textual description of the
exemplary situation may look like the following:

TEXTUAL DESCRIPTION SITUATION #1:
Crossing situation with

2 traffic lights,
2 road signs,
2 cars,
1 person.

Lane 1 consists of
2 traffic lights at (45,25,4|-45,20,4)

with the states (green|green).
2 cars at (50,20,2|-50,-20,2)

with direction (4|2+3) and speed (20|10).
Lane 2 consists of

2 road signs (stop|stop) at (45,-25,3|-45,25,3).
A person at (-45,-30,2)

with direction (2) and speed (1.5)
is crossing lane 2.

Beside extracting the formal and abstract description out of the simulation
results, it is possible to generate an illustration of the identified situation (cf.
Fig. 4 for our exemplary situation). Therefore, the logical database is used to gen-
erate the infrastructure representation. Dynamic objects and elements, including
their positions, then can be embedded.

Situation Catalogue. Using the abstract, textual and human understandable
description, a situation catalogue can be build up (cf. Fig. 1, step 4). As the
situation catalogue should be dynamically extendible, new situations have to
be compared with the existing set of situations. For this purpose, the tagged
formal description can be used for automated comparison and evaluation of the
catalogue. We also suggest a classification of the collected situations by driving

202 C. Sippl et al.

Fig. 4. Generated illustration of the exemplary situation using the logical database
and the formal description.

actions, developer specific demands or use cases. Uncertainty in classifying a
situation can be handled by identifying corresponding elements, parameters and
events of the formal description. The built up situation catalogue claims what a
system for automated driving has to manage.

Open Challenges. Establishing formal and abstract description languages and
building up a suitable situation catalogue implies some open and challenging
tasks. A situation can be described by ambiguous possibilities and in differ-
ent ways. A sufficient large description language has to be found to display all
necessary information. On the contrary, a description language has to be of man-
ageable scale and variety, to assure efficient search, classification and evaluation
of situations. In consequence, an appropriate selection of the abstraction level
and choice of relevant elements and parameters is inevitable.

4.4 Build up Test Catalogue

Linking to System Requirements. To maintain a certain degree of trace-
ability, links between each situation listed in the situation catalogue and the
related system requirements have to be created and documented. This enables
the user to view the requirements which are relevant for a specific situation, as
well as to filter all situations covering a particular set of requirements. Addi-
tionally, situations or requirements with no established links can be identified to
guarantee the integrity of the system. Textual requirements are either written
in a natural language or in a formal way. Especially in the automotive domain,
a natural language is often chosen as primary solution, because the specifier can

From Simulation Data to Test Cases 203

stick to familiar descriptions and phrases. Formal styles are much more labori-
ous to get used to. A link between the requirements and the situation catalogue
can be established in form of a requirement identifier reference embedded in the
situation description and the tool-supported tracing of these connections.

Exemplary Situation: Requirement. System requirements to handle the exem-
plary situation may have the following form:

REQUIREMENTS FOR SITUATION #1:
#1: If Ego turns left, the system has to give way to

oncoming traffic.
#2: If Ego turns into a lane, the system has to give

way to crossing pedestrians and cyclists.
#3: In give way situations, the system has to stop in front of

relevant conflict zones until a safe passing is possible.

Deriving Test Cases. After establishing the links, test cases have to be created
to be able to test the system. This can be done by hand, which requires the test
engineer to review and understand the requirements and the situations, which is
prone to errors and misinterpretations. A better solution is to partly automatize
the test case creation. In our case, both the requirements and the situation
catalogue are textual, which advices a textual generation technique.

A Domain-Specific Language (DSL) is a programming language limited to
a specific domain and capable of automatically generating diverse textual and
graphical artefacts (cf. Fig. 5). Such artefacts include, for example, diagrams,
models and even source code in different general purpose languages (e.g. C++).
Although DSLs can be graphical as well, the textual nature of our source docu-
ments leads to a textual DSL as optimal solution.

This textual DSL can directly use syntax and semantics of the situation
catalogue and the system requirements. An automatic interpretation of both
documents is possible, although it might be challenging. The feasibility of this
automatism has to be examined in detail and will be part of a future publication.
The advantage of this approach is the maintenance of the readability for humans
and the usage of already specified patterns. The DSL then aggregates all relevant
information out of the situations and requirements and generates predefined
artefacts. The main type of artefact in our case are the test cases extracted

Fig. 5. DSL workflow for test case generation.

204 C. Sippl et al.

out of the situations, which then can be used in manual and automated system
testing. Additionally, the test cases and the related results can be reintegrated,
tagged and included in other environment-sensitive behaviour simulations. This
can be done automatically, due to the fact that the derived test cases from the
situation catalogue are tagged with a formal description.

Exemplary Situation: Executable Test Case. Using the extracted descriptions
and the system requirement, test cases for all relevant objects of the situation can
be generated automatically. The range of the parameters can differ depending on
predefined legal or technical constraints. For our exemplary situation, the test
case may have the following form and range of parameters:

TEST CASE #1, SITUATION #1:
RANGE OF PARAMS:

p1: speed=[0;8]
car1: speed=[0;30]
car2: speed=[0;50]

EXPECTED SYSTEM BEHAVIOUR:
The system should turn left on lane 2.

TEST CRITERIA:
Does the target vehicle give way to the vehicle and pedestrian?

Open Challenges. Our presented concept derives test cases, but no real test
oracle. The comparison of the system behaviour to the extracted test criteria can
be potentially automated, but will not be considered here. A further issue that
needs to be solved, is how an automated valuation method can be set up. Up
today a human test expert has to rate every situation. A first implementation of
a test oracle might be to define a passed test case as preventing a collision with
other objects.

5 Conclusion and Future Work

We discussed well known criticality metrics regarding their usability in the field
of rating traffic situations and pointed out, why their use for fully automated
vehicles and ADAS is not sufficient. Fully automated vehicles and ADAS have
to analyse and interpret traffic situations at every point of time. Thus, relevant
situations have to be identified to ensure full testing and validation. Virtual sim-
ulation methods are getting more important and are producing a large quantity
of data. The challenge thereby is to be able to execute relevant situations and
derive test cases. As a solution, we suggest a multilayer model concept to filter
simulation data, rate relevant situations, transfer them to a situation catalogue
and derive executable test cases. Using DSLs, situations can be presented in a for-
mal and textual, human understandable way and linked to system requirements.
This enables a throughout automation for deriving test cases from simulation
data. To demonstrate the benefit of this approach, an exemplary situation was

From Simulation Data to Test Cases 205

taken out and picked up consistently to exemplify specific steps of this concept.
Figure 1 presents a good overview to our approach.

Future work will contain an exact definition of the probability of occupancy
and its parametrization. Further parameters like traffic rule violation and atypi-
cal behaviour are going to be included, to cover more specific developer require-
ments and get a more detailed rating of the situation executing framework.
Beside that, we are working on an appropriate formal and abstract description
capable of building up the situation catalogue and using a DSL to automatically
link the requirements and derive executable test cases.

References

1. Eo, J.S., Choi, H.R., Gao, R., Lee, S., Wong, W.E.: Case study of requirements-
based test case generation on an automotive domain. In: 2015 IEEE International
Conference on Software Quality, Reliability and Security - Companion, pp. 210–
215. IEEE Press (2015)

2. Zofka, R.M., Kuhnt, F., Kohlhaas, R., et al.: Data-driven simulation and para-
metrization of traffic scenarios for the development of advanced driver assistance
systems. In: 18th International Conference on Information Fusion, pp. 1422–1428.
IEEE Press, Washington DC (2015)

3. Schuldt, F., Menzel, T.: Eine Methode für die Zuordnung von Testfällen
für automatisierte Fahrfunktionen auf X-in-the-Loop Verfahren im modularen
virtuellen Testbaukasten. In: 10. Uni-DAS e.V. Workshop Fahrerassistenzsysteme
2015, pp. 1–12. Uni-DAS e.V., Walting (2015)

4. Schuldt, F., Lichte, B., Maurer, M., Scholz, S.: Systematische Auswertung von
Testfällen für Fahrfunktionen im modularen virtuellen Testbaukasten. In: 9. Uni-
DAS e.V. Workshop Fahrerassistenzsysteme 2014, pp. 169–179. Uni-DAS e.V.,
Walting (2014)

5. Stellet, J., Zöllner, J.M., Schumacher, J., et al.: Testing of advanced driver assis-
tance towards automated driving: a survey and taxonomy on existing approaches
and open questions. In: 2015 IEEE 18th International Conference on Intelligent
Transportation Systems, pp. 1455–1462. IEEE Press (2015)

6. Ulbrich, S., Menzel, T., Reschka, A., et al.: Defining and substantiating the terms
scene, situation, and scenario for automated driving. In: 2015 IEEE 18th Interna-
tional Conference on Intelligent Transportation Systems, pp. 982–988. IEEE Press,
Las Palmas (2015)

7. Vires Simulationstechnologie GmbH: Virtual Test Drive User Manual (2014).
https://www.vires.com/docs/VIRES VTD Overview 201403.pdf

8. Amundsen, F., Hydn, C. (eds.): Proceedings of the First Workshop on Traffic
Conflicts. Institute of Transport Economics Oslo and LTH Lund (1977)

9. Hayward, J.C.: Near miss determination through use of a scale of danger. Highw.
Res. Rec. 384, 24–34 (1972). (The Pennsylvania State University, Pennsylvania)

10. Allen, B.L., Shin, B.T., Cooper, P.J.: Analysis of traffic conflict collisions. Transp.
Res. Rec. 667, 67–74 (1978). (National Research Council, Washington D.C.)

11. Hupfer, C.: Deceleration to safety time (DST) - a useful figure to evaluate traffic
safety. In: ICTCT Conference Proceedings of Seminar 3, Department of Traffic
Planning and Engineering, Lund (1997)

https://www.vires.com/docs/VIRES_VTD_Overview_201403.pdf

206 C. Sippl et al.

12. Rodemerk, C., Habenicht, S., Weitzel, A., et al.: Development of a general criti-
cality criterion for the risk estimation of driving situations and its application to
a maneuver-based lane change assistance system Claas. In: IV. IEEE Intelligent
Vehicles Symposium, pp. 264–269. IEEE Press, Alcala de Henares (2012)

13. Junghans, M., Saul, H.: Chances for the evaluation of the traffic safety risk
at intersections by novel methods. In: VII. Russisch-Deutsche Konferenz für
Verkehrssicherheit, pp. 60–67. Sankt Petersburg (2014)

14. Detzer, S., Junghans, M., Kozempel, K., Saul, H.: Analysis of traffic safety for
cyclists - an automatic detection of critical traffic situations of cyclists. In: 20th
International Conference on Urban Transport and the Built Environment, pp. 491–
503. WIT Press, Portugal (2014)

15. Dupuis, M., et al.: OpenDRIVE Format Specification, Rev. 1.4 (2015)
16. Knaup, J., Homeier, K.: RoadGraph - graph based environmental modelling and

function independent situation analysis for driver assistance systems. In: 13th Inter-
national IEEE Annual Conference on Intelligent Transportation Systems, pp. 428–
432. IEEE Press, Madeira Island (2010)

17. Unity Technologies Website. http://unity3d.com/
18. Bonnin, S., Weisswange, T.H., Kummert, F., Schmuedderich, J.: Pedestrian cross-

ing prediction using multiple context-based models. In: 2014 IEEE 17th Inter-
national Conference on Intelligent Transportation Systems (ITSC), pp. 378–385.
IEEE Press, Qingdao (2014)

19. Meyer-Delius, D., Sturm, J., Burgard, W.: Regression-based online situation recog-
nition for vehicular traffic scenarios. In: 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2009, pp. 1711–1716. IEEE Press, St.
Louis (2009)

20. Schneider, N., Gavrila, D.M.: Pedestrian path prediction with recursive Bayesian
filters: a comparative study. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR
2013. LNCS, vol. 8142, pp. 174–183. Springer, Heidelberg (2013)

21. Ziebart, B., Ratliff, N., Gallagher, G., Peterson, K.: Planning-based prediction for
pedestrians. In: Proceedings of the 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3931–3936. IEEE Press, St. Louis (2009)

22. Rehder, E., Kl, H., Stiller, C.: Planungsbasierte Fußgängerprädiktion. In: 10. Uni-
DAS e.V. Workshop Fahrerassistenzsysteme, pp. 129–138, Uni-DAS e.V., Walting
(2015)

23. Quintero, R., Parra, I., Llorca, D.F., Sotelo, M.A.: Pedestrian path prediction based
on body language and action classification. In: 2014 IEEE 17th International Con-
ference on Intelligent Transportation Systems (ITSC), pp. 679–684. IEEE Press,
Qingdao (2014)

24. Geyer, S., Baltzer, M., Franz, B., et al.: Concept and development of a unified
ontology for generating test and use-case catalogues for assisted and automated
vehicle guidance. IET Intell. Transp. Syst. 8, 183–189 (2014)

http://unity3d.com/

	From Simulation Data to Test Cases for Fully Automated Driving and ADAS
	1 Introduction
	2 Related Work
	3 Traffic Conflict Techniques for Fully Automated Driving
	4 Concept
	4.1 Environment-Sensitive Behaviour Simulation
	4.2 Extracting Relevant Situations
	4.3 Describing Executed Situations
	4.4 Build up Test Catalogue

	5 Conclusion and Future Work
	References

