
STIPI: Using Search to Prioritize Test Cases
Based on Multi-objectives Derived

from Industrial Practice

Dipesh Pradhan1(&), Shuai Wang1, Shaukat Ali1, Tao Yue1,2,
and Marius Liaaen3

1 Certus V&V Center, Simula Research Laboratory, Oslo, Norway
{dipesh,shuai,shaukat,tao}@simula.no

2 University of Oslo, Oslo, Norway
3 Cisco Systems, Oslo, Norway

marliaae@cisco.com

Abstract. The importance of cost-effectively prioritizing test cases is undeni-
able in automated testing practice in industry. This paper focuses on prioritizing
test cases developed to test product lines of Video Conferencing Systems
(VCSs) at Cisco Systems, Norway. Each test case requires setting up configu-
rations of a set of VCSs, invoking a set of test APIs with specific inputs, and
checking statuses of the VCSs under test. Based on these characteristics and
available information related with test case execution (e.g., number of faults
detected), we identified that the test case prioritization problem in our particular
context should focus on achieving high coverage of configurations, test APIs,
statuses, and high fault detection capability as quickly as possible. To solve this
problem, we propose a search-based test case prioritization approach (named
STIPI) by defining a fitness function with four objectives and integrating it with
a widely applied multi-objective optimization algorithm (named Non-dominated
Sorting Genetic Algorithm II). We compared STIPI with random search (RS),
Greedy algorithm, and three approaches adapted from literature, using three real
sets of test cases from Cisco with four time budgets (25 %, 50 %, 75 % and
100 %). Results show that STIPI significantly outperformed the selected
approaches and managed to achieve better performance than RS for on average
39.9 %, 18.6 %, 32.7 % and 43.9 % for the coverage of configurations, test
APIs, statuses and fault detection capability, respectively.

Keywords: Test case prioritization � Search � Configurations � Test APIs

1 Introduction

Testing is a critical activity for system or software development, through which
system/software quality is ensured [1]. To improve the testing efficiency, a large
number of researchers have been focusing on prioritizing test cases into an optimal
execution order to achieve maximum effectiveness (e.g., fault detection capability) as
quickly as possible [2–4]. In the industrial practice of automated testing, test case

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved.
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 172–190, 2016.
DOI: 10.1007/978-3-319-47443-4_11

prioritization is even more critical because usually there is a limited budget (e.g., time)
to execute test cases, and thus executing all available test cases at a given context is
infeasible [1, 5].

Our industrial partner for this work is Cisco System, Norway, who develops pro-
duct lines of Video Conferencing Systems (VCSs), which enable high quality con-
ference meetings [4, 5]. To ensure the delivery of high quality VCSs to the market, test
engineers of Cisco continually develop test cases to test software of VCSs under
various hardware or software configurations, statuses (i.e., states) of VCSs with ded-
icated test APIs. A test case is typically composed of the following parts: (1) setting up
test configurations of a set of VCSs under test; (2) invoking a set of test APIs of the
VCSs; and (3) checking the statuses of the VCSs after invoking the test APIs to
determine the success or failure of an execution of the test case. When executing test
cases, several objectives need to be achieved, i.e., covering the maximum number of
possible configurations, test APIs, statuses and detecting as many faults as possible.
However, given a number of available test cases, it is often infeasible to execute all of
them in practice due to a limited budget of execution time (e.g., 10 h), and it is
therefore important to seek an approach for prioritizing the given test cases to cover
maximum number of configurations, test APIs, statuses and detect faults as quickly as
possible.

To address the above-mentioned challenge, we propose a search-based test case
prioritization approach named Search-based Test case prioritization based on Incre-
mental unique coverage and Position Impact (STIPI). STIPI defines a fitness function
with four objectives to evaluate the quality of test case prioritization solutions, i.e.,
Configuration Coverage (CC), test API Coverage (APIC), Status Coverage (SC) and
Fault Detection Capability (FDC), and integrates the fitness function with a
widely-applied multi-objective search algorithm (i.e., Non-dominated Sorting Genetic
Algorithm II) [6]. Moreover, we propose two prioritization strategies when defining the
fitness function in STIPI: (1) Incremental Unique Coverage, i.e., for a specific test case,
we only consider the incremental unique elements (e.g., test APIs) covered by the test
case as compared with the elements covered by the already prioritized test cases; and
(2) Position Impact, i.e., a test case with a higher execution position (i.e., scheduled to
be executed earlier) has more impact on the quality of a prioritization solution. Notice
that both of these strategies are defined to help search to achieve high criteria (i.e., CC,
APIC, SC and FDC) as quickly as possible.

To evaluate STIPI, we chose five approaches for the comparison: (1) Random
Search (RS) to assess the complexity of the problem; (2) Greedy approach; (3) One
existing approach [7] and two modified approaches from the existing literature [8, 9].
The evaluation uses in total 211 test cases from Cisco, which are divided into three sets
with varying complexity. Moreover, four different time budgets are used for our
evaluation, i.e., 25 %, 50 %, 75 % and 100 % (100 % refers to the total execution time
of all the test cases in a given set). Notice that 12 comparisons were performed (i.e.,
three sets of test cases*four time budgets) for comparing STIPI with each approach, and
thus in total 60 comparisons were conducted for the five approaches. Results show that
STIPI significantly outperformed the selected approaches for 54 out of 60 comparisons
(90 %). In addition, STIPI managed to achieve higher performance than RS for on

STIPI: Using Search to Prioritize Test Cases 173

average 39.9 % (configuration coverage), 18.6 % (test API coverage), 32.7 % (status
coverage), and 43.9 % (fault detection capability).

The remainder of the paper is organized as follows: Sect. 2 presents the context, a
running example and motivation. STIPI is presented in Sect. 3 followed by experiment
design (Sect. 4). Section 5 presents experiment results and overall discussion. Related
work is discussed in Sect. 6, and we conclude the work in Sect. 7.

2 Context, Running Example and Motivation

Figure 1 presents a simplified context of testing VCSs (Systems Under Test (SUTs)),
and Fig. 2 illustrates (partial) configuration, test API and status information for testing
a VCS. First, one VCS consists of one or more configuration variables (e.g., attribute
protocol of class VCS in Fig. 2), each of which can take two or more configuration
variable values (e.g., literal SIP of enumeration Protocol). Second, a VCS holds one or
more status variables defining the statuses of the VCS (e.g., NumberofActiveCalls), and
each status variable can have two or more status variable values (e.g., Num-
berofActiveCalls taking values of 0, 1, 2, 3 and 4). Third, testing a VCS requires
employing one or more test API commands (e.g., dial), each of which includes zero or
more test API parameters (e.g., callType for dial). Each test API parameter can take two
or more test API parameter values (e.g., Video and Audio for CallType).

Figure 3 illustrates the key steps of a test case for testing VCSs. First, a test case
configures one or more VCSs by assigning values to configuration variables. For
example, the test case shown in Fig. 3 configures the configuration variable protocol
with SIP (Line 1). Second, a test API command is invoked with appropriate values

Fig. 1. A simplified context of testing VCSs

Fig. 2. Partial configuration, status and test API information for testing a VCS

174 D. Pradhan et al.

assigned to its input parameters, if any. For example, the test case in Fig. 3 invokes the
test API command dial consisting of the two test API parameter values: Video for
callType and SIP for protocol) (Line 2). Third, the test case checks the actual statuses
of VCSs. For example, the test case in Fig. 3 checks the status of the VCS to see if
NumberOfActiveCalls equals to 1 (Line 4).

In the context of testing VCSs, test case prioritization is a critical task since it is
practically infeasible to execute all the available test cases within a given time budget
(e.g., 5 h). Therefore, it is essential to cover maximum configurations (i.e., configu-
ration variables and their values), test APIs (i.e., test API commands, parameters and
their values) and statuses (i.e., status variables and their values), and detect faults as
quickly as possible. For instance, Table 1 lists five test cases ðT1. . .T5Þ with the
information about configurations, test APIs and statuses. The test case in Fig. 3 is
represented as T1 in Table 1, which (1) sets the configuration variable protocol as SIP;
(2) uses three test API commands: dial with two parameters (callType, protocol),
accept and disconnect; and (3) checks values of three status variables (e.g.,
MaxVideoCalls).

Notice that the five test cases in Table 1 can be executed in 325 orders (i.e.,
C 5; 1ð Þ � 1!þC 5; 2ð Þ � 2!þ . . .þCð5; 5Þ � 5!). When there is a time budget, each
particular order can be considered as a prioritization solution. Given two prioritization
solutions s1 ¼ T5; T1; T4;T2; T3f g, s2 ¼ T1; T3; T5; T2; T4f g, one can observe that s1 is
better than s2 since the first three test cases in s1 can cover all the configuration
variables and their values, test API commands, test API parameters, test API parameter
values, status variables and status variable values, while s2 needs to execute all the five
test cases to achieve the same coverage as s1. Therefore, it is important to seek an

Table 1. Illustrating test case prioritization*

Test case Configuration Test API Status

Protocol Dial Accept Disconnect SV1 SV2 SV3

callType Protocol

T1 SIP Video SIP U U 0, 1 1 1
T2 SIP Audio SIP U U 0, 1 1 0
T3 SIP Audio SIP U 1 1 0
T4 H323 Audio H323 U 0, 1, 2 2 0
T5 H320 Audio H320 U 1 1 1

*SV1: NumberOfActiveCalls, SV2: MaxNumberOfCalls, SV3: MaxVideoCalls.

1. protocol = SIP //Configure the configuration variable
2. dial(Video, SIP) //Employ test API command dial and assigning

values to parameters: callType and protocol
3. accept //Employ test API command with no parameters
4. assert (NumberOfActiveCalls=1,MaxNumberOfCalls=1,

MaxVideoCalls =1) //Check values of the status variables
5. disconnect //Employ test API command with no parameters
6. assert(NumberofActiveCalls=0) //Check status

Fig. 3. An excerpt of a sanitized and simplified test case

STIPI: Using Search to Prioritize Test Cases 175

efficient approach to find an optimal order for executing a given number of test cases to
achieve high coverage of configurations, test APIs and statuses, and detect faults as
quickly as possible, which forms the motivation of this work.

3 STIPI: Search-Based Test Case Prioritization Based
on Incremental Unique Coverage and Position Impact

This section presents the problem representation (Sect. 3.1), four defined objectives,
fitness function (Sect. 3.2) and solution encoding (Sect. 3.3).

3.1 Basic Notations and Problem Representation

Basic Notations. We provide the basic notations as below used throughout the paper.
T ¼ T1; T2. . .Tnf g represents a set of n test cases to be prioritized.
ET ¼ et1; et2. . .etnf g refers to the execution time for each test case in T.
CV ¼ cv1; cv2. . .cvmcvf g represents the configuration variables covered by T. For

each cvi, CVVi refers to the configuration variable values: CVVi ¼ cvvi1. . .cvvicvvf g.
mcvv is the total number of unique values for all the configuration variables, which can

be calculated as: mcvv ¼ Smcv

i¼1
CVVi

� �����
����.

AC ¼ ac1; ac2. . .acmacf g represents a set of test API commands covered by T. For
each aci, APi denotes the test API parameters: APi ¼ api1. . .apiap

� �
. map is the total

number of unique test API parameters, calculated as: map ¼ j Smac

i¼1
APi

� �
j. For each api,

AVi refers to the test API parameter values: AVi ¼ avi1. . .aviavf g. mav is the total

number of unique test API parameter values, i.e., mav ¼ j Smap

i¼1
AVi

� �
j.

SV ¼ sv1; sv2. . .svmsvf g represents a set of status variables covered by T. For each
svi, SVVi refers to the status variable values: SVVi ¼ svvi1. . .svvisvvf g. msvv is the total
number of unique status variable values, calculated as: msvv ¼ Smsv

i¼1
SVVi

� �����
����:

Effect ¼ effect1. . .effectneffect
� �

defines a set of effectiveness measures.
S ¼ s1; s2. . .snsf g represents a set of potential solutions, such that

ns ¼ C n; 1ð Þ � 1!þC n; 2ð Þ � 2!þ . . .þCðn; nÞ � n!. Each solution sj consists of a set
of prioritized test cases in T: sj ¼ Tj1. . .Tjn

� �
, where Tji 2 T refers to the test case with

the execution position i in the prioritized solution sj. Note that it is possible for the
maximum number of test cases in sj (i.e., jn) to be less than the total number of test
cases in T, since only a subset of T is prioritized during limited budget (e.g., time).

Problem Representation. We aim to prioritize the test cases in T in two contexts:
(1) 100 % time budget and (2) less than 100 % time budget (i.e., time-aware [1]).
Therefore, we formulate the test case prioritization problem as follows: (a) search a

176 D. Pradhan et al.

solution sk with nk test cases from the total number of ns solutions in S to obtain the
highest effectiveness; and (b) a test case Tjr in a particular solution (e.g.,sj) with a higher
position p has more influence for Effect than the test case with a lower position q.

(1) With 100 % time budget:

8i¼1 to n effect8j¼1 to ns Effect ðsk; effectiÞ�Effect sj; effecti
� �

_ effecti Tjr; p
� �

[8q�ðpþ 1ÞeffectiðTjr; qÞ:

where effecti Tjr; p
� �

and effecti Tjr; q
� �

refer to the effectiveness measure i for a
test case Tjr at position p and q, respectively for a particular solution sj.
Effectðsk; effectiÞ and Effectðsj; effectiÞ returns the effectiveness measure i for
solutions sk , sj respectively.

(2) With a time budget tb less than 100 % time budget:

8i¼1 to neffect8j¼1 to ns Effect ðsk; effectiÞ�Effect sj; effecti
� �

_
Xnk

l¼1
ETl � tb; effecti Tjr; p

� �
[8q�ðpþ 1ÞeffectiðTjr; qÞ:

3.2 Fitness Function

Recall that we aim at maximizing the overall coverage for configuration, test API and
status, and detect faults as quickly as possible (Sect. 2). Therefore, we define four
objective functions for the fitness function to guide the search towards finding optimal
solutions, which are presented in details as below.

Maximize Configuration Coverage (CC). CC measures the overall configuration
coverage of a solution sj with jn number of test cases, which is composed of Config-
uration Variable Coverage (CVC) and Configuration Variable Values Coverage

(CVVC). We can calculate CVC and CVVC for sj as: CVCsj ¼
Pjn

i¼1
UCVTji�n�iþ 1

n

mcv ;

CVVCsj ¼
Pjn

i¼1
UCVVTji�n�iþ 1

n

mcvv , where mcv and mcvv represent the total number of unique
Configuration Variables (CV) and Configuration Variable Values (CVV) respectively
covered by the total test cases in T (e.g., in Table 1 mcvv ¼ 3). Moreover, we propose
two prioritization strategies for calculating CVC and CVVC. The first one is Incremental
Unique Coverage, i.e., UCVTji and UCVVTji representing the number of incremental
unique CV and CVV covered by Tji (Sect. 3.1). For example, in Table 1, for one test case
prioritization solution s1 ¼ T5; T1; T4; T2; T3f g;UCVVT5 is 1 since T5 is in the first
execution position and covers one CVV (i.e., H320). UCVVT1 and UCVVT4 are at the
second and third position, and cover one CVV each (i.e., SIP, H323). However, UCVVT2
and UCVVT3 are 0, since they are already covered by UCVVT1 . This strategy is defined
since test case prioritization in our case concerns how many configurations, test APIs,
and statuses can be covered rather than how many times they can be covered. The
second prioritization strategy is Position Impact, which is calculated as n�iþ 1

n , where n is
the total number of test cases, and i is a specific execution position in a prioritization

STIPI: Using Search to Prioritize Test Cases 177

solution. Thus, test cases with higher execution positions have higher impact on the
quality of a prioritization solution, which fits the scope of test case prioritization that
aims at achieving higher criteria as quickly as possible. For instance, using this strategy,

CVVC for s1 is: CVVCs1 ¼ 1�5
5þ 1�4

5þ 1�3
5þ 0�2

5þ 0�1
5

3 ¼ 0:8: Moreover, CC for sj is rep-

resented as: CCsj ¼
CVCsj þCVVCsj

2 . A higher value of CC shows a higher coverage of
configuration.

Maximize Test API Coverage (APIC). APIC measures the overall test API coverage
of a solution sj with jn number of test cases. It consists of three sub measures: Test API
Command Coverage (ACC), Test API Parameter Coverage (APC), and Test API
parameter Value Coverage (AVC). ACC, APC and AVC can be calculated as below:

ACCsj ¼
Pjn

i¼1 UACTji � n�iþ 1
n

mac
; APCsj ¼

Pjn
i¼1 UAPTji � n�iþ 1

n

map
; AVCsj

¼
Pjn

i¼1 UAVTji � n�iþ 1
n

mav
:

Similarly, the same two strategies (i.e., Incremental Unique Coverage and Position
Impact) are applied for calculating ACC, APC and AVC, where UACTji , UAPTji and
UAVTji denotes the number of unique test API commands (AC), test API parameters
(AP), and test API parameter values (AV) respectively covered by Tji (Sect. 3.1). They
are measured similar as for UCVVT in CVVC. mac, map, and mav refer to the total
number of unique AC, AP, and AV covered by the total number of test cases as explained

for mcvv in CVVC. The APIC for sj is represented as: APICsj ¼
ACCsj þAPCsj þAVCsj

3 .
A higher value of APIC shows a higher coverage of test APIs.

Maximize Status Coverage (SC). SC measures the total status coverage of a solution
sj. It consists of two sub measures: Status Variable Coverage (SVC) and Status

Variable Value Coverage (SVVC), calculated as follow: SVCsj ¼
Pjn

i¼1
USVTji�n�iþ 1

n

msv ,

SVVCsj ¼
Pjn

i¼1
USVVTji�n�iþ 1

n

msvv . Similarly, USVTji and USVVTji are the number of unique
Status Variables (SV) and Status Variable Values (SVV) respectively covered by Tji
(Sect. 3.1), which are measured similar as UCVVT in CVVC. msv and msvv represent
the total number of unique SV and SVV respectively measured similar as for mcvv in

CVVC. The SC for sj is represented as: SCsj ¼
SVCsj þ SVVCsj

2 , with a higher value
indicating a higher status coverage, and therefore representing a better solution.

Maximize Fault Detection Capability (FDC). In the context of Cisco, FDC is
defined as the detected number of faults for test cases in a solution sj [4, 5, 10–12]. The

FDC for a test case Tji is calculated as: FDCTji ¼ Number of times that Tji found a fault
Number of times that Tji was executed

. Notice

that the FDC of Tji is calculated based on the historical information of executing Tji.
For example, if tci was executed 10 times, and it detected fault 4 times, the FDC for tci

is 0.4. We calculate FDC for a solution sj as: FDCsj ¼
Pjn

i¼1
FDCTji�n�iþ 1

n

mfdc . FDCTji denotes

178 D. Pradhan et al.

the FDC for a Tji, mfdc represents the sum of all FDC of test cases, and a higher value
of FDC implies a better solution. Notice that we cannot apply the incremental unique
coverage strategy for calculating FDCsj since the relations between faults and test cases
are not known in our case (i.e., we only know whether the test cases can detect faults
after executing it for a certain number of times rather than having access to the detailed
faults detected).

3.3 Solution Representation

The test cases in T are encoded as an array A ¼ v1; v2. . .vnf g, where each variable vi
represents one test case in T, and holds a unique value from 0 to 1. We prioritize the test
cases in TS by sorting the variables in A in a descending order from higher to lower,
such that 1 is the highest, and 0 is the lowest order. Initially, each variable in A is
assigned a random value between 0 and 1, and during search our approach returns
solutions with optimal values for A guided by the fitness function defined in Sect. 3.2.
In terms of time-aware test case prioritization (i.e., with a time budget less than 100 %),
we pick the maximum number of test cases that fit the given time budget. For example,
in Table 1 for TS ¼ T1. . .T5f g with A as 0:6; 0:2; 0:4; 0:9; 0:3f g and the execution time
(recorded as minutes) as ET ¼ 4; 5; 6; 4; 3f g, the prioritized test cases are
T4; T1; T3; T5; T2f g based on our encoding way for test case prioritization. If we have a

time budget of 11 min, the first two test cases (in total 8 min for execution) are first
added to the prioritized solution sj, and there are 3 min left, which is not sufficient for
executing T3 (6 min). Thus, T3 is not added into sj, and the next test case is evaluated to
see if the total execution time can fit the given time budget. T5 with 3 min will be added
into sj, since the inclusion of T5 will not make the total execution time exceed the time
budget. Therefore, the new prioritized solution will be T4; T1; T5f g.

Moreover, we integrate our fitness function with a widely applied multi-objective
search algorithm named Non-dominated Sorting Genetic Algorithm (NSGA-II) [6, 13,
14]. The tournament selection operator [6] is applied to select individual solutions with
the best fitness for inclusion into the next generation. The crossover operator is used to
produce offspring solutions from the parent solutions by swapping some of the parts
(e.g., test cases in our context) of the parent solutions. The mutation operator is applied
to randomly change the values of one or more variables (e.g., in our context, each
variable represents a test case) based on the pre-defined mutation probability, e.g.,
1/(total number of test cases) in our context.

4 Empirical Study Design

4.1 Research Questions

RQ1: Is STIPI effective for test case prioritization as compared with RS (i.e.,
random prioritization)? We compare STIPI with RS for four time budgets: 100 %
(i.e., total execution time of all the test cases in a given set), 75 %, 50 % and 25 %,

STIPI: Using Search to Prioritize Test Cases 179

to assess the complexity of the problem such that the use of search algorithms is
justified.
RQ2: Is STIPI effective for test case prioritization as compared with four selected
approaches, in the contexts of four time budgets: 100 %, 75 %, 50 % and 25 %?
RQ2.1: Is STIPI effective as compared with the Greedy approach (a local search
approach)?
RQ2.2: Is STIPI effective as compared with the approach used in [7] (named as A1
in this paper)? Notice that we chose A1 since it also proposed a strategy to give
higher importance to test cases with higher execution positions.
RQ2.3: Is STIPI effective as compared with the modified version of the approach
proposed in [8] (named as A2 in this paper)? We chose A2 since it combines the
Average Percentage of Faults Detected (APFD) metric and NSGA-II for test case
prioritization without considering time budget. We modified it by defining Average
Percentage of Configuration Coverage (APCC), Average Percentage of test API
Coverage (APAC) and Average Percentage of Status Coverage (APSC) (Sect. 4.3)
for assessing the quality of prioritization solutions for configurations, test APIs and
statuses.
RQ2.4: Is STIPI effective as compared with the modified version of the approach in
[9] (named as A3 in this paper)? We chose A3 since (1) it combines the ADFD with
cost (APFDc) metric and NSGA-II for addressing time-aware test case prioritization
problem. We revised A3 by defining Average Percentage of Configuration Cover-
age with cost (APCCc), Average Percentage of test API Coverage with cost
(APACc) and Average Percentage of Status Coverage with cost (APSCc). For
illustration, we provide a formula for Average Percentage of Configuration Variable
Value Coverage with cost (APCVVCc) that is a sub-metric for APCCc as:

APCVVCc ¼
Pmcvv

i¼1
ð
Pjn

k¼TCVVi
etk�1

2etTCVVi ÞPjn

k¼1
etk�mcvv

. For a solution sj with jn test cases, TCVVi is

the first test case from sj that covers CVVi (i.e., the i
th configuration variable value),

mcvv is the total number of unique configuration variable value, and etk is the
execution time for kth test case. Notice that the detailed formulas for APCCc, APACc

and APSCc can be consulted in our technical report in [15].

We also compare the running time of STIPI with all the five chosen approaches,
since STIPI is invoked very frequently (e.g., more than 50 times per day) in our
context, i.e., the test cases require to be prioritized and executed often. Therefore, it
would be practically infeasible if it takes too much time to apply STIPI.

4.2 Experiment Tasks

As shown in Table 2 (Experiment Task column), we designed two tasks (T1, T2) for
addressing RQ1–RQ2. The task T1 is designed to compare STIPI with RS for the four
time budgets (i.e., 100 %, 75 %, 50 % and 25 %) and three sets of test cases (i.e., 100,
150 and 211). Similarly, the task T2 is designed to compare STIPI with the other four
test case prioritization approaches, which is divided into four sub-tasks for comparing
Greedy, A1, A2 and A3, respectively.

180 D. Pradhan et al.

Moreover, we employed 211 real test cases from Cisco for evaluation by dividing it
into three sets with varying complexity (#Test Cases column in Table 2). For the first
set, we used all the 211 test cases. For the second set, we used 100 random test cases
from the 211 test cases. Finally, for the third set, we used the 150 test cases by choosing
111 test cases not selected in the second set (i.e., 100) and 39 random test cases from
the second set. Notice that the goal for using three test case sets is to evaluate our
approach with test datasets with different complexity.

4.3 Evaluation Metrics

To answer the RQs, we defined in total seven EMs (Table 3). Six are used to assess
how fast the configurations, test APIs and statuses can be covered: (1) Average Per-
centage Configuration Coverage (APCC), (2) Average Percentage test API Coverage
(APAC), (3) Average Percentage Status Coverage (APSC), (4) Average Percentage
Configuration Coverage that penalizes missing configuration (APCCp), (5) Average
Percentage test API Coverage that penalizes missing test API (APACp) and (6) Average
Percentage Status Coverage with penalization for missing status (APSCp). We defined
APCC, APAC and APSC for test case prioritization with 100 % time budget based on
the APFD metric [8, 16]. For example, for a solution sj with jn test cases and total
number of test cases n from T (a given number of test cases), TCV1 is the first test case
from sj that covers CV1 for the sub metric APCVC in Table 3 (Sect. 3.1). Notice that
n and jn are equal when there is 100 % time budget.

When there is a limited time budget, it is possible that not all the configurations, test
APIs and statuses can be covered. Therefore, we defined APCCp, APACp, and APACp

to give penalty to missing configurations, test APIs, and statuses for time-aware pri-
oritization (i.e., 25 %, 50 % and 75 % time budget) based on the variant of APFD

Table 2. Overview of the experiment design

RQ Experiment task # test
cases

Time
budget %

Evaluation metric
(EM)

Quality
indicator

Statistical test

1 T1: STIPI vs. RS 100
150
211

100 APCC, APAC, APSC – Vargha and
Delaney Â12

Mann-Whitney
U test

25, 50, 75 APCCp, APACp,
APSCp, MFDC

–

2 T2.1 STIPI vs.
Greedy

100 APCC, APAC, APSC –

25, 50, 75 APCCp, APACp,
APSCp, MFDC

–

T2.2 STIPI vs.
A1

100 APCC, APAC, APSC Hypervolume
(HV)25, 50, 75 APCCp, APACp,

APSCp, MFDC

T2.3 STIPI vs.
A2

100 APCC, APAC, APSC

25, 50, 75 APCCp, APACp,
APSCp

T2.4 TIPI vs. A3 100 APCC, APAC, APSC

25, 50, 75 APCCp, APACp,
APSCp

STIPI: Using Search to Prioritize Test Cases 181

metric used for time-aware prioritization [1, 16]. For example, for a solution sj with jn
test cases reveal cv; sj

� �
gives the test case from sj that covers cv for APCVCp in

Table 3. If sj does not contain a test case that covers cv, reveal cv; sj
� � ¼ jnþ 1. Notice

that in our context, we only have information about how many times in a given period
(e.g., a week) a test case was successful in finding faults. Therefore, it is not possible to
use the APFD metric to evaluate FDC. Hence, we defined a metric: Measured Fault
Detection Capability (MFDC) to measure the percentage of fault detected for time
budget of 25 %, 50 % and 75 %.

4.4 Quality Indicator, Statistical Tests and Parameter Settings

When comparing the overall performance of multi-objective search algorithms (e.g.,
NSGA-II [6]), it is common to apply quality indicators such as hypervolume (HV).
Following the guideline in [10], we employ HV based on the defined EMs to address
RQ2.2–RQ2.4 (i.e., tasks T2.2–T2.4 in Table 2). HV calculates the volume in the
objective space covered by members of a non-dominated set of solutions (i.e., Pareto
front) produced by search algorithms for measuring both convergence and diversity
[17]. A higher value of HV indicates a better performance of the algorithm.

Table 3. Different metrics for evaluating the approaches*

EC Time
budget %

EM Sub metric Formula

Name Formula

Con 100 APCC APCVC 1� TCV1 þTCV2 þ ...þTCVmcv
n�mcv þ 1

2n APCC ¼ APCVCþAPCVVC
2

APCVVC 1� TCVV1 þ TCVV2 þ ...þ TCVVmcvv
n�mcvv þ 1

2n

25
50
75

APCCp APCVCp 1�
Pmcv

cv¼1
reveal cv;sjð Þ

jn�mcv þ 1
2jn

APCCp ¼ APCVCp þAPCVVCp

2

APCVVCp 1�
Pmcvv

cvv¼1
reveal cvv;sjð Þ

jn�mcvv þ 1
2jn

API 100 APAC APACC 1� TAC1 þTAC2 þ ...þTACmac
n�mac þ 1

2n APAC ¼ APACCþAPAPCþAPAVC
3

APAPC 1� TAP1 þTAP2 þ ...þ TAPmap

n�map þ 1
2n

APAVC 1� TAV1 þTAV2 þ ...þ TAVmav
n�mav þ 1

2n

25
50
75

APACp APACCp 1�
Pmac

ac¼1
reveal ac;sjð Þ

jn�mac þ 1
2jn

APACp ¼ APACCp þAPAPCp þAPAVCp

3

APAPCp 1�
Pmap

ap¼1
reveal ap;sjð Þ

jn�map þ 1
2jn

APAVCp 1�
Pmav

av¼1
reveal av;sjð Þ

jn�mav þ 1
2jn

Stat 100 APSC APSVC 1� TSV1 þ TSV2 þ ...þTSVmsv
n�msv þ 1

2n
APSC ¼ APSVCþAPSVVC

2

APSVVC 1� TSVV1 þ TSVV2 þ ...þ TSVVmsvv
n�msvv þ 1

2n

25
50
75

APSCp APSVCp 1�
Pmsv

sv¼1
reveal sv;sjð Þ
jn�msv þ 1

2jn
APSCp ¼ APSVCp þAPSVVCp

2

APSVVCp 1�
Pmsvv

svv¼1
reveal svv;sjð Þ

jn�msvv þ 1
2jn

FDC 25,50,75 MFDC - -
MFDC ¼

Pjn

i¼1
FDCTiPn

k¼1
FDCTk

� 100%

*EC: Evaluation Criteria, Con: Configuration, API: Test API, Stat: Status.

182 D. Pradhan et al.

The Vargha and Delaney Â12 statistics [18] and Mann-Whitney U test are used to
compare the EMs (T1 and T2), and HV (T2.2–T2.4), as shown in Table 2 by following
the guidelines in [19]. The Vargha and Delaney Â12 statistics is a non-parametric effect
size measure, and Mann-Whitney U test tells if results are statistically significant [20].
For two algorithms A and B, A has better performance than B if Â12 is greater than 0.5,
and the difference is significant if p-value is less than 0.05.

Notice that STIPI, A1, A2 and A3 are all combined with NSGA-II. Since tuning
parameters to different settings might result in different performance of search algo-
rithms, standard settings are recommended [19]. We used standard settings (i.e.,
population size = 100, crossover rate = 0.9, mutation rate = 1/(number of test cases))
as implemented in jMetal [21]. The search process is terminated when the fitness
function has been evaluated for 50,000 times. Since A2 does not support prioritization
with a time budget, we collect the maximum number of test cases that can fit a given
time budget.

5 Results, Analyses and Discussion

5.1 RQ1: Sanity Check (STIPI vs. RS)

Results in Tables 4 and 5 show that on average STIPI is higher than RS for all the EMs
across the three sets of test cases. Moreover, for the three test sets using four time
budgets, STIPI managed to achieve higher performance than RS for on average 39.9 %
(configuration coverage), 18.6 % (test API coverage), 32.7 % (status coverage), and
43.9 % (FDC). In addition, results of the Vargha and Delaney statistics and the Mann
Whitney U test show that STIPI significantly outperformed RS for all the Ems since all
the values of Â12 are greater than 0.5 and all the p-values are less than 0.05.

Table 4. Average values of the EMs with 100 % and 75 % time budget*

T 100 % time budget 75 % time budget
EM RS Gr A1 A2 A3 STI EM RS Gr A1 A2 A3 STI

100 CC 0.7 0.76 0.75 0.77 0.75 0.77 CCp 0.63 0.71 0.73 0.74 0.73 0.74
150 0.68 0.84 0.8 0.79 0.75 0.79 0.60 0.81 0.69 0.72 0.73 0.77
211 0.74 0.83 0.83 0.85 0.81 0.85 0.67 0.76 0.79 0.80 0.79 0.81
100 AC 0.83 0.74 0.85 0.85 0.84 0.86 ACp 0.78 0.70 0.83 0.82 0.84 0.83
150 0.78 0.64 0.83 0.86 0.85 0.86 0.72 0.57 0.75 0.81 0.83 0.84
211 0.82 0.67 0.85 0.89 0.89 0.89 0.77 0.56 0.83 0.87 0.87 0.88
100 SC 0.73 0.65 0.76 0.82 0.76 0.82 SCp 0.67 0.60 0.73 0.79 0.79 0.81
150 0.74 0.62 0.8 0.85 0.83 0.85 0.68 0.56 0.71 0.80 0.81 0.83
211 0.78 0.64 0.79 0.85 0.82 0.85 0.72 0.56 0.79 0.84 0.85 0.86
100 - - - - - - - MF 0.78 0.79 0.91 - - 0.89
150 - - - - - - - 0.79 0.80 0.70 - - 0.87
211 - - - - - - - 0.77 0.63 0.91 - - 0.90

*T: Test Case, Gr: Greedy, CC: APCC, AC: APAC, SC: APSC, CCp: APCCp, ACp: APACp,
SCp: APSCp, MF: MFDC, STI: STIPI.

STIPI: Using Search to Prioritize Test Cases 183

5.2 RQ2: Comparison with the Selected Approaches

We compared STIPI with Greedy, A1, A2 and A3 using the statistical tests (Vargha and
Delaney statistics and Mann Whitney U test) for the four time budgets (25 %, 50 %,
75 % and 100 %), and the three sets of test cases (i.e., 100, 150, 211). Results are
summarized in Fig. 4. For example, the first bar (i.e., Gr) in Fig. 4 refers to the
comparison between STIPI and Greedy for the 100 % time budget where A = STIPI
and B = Greedy. A > B means the percentage of EMs for which STIPI has significantly
better performance than Greedy ðÂ12 [0:5&& p\0:05Þ;A\B means the opposite
ðÂ12\0:5&& p\0:05Þ, and A = B implies there is no significant difference in per-
formance (p� 0:05).

RQ2.1 (STIPI vs. Greedy). From Tables 4 and 5, we can observe that the average
values of STIPI are higher than Greedy for 93.3 % (42/45)1 EMs across the three sets of
test cases with the four time budgets. Moreover, from Fig. 4, we can observe STIPI
performed significantly better than Greedy for an average of 93.1 % for the four time
budgets (i.e., 88.9 % for 100 %, 91.7 % for 75 %, 91.7 % for 50 %, and 100 % for
25 % time budget). Detailed results are available in [15].

RQ2.2 (STIPI vs. A1). Based on Tables 4 and 5, we can see that STIPI has a higher
average value than A1 for 82.2 % (37/45) EMs, and STIPI performed significantly
better than A1 for an average of 76.4 % EMs across the four time budgets, while there
was no difference in performance for 14.6 % from Fig. 4. Figure 5 shows that for HV,
STIPI outperformed A1 for all the three sets of test cases with the four time budgets,
and such better results are statistically significant. Detailed results are in [15].

Table 5. Average values of the EMs with 25 % and 50 % time budget*

EM # T 25 % time budget 50 % time budget
RS Gr A1 A2 A3 STIPI RS Gr A1 A2 A3 STIPI

APCCp 100 0.37 0.30 0.55 0.51 0.62 0.66 0.52 0.65 0.65 0.67 0.70 0.73
150 0.35 0.59 0.52 0.45 0.66 0.71 0.50 0.81 0.74 0.63 0.72 0.74
211 0.42 0.43 0.63 0.56 0.69 0.71 0.52 0.53 0.65 0.67 0.70 0.73

APACp 100 0.56 0.26 0.70 0.61 0.74 0.70 0.71 0.61 0.79 0.77 0.81 0.81
150 0.50 0.35 0.59 0.55 0.74 0.75 0.64 0.54 0.76 0.74 0.81 0.82
211 0.58 0.33 0.71 0.65 0.77 0.75 0.71 0.52 0.79 0.81 0.85 0.85

APSCp 100 0.42 0.14 0.59 0.55 0.70 0.66 0.57 0.51 0.68 0.72 0.76 0.76
150 0.44 0.33 0.54 0.53 0.73 0.74 0.52 0.53 0.65 0.67 0.70 0.73
211 0.48 0.24 0.66 0.62 0.78 0.77 0.63 0.52 0.74 0.78 0.84 0.85

MFDC 100 0.30 0.06 0.55 - - 0.50 0.54 0.45 0.77 - - 0.78
150 0.30 0.19 0.40 - - 0.63 0.55 0.74 0.75 - - 0.76
211 0.29 0.09 0.52 - - 0.44 0.53 0.48 0.75 - - 0.76

1 An EM has one average value for one set of test case with one time budget (Tables 4 and 5). Thus,
for 100 % time budget with 3 EMs there are 9 values, and 45 average values for 4 time budgets and 4
EMs for other 3 time budgets.

184 D. Pradhan et al.

RQ2.3 (STIPI vs. A2). RQ2.3 is designed to compare STIPI with the approach A2
(Sect. 4.1). Table 4 shows that the two approaches had similar average for EMs with
100 % time budget. Moreover, for 100 % time budget, there was no significant dif-
ference in the performance between STIPI and A2 in terms of EMs and HV (Figs. 4 and
5). However, when considering the time budgets of 25 %, 50 % and 75 %, STIPI had a
higher performance for 96.3 % (26/27) EMs (Tables 4 and 5). Furthermore, the sta-
tistical tests in Figs. 4 and 5 show that STIPI significantly outperformed A2 for an
average of 88.9 % EMs and HV values across the three time budgets (25 %, 50 %,
75 %), while there was no significant difference for 11.1 %.

RQ2.4 (STIPI vs. A3). Based on the results (Tables 4 and 5), STIPI held a higher
average values for 75 % (27/36) EM values for the four time budgets and three sets of
test cases. For 100 %, 75 %, and 50 %, we can observe from Fig. 4 that STIPI per-
formed significantly better than A3 for an average of 74.1 % EMs, while there was no
significant difference for 22.2 %. For the 25 % time budget, there was no statistically
significant difference in terms of EMs for STIPI and A3. However, when comparing the
HV values, STIPI significantly outperformed A3 for an average of 91.7 % across the
four time budgets and three sets of test cases.

Notice that 12 comparisons were performed when comparing STIPI with each of
the five selected approaches (i.e., three test case sets * four time budgets), and thus in
total 60 comparisons were conducted. Based on the results, we can observe that STIPI
significantly outperformed the five selected approaches for 54 out of 60 comparisons
(90 %), which indicate that STIPI has a good capability for solving our test case
prioritization problem. In addition, STIPI took an average time of 36.5, 51.6 and 82 s
(secs) for the three sets of test cases. The average running time for the five chosen

Fig. 4. Results of comparing STIPI with Greedy, A1, A2 and A3 for EMs

Fig. 5. Results of comparing STIPI with A1, A2 and A3 for HV

STIPI: Using Search to Prioritize Test Cases 185

approaches are: (1) RS: 18, 24.7 and 33.2 s; (2) Greedy: 42, 48 and 54 ms; (3) A1:
35.7, 42.8 and 65.5 s; (4) A2: 35.2, 42.2 and 55.4 s; and (5) A3: 8.9, 33.4 and 41.2 s.
Notice that there is no practical difference in terms of the running time for the
approaches except Greedy, however the performance of Greedy is significantly worse
than STIPI (Sect. 5.2), and thus Greedy cannot be employed to solve our test case
prioritization problem. In addition, based on the domain knowledge of VCS testing, the
running time in seconds is acceptable when deployed in practice.

5.3 Overall Discussion

For RQ1, we observed that STIPI performed significantly better than RS for all the EMs
with the three sets of test cases under the four time budgets. Such an observation
reveals that solving our test case prioritization problem is not trivial, which requires an
efficient approach. As for RQ2, we compared STIPI with Greedy, A1, A2 and A3
(Sect. 4.1). Results show that STIPI performed significantly better than Greedy. This
can be explained that Greedy is a local search algorithm that may get stuck in a local
space during the search process, while STIPI employs mutation operator (Sect. 4.4) to
explore the whole search space towards finding optimal solutions. In addition, Greedy
converted our multi-objective optimization problem into a single-objective optimiza-
tion problem by assigning weights to each objective, which may lose many other
optimal solutions that hold the same quality [22], while STIPI (integrating NSGA-II)
produces a set of non-dominated solutions (i.e., solutions with equivalent quality).

When comparing STIPI with A1, A2 and A3, the results of RQ2 showed that STIPI
performed significantly better than A1, A2 and A3 by 83.3 % (30/36). Overall STIPI
outperformed the five selected approaches for 90 % (54/60) comparisons. That might
be due to two main reasons: (1) STIPI considers the coverage of incremental unique
elements (e.g., test API commands) when evaluating the prioritization solutions, i.e.,
only the incremental unique elements covered by a certain test case are taken into
account as compared with the already prioritized test cases; and (2) STIPI provides the
test cases with higher execution positions more influence on the quality of a given
prioritization solution. Furthermore, A2 and A3 usually work under the assumption that
the relations between detected faults and test cases are known beforehand, which is
sometimes not the situation in practice, e.g., in our case, we are only aware how many
execution times a test case can detect faults rather than having access to the detailed
faults detected. However, STIPI defined FDC to measure the fault detection capability
(Sect. 3.2) without knowing the detailed relations between faults and test cases, which
may be applicable to the similar other contexts when the detailed faults cannot be
accessed. It is worth mentioning that the current practice of Cisco do not have an
efficient approach for test case prioritization, and thus we are working on deploying our
approach in their current practice for further strengthening STIPI.

5.4 Threats to Validity

The internal validity threat arises due to using search algorithms with only one con-
figuration setting for its parameters as we did in our experiment [23]. However, we

186 D. Pradhan et al.

used the default parameter setting from the literature [24], and based on our previous
experience [5, 10], good performance can be achieved for various search algorithms
with the default setting. To mitigate the construct validity threat, we used the same
stopping criteria (50,000 fitness evaluations) for finding the optimal solutions. To avoid
conclusion validity threat due to the random variations in the search algorithms, we
repeated the experiments 10 times to reduce the possibility that the results were
obtained by chance. Following the guidelines of reporting the results for randomized
algorithms [19], we employed the Vargha and Delaney test as the effect size measure
and Mann-Whitney test to determine the statistical significance of results. First external
validity threat is that one may argue the comparison performed only included RS,
Greedy, one existing approach and two modified versions of the existing approaches,
which may not be sufficient. Notice that we discussed and justified why we chose these
approaches in Sect. 4.1, and it is also possible to compare our approach with other
existing approaches, which requires further investigation as the next step. Second ex-
ternal validity threat is due to the fact that we only performed the evaluation using one
industrial case study. We need to mention that we conducted the experiment using three
sets of test cases with four distinct time budgets based on the domain knowledge of
VCS testing.

6 Related Work

In the last several decades, test case prioritization has attracted a lot of attention and
considerable amount of work has been done [1–3, 8]. Several survey papers [25, 26]
present results that compare existing test case prioritization techniques from different
aspects, e.g., based on coverage criteria. Followed by the aspects presented in [25], we
summarize the related work close to our approach and highlight the key differences
from the following three aspects: coverage criteria, search-based prioritization tech-
niques (which is related with our approach) and evaluation metrics.

Coverage Criteria. Existing works defined a number of coverage criteria for evalu-
ating the quality of prioritization solutions [2, 3, 26] such as branch coverage and
statement coverage, function coverage and function-level fault exposing potential,
block coverage, modified condition/decision coverage, transition coverage and round
trip coverage. As compared with the state-of-the-art, we proposed three new coverage
criteria driven by the industrial problem (Sect. 3.2): (1) Configuration coverage (CC);
(2) Test API coverage (APIC) and (3) Status coverage (SC).

Search-Based Prioritization Techniques. Search-based techniques have been widely
applied for addressing test case prioritization problem [3–5, 10]. For instance, Li et al.
[3] defined a fitness function with three objectives (i.e., Block, Decision and Statement
Coverage) and integrated the fitness function with hill climbing and GA for test case
prioritization. Arrieta et al. [7] proposed to prioritize test cases by defining a
two-objective fitness function (i.e., test case execution time and fault detection capa-
bility) and evaluated the performance of several search algorithms. The authors of [7]
also proposed a strategy to give higher importance to test cases with higher positions
(to be executed earlier). A number of research papers have focused on addressing the

STIPI: Using Search to Prioritize Test Cases 187

test case prioritization problem within a limited budget (e.g., time and test resource)
using search-based approaches. For instance, Walcott et al. [1] proposed to combine
selection (of a subset of test cases) and prioritization (of the selected test cases) for
prioritizing test cases within a limited time budget. Different weights are assigned to the
selection part and prioritization part when defining the fitness function followed by
solving the problem with GA. Wang et al. [5] focused on the test case prioritization
within a given limited test resource budget (i.e., hardware, which is different as
compared with the time budget used in this work) and defined four cost-effectiveness
measures (e.g., test resource usage), and evaluated several search algorithms (e.g.,
NSGA-II).

As compared with the existing works, our approach (i.e., STIPI) defines a fitness
function that considers configurations, test APIs and statuses, which were not addressed
in the current literature. When defining the fitness function, STIPI proposed two
strategies, which include (1) only considering the unique elements (e.g., configurations)
achieved; and (2) taking the impact of test case execution orders on the quality of
prioritization solutions into account, which is not the case in the existing works.

Evaluation Metrics (EMs). APFD is widely used in the literature as an EM [2, 3, 8,
16]. Moreover, the modified version of APFD (i.e., APFDp) using time penalty [1, 16]
is usually applied for test case prioritization with a time budget. Other metrics were also
defined and applied as EMs [9, 26] such as Average Severity of Faults Detected, Total
Percentage of Faults Detected and Average Percentage of Faults Detected per Cost
(APFDc). As compared with the existing EMs, we defined in total six new EMs driven
by our industrial problem for configurations, test APIs and statuses (Table 3), which
include: (1) APCC, APAC, and APSC, inspired by APFD, when there is 100 % time
budget; and (2) APCCp, APACp, and APSCp inspired by APFDp, when there is a limited
time budget (e.g., 25 % time budget). Furthermore, we defined the seventh EM
(MFDC) to assess to what extent faults can be detected when the time budget is less
than 100 % (Table 3). To the best of our knowledge, there is no existing work that
applies these seven EMs for assessing the quality of test case prioritization solutions.

7 Conclusion and Future Work

Driven by our industrial problem, we proposed a multi-objective search-based test case
prioritization approach named STIPI for covering maximum number of configurations,
test APIs, statuses, and achieving high fault detection capability as quickly as possible.
We compared STIPI with five test case prioritization approaches using three sets of test
cases with four time budgets. The results show that STIPI performed significantly better
than the chosen approaches for 90 % of the cases. STIPI managed to achieve a higher
performance than random search for on average 39.9 % (configuration coverage),
18.6 % (test API coverage), 32.7 % (status coverage) and 43.9 % (FDC). In the future,
we plan to compare STIPI with more prioritization approaches from the literature using
additional case studies with larger scale to further generalize the results.

188 D. Pradhan et al.

Acknowledgements. This research is supported by the Research Council of Norway
(RCN) funded Certus SFI. Shuai Wang is also supported by the RFF Hovedstaden funded
MBE-CR project. Shaukat Ali and Tao Yue are also supported by the RCN funded
Zen-Configurator project, the EU Horizon 2020 project funded U-Test, the RFF Hovedstaden
funded MBE-CR project and the RCN funded MBT4CPS project.

References

1. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.: Timeaware test suite
prioritization. In: Proceedings of 2006 International Symposium on Software Testing and
Analysis, pp. 1–12 (2006)

2. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: an empirical
study. In: Proceedings of International Conference on Software Maintenance (ICSM 1999),
pp. 179–188 (1999)

3. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case prioritization.
IEEE Trans. Softw. Eng. (TSE) 33, 225–237 (2007)

4. Wang, S., Buchmann, D., Ali, S., Gotlieb, A., Pradhan, D., Liaaen, M.: Multi-objective test
prioritization in software product line testing: an industrial case study. In: International
Software Product Line Conference, pp. 32–41 (2014)

5. Wang, S., Ali, S., Yue, T., Bakkeli, Ø., Liaaen, M.: Enhancing test case prioritization in an
industrial setting with resource awareness and multi-objective search. In: ICSE, pp. 182–191
(2016)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. TSE 6, 182–197 (2002)

7. Arrieta, A., Wang, S., Sagardui, G., Etxeberria, L.: Test case prioritization of configurable
cyber-physical systems with weight-based search algorithms. In: Genetic and Evolutionary
Computation (GECCO), pp. 1053–1060 (2016)

8. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression
testing. TSE 27, 929–948 (2001)

9. Elbaum, S., Malishevsky, A., Rothermel, G.: Incorporating varying test costs and fault
severities into test case prioritization. In: Proceedings of International Conference on
Software Engineering (ICSE), pp. 329–338 (2001)

10. Wang, S., Ali, S., Yue, T., Li, Y., Liaaen, M.: A practical guide to select quality indicators
for assessing pareto-based search algorithms in search-based software engineering. In: ICSE,
pp. 631–642 (2016)

11. Wang, S., Ali, S., Gotlieb, A.: Cost-effective test suite minimization in product lines using
search techniques. J. Syst. Softw. 103, 370–391 (2015)

12. Wang, S., Ali, S., Gotlieb, A.: Minimizing test suites in software product lines using
weight-based genetic algorithms. In: Proceedings of 15th Annual Conference on Genetic and
Evolutionary Computation, pp. 1493–1500 (2013)

13. Sarro, F., Petrozziello, A., Harman, M.: Multi-objective software effort estimation. In: ICSE,
pp. 619–630 (2016)

14. Wang, S., Ali, S., Yue, T., Liaaen, M.: UPMOA: an improved search algorithm to support
user-preference multi-objective optimization. In: International Symposium on Software
Reliability Engineering (ISSRE), pp. 393–404 (2015)

15. Technical report (2016-06): https://www.simula.no/publications/stipi-using-search-
prioritize-test-cases-based-multi-objectives-derived-industrial

STIPI: Using Search to Prioritize Test Cases 189

https://www.simula.no/publications/stipi-using-search-prioritize-test-cases-based-multi-objectives-derived-industrial
https://www.simula.no/publications/stipi-using-search-prioritize-test-cases-based-multi-objectives-derived-industrial

16. Lu, Y., Lou, Y., Cheng, S., Zhang, L., Hao, D., Zhou, Y., Zhang, L.: How does regression
test prioritization perform in real-world software evolution? In: Proceedings of 38th ICSE,
pp. 535–546 (2016)

17. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: adapting
scatter search to multiobjective optimization. IEEE Trans. Evol. Comput. 12, 439–457
(2008)

18. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect
size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25, 101–132 (2000)

19. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In: 33rd International Conference on Software
Engineering (ICSE), pp. 1–10 (2011)

20. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

21. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv.
Eng. Softw. 42, 760–771 (2011)

22. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms:
a tutorial. Reliab. Eng. Syst. Safety 91, 992–1007 (2006)

23. De Oliveira Barros, M., Neto, A.: Threats to validity in search-based software engineering
empirical studies. Technical report 6, UNIRIO-Universidade Federal do Estado do Rio de
Janeiro (2011)

24. Arcuri, A., Fraser, G.: On parameter tuning in search based software engineering. In: Cohen,
M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 33–47. Springer,
Heidelberg (2011)

25. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey.
Softw. Test. Verif. Reliab. 22, 67–120 (2012)

26. Catal, C., Mishra, D.: Test case prioritization: a systematic mapping study. Softw. Qual.
J. 21, 445–478 (2013)

190 D. Pradhan et al.

	STIPI: Using Search to Prioritize Test Cases Based on Multi-objectives Derived from Industrial Practice
	Abstract
	1 Introduction
	2 Context, Running Example and Motivation
	3 STIPI: Search-Based Test Case Prioritization Based on Incremental Unique Coverage and Position Impact
	3.1 Basic Notations and Problem Representation
	3.2 Fitness Function
	3.3 Solution Representation

	4 Empirical Study Design
	4.1 Research Questions
	4.2 Experiment Tasks
	4.3 Evaluation Metrics
	4.4 Quality Indicator, Statistical Tests and Parameter Settings

	5 Results, Analyses and Discussion
	5.1 RQ1: Sanity Check (STIPI vs. RS)
	5.2 RQ2: Comparison with the Selected Approaches
	5.3 Overall Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgements
	References

