Skip to main content

Assessment of Sport Garments Using Infrared Thermography

  • Chapter
  • First Online:
Application of Infrared Thermography in Sports Science

Abstract

Sport garments and their properties directly influence the heat exchanges occurring at the interface between the human skin and the environment. Active skin cooling or warming through innovative apparel is more and more developed in training and competition. Infrared thermography can provide original insights into the patterns of skin temperature distribution during exercise that can then be used for clothing design using a bodymapping approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Havenith G, Smith CJ, Fukazawa T (2008) The Skin interface—meeting point of physiology and clothing science. J Fiber Bioeng Inform 1:93–98. doi:10.3993/jfbi09200802

    Article  Google Scholar 

  2. Fournet D, Redortier B, Havenith G (2015) Can body-mapped garments improve thermal comfort for sport in the cold? Extreme Physiol Med 4:A74

    Article  Google Scholar 

  3. Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. doi:10.1016/j.jtherbio.2013.04.005

    Article  Google Scholar 

  4. Roberts BC, Waller TM, Caime MP (2007) Thermoregulatory response to base layer garments during treadmill exercise. Int J Sports Sci Eng 1:29–38

    Google Scholar 

  5. Parsons K (2002) Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance, 2nd edn. CRC Press

    Google Scholar 

  6. Havenith G (2003) Interaction of clothing and thermoregulation. Exog Dermatol 1:221–230

    Article  Google Scholar 

  7. Chen YS, Fan J, Qian X, Zhang W (2004) Effect of garment fit on thermal insulation and evaporative resistance. Text Res J 74:742–748

    Article  Google Scholar 

  8. Nielsen R, Gavhed DC, Nilsson H (1989) Thermal function of a clothing ensemble during work: dependency on inner clothing layer fit. Ergonomics 32:1581–1594. doi:10.1080/00140138908966927

    Article  Google Scholar 

  9. Havenith G, Heus R, Lotens WA (1990) Resultant clothing insulation: a function of body movement, posture, wind, clothing fit and ensemble thickness. Ergonomics 33:67–84. doi:10.1080/00140139008927094

    Article  Google Scholar 

  10. ISO (2007) Ergonomics of the thermal environment—determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects. Int. Organ, Stand, p 11079

    Google Scholar 

  11. Pascoe DD, Bellingar TA, McCluskey BS (1994) Clothing and exercise. II. Influence of clothing during exercise/work in environmental extremes. Sports Med Auckl NZ 18:94–108

    Article  Google Scholar 

  12. Jin L, Hong K, Yoon K (2013) Effect of aerogel on thermal protective performance of firefigther clothing. J Fiber Bioeng Inform 6:315–324

    Google Scholar 

  13. Havenith G, Bröde P, den Hartog E et al (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol Bethesda Md 1985 114:778–785. doi:10.1152/japplphysiol.01271.2012

    Google Scholar 

  14. Nielsen R, Endrusick TL (1990) Thermoregulatory responses to intermittent exercise are influenced by knit structure of underwear. Eur J Appl Physiol 60:15–25

    Article  Google Scholar 

  15. Wang F, Shi W, Lu Y et al (2016) Effects of moisture content and clothing fit on clothing apparent “wet” thermal insulation: a thermal manikin study. Text Res J 86:57–63

    Article  Google Scholar 

  16. Ruckman JE, Murray R, Choi HS (1999) Engineering of clothing systems for improved thermophysiological comfort: the effect of openings. Int J Cloth Sci Technol 11:37–52

    Article  Google Scholar 

  17. Zhang X, Li J (2010) Effects of clothing ventilative designs on thermoregulatory responses during exercise. In: 2010 international conference on biomedical engineering and computer science. IEEE, pp 1–4

    Google Scholar 

  18. Lim J-H, Roh E-K, Yoo H-S, Kim E (2009) Ventilation and comfort sensation by slit positions of running wear jackets. J Korean Soc Cloth Text 33:1794–1805

    Article  Google Scholar 

  19. Yeon S-M, Kim H-E (2005) Effect of slit ventilation system in sportswear on physiological responses. Fash Text Res J 7:75–80

    Google Scholar 

  20. Bouskill LM, Havenith G, Kuklane K et al (2002) Relationship between clothing ventilation and thermal insulation. AIHA J J Sci Occup Environ Health Saf 63:262–268

    Google Scholar 

  21. Thompson RL, Hayward JS (1996) Wet-cold exposure and hypothermia: thermal and metabolic responses to prolonged exercise in rain. J Appl Physiol Bethesda Md 1985 81:1128–1137

    Google Scholar 

  22. Gagge AP, Stolwijk JA, Saltin B (1969) Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures. Environ Res 2:209–229

    Article  Google Scholar 

  23. Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97:327–332. doi:10.1113/expphysiol.2011.061002

    Article  Google Scholar 

  24. Marino FE (2002) Methods, advantages, and limitations of body cooling for exercise performance. Br J Sports Med 36:89–94

    Article  Google Scholar 

  25. Ross M, Abbiss C, Laursen P et al (2013) Precooling methods and their effects on athletic performance: a systematic review and practical applications. Sports Med Auckl NZ 43:207–225. doi:10.1007/s40279-012-0014-9

    Article  Google Scholar 

  26. Poppendieck W, Faude O, Wegmann M, Meyer T (2013) Cooling and performance recovery of trained athletes: a meta-analytical review. Int J Sports Physiol Perform 8:227–242

    Article  Google Scholar 

  27. Eijsvogels TMH, Bongers CCWG, Veltmeijer MTW et al (2014) Cooling during exercise in temperate conditions: impact on performance and thermoregulation. Int J Sports Med 35:840–846. doi:10.1055/s-0034-1368723

    Article  Google Scholar 

  28. Hasegawa H, Takatori T, Komura T, Yamasaki M (2005) Wearing a cooling jacket during exercise reduces thermal strain and improves endurance exercise performance in a warm environment. J Strength Cond Res Natl Strength Cond Assoc 19:122–128. doi:10.1519/14503.1

    Google Scholar 

  29. Luomala MJ, Oksa J, Salmi JA et al (2012) Adding a cooling vest during cycling improves performance in warm and humid conditions. J Therm Biol 37:47–55

    Article  Google Scholar 

  30. Cotter JD, Taylor NAS (2005) The distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: an open-loop approach. J Physiol 565:335–345. doi:10.1113/jphysiol.2004.081562

    Article  Google Scholar 

  31. Nakamura M, Yoda T, Crawshaw LI et al (2013) Relative importance of different surface regions for thermal comfort in humans. Eur J Appl Physiol 113:63–76. doi:10.1007/s00421-012-2406-9

    Article  Google Scholar 

  32. Tyler CJ, Sunderland C (2011) Neck cooling and running performance in the heat: single versus repeated application. Med Sci Sports Exerc 43:2388–2395. doi:10.1249/MSS.0b013e318222ef72

    Article  Google Scholar 

  33. Minniti A, Tyler CJ, Sunderland C (2011) Effects of a cooling collar on affect, ratings of perceived exertion, and running performance in the heat. Eur J Sport Sci 11:419–429

    Article  Google Scholar 

  34. Sunderland C, Stevens R, Everson B, Tyler CJ (2015) Neck-cooling improves repeated sprint performance in the heat. Front Physiol 6:314. doi:10.3389/fphys.2015.00314

    Article  Google Scholar 

  35. Tyler CJ, Sunderland C (2011) Cooling the neck region during exercise in the heat. J Athl Train 46:61–68. doi:10.4085/1062-6050-46.1.61

    Article  Google Scholar 

  36. Gao C, Kuklane K, Holmér I (2011) Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment. Eur J Appl Physiol 111:1207–1216. doi:10.1007/s00421-010-1748-4

    Article  Google Scholar 

  37. House JR, Lunt HC, Taylor R et al (2013) The impact of a phase-change cooling vest on heat strain and the effect of different cooling pack melting temperatures. Eur J Appl Physiol 113:1223–1231. doi:10.1007/s00421-012-2534-2

    Article  Google Scholar 

  38. Yazdanirad S, Dehghan H (2016) Designing of the cooling vest from paraffin compounds and evaluation of its impact under laboratory hot conditions. Int J Prev Med 7

    Google Scholar 

  39. Song W, Wang F (2015) The hybrid personal cooling system (PCS) could effectively reduce the heat strain while exercising in a hot and moderate humid environment. Ergonomics 1–10. doi:10.1080/00140139.2015.1105305

  40. Filingeri D, Fournet D, Hodder S, Havenith G (2015) Mild evaporative cooling applied to the torso provides thermoregulatory benefits during running in the heat. Scand J Med Sci Sports 25(Suppl 1):200–210. doi:10.1111/sms.12322

    Article  Google Scholar 

  41. Bach AJE, Stewart IB, Disher AE, Costello JT (2015) A comparison between conductive and infrared devices for measuring mean skin temperature at rest, during exercise in the heat, and recovery. PLoS ONE 10:e0117907. doi:10.1371/journal.pone.0117907

    Article  Google Scholar 

  42. Frim J, Livingstone SD, Reed LD et al (1990) Body composition and skin temperature variation. J Appl Physiol Bethesda Md 1985 68:540–543

    Google Scholar 

  43. Wang F, Gao C, Kuklane K, Holmér I (2010) A review of technology of personal heating garments. Int J Occup Saf Ergon 16:387–404. doi:10.1080/10803548.2010.11076854

    Article  Google Scholar 

  44. Brajkovic D, Ducharme MB (2003) Finger dexterity, skin temperature, and blood flow during auxiliary heating in the cold. J Appl Physiol Bethesda Md 1985 95:758–770. doi:10.1152/japplphysiol.00051.2003

    Google Scholar 

  45. Wang S, Li Y, Tokura H et al (2006) Computer simulation of multi-phase coupled heat and moisture transfer in clothing assembly with a phase change material in a cold environment. In: International conference technologies e-learning digital entertainment. Springer, pp 1103–1106

    Google Scholar 

  46. Koscheyev VS, Leon GR, Coca A, Treviño RC (2006) Physiological design of a space suit cooling/warming garment and thermal control as keys to improve astronaut comfort, performance, and safety. Habitation 11:15–25

    Article  Google Scholar 

  47. Faulkner SH, Ferguson RA, Gerrett N et al (2013) Reducing muscle temperature drop after warm-up improves sprint cycling performance. Med Sci Sports Exerc 45:359–365. doi:10.1249/MSS.0b013e31826fba7f

    Article  Google Scholar 

  48. Wilkins EL, Havenith G (2016) External heating garments used post-warm-up improve upper body power and elite sprint swimming performance. Proc Inst Mech Eng Part P J Sports Eng Technol 1754337116650322

    Google Scholar 

  49. Corbett J, Barwood MJ, Tipton MJ (2015) Physiological cost and thermal envelope: a novel approach to cycle garment evaluation during a representative protocol. Scand J Med Sci Sports 25:152–158. doi:10.1111/sms.12176

    Article  Google Scholar 

  50. Nielsen R, Nielsen B (1984) Measurement of mean skin temperature of clothed persons in cool environments. Eur J Appl Physiol 53:231–236

    Article  Google Scholar 

  51. Fournet D (2013) Skin temperature variations in the cold. Loughborough University

    Google Scholar 

  52. Livingstone SD, Reed LD, Nolan RW, Cattroll SW (1988) Measurement of torso skin temperature under clothing. Eur J Appl Physiol 57:225–229

    Article  Google Scholar 

  53. Cena K, Clark JA (1976) Proceedings: thermographic observations of skin temperatures of trained and untrained runners. J Physiol 257:8P–9P

    Google Scholar 

  54. Clark RP, Mullan BJ, Pugh LG (1977) Skin temperature during running—a study using infra-red colour thermography. J Physiol 267:53–62

    Article  Google Scholar 

  55. Merla A, Mattei PA, Di Donato L, Romani GL (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann Biomed Eng 38:158–163. doi:10.1007/s10439-009-9809-8

    Article  Google Scholar 

  56. Veghte JH, Adams WC, Bernauer EM (1979) Temperature changes during exercise measured by thermography. Aviat Space Environ Med 50:708–713

    Google Scholar 

  57. Fournet D, Redortier B, Havenith G (2012) A method for whole-body skin temperature mapping in humans. Thermol Int 22:157–159

    Google Scholar 

  58. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508. doi:10.1056/NEJMoa0808718

    Article  Google Scholar 

  59. Hunold S, Mietzsch E, Werner J (1992) Thermographic studies on patterns of skin temperature after exercise. Eur J Appl Physiol 65:550–554

    Article  Google Scholar 

  60. Binzoni T, Leung T, Delpy DT et al (2004) Mapping human skeletal muscle perforator vessels using a quantum well infrared photodetector (QWIP) might explain the variability of NIRS and LDF measurements. Phys Med Biol 49:N165–173

    Article  Google Scholar 

  61. Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi:10.1016/j.jtherbio.2015.06.005

    Article  Google Scholar 

  62. Mason BR, Page KA, Fallon K (1999) An analysis of movement and discomfort of the female breast during exercise and the effects of breast support in three cases. J Sci Med Sport Sports Med Aust 2:134–144

    Article  Google Scholar 

  63. White JL, Scurr JC, Smith NA (2009) The effect of breast support on kinetics during overground running performance. Ergonomics 52:492–498. doi:10.1080/00140130802707907

    Article  Google Scholar 

  64. Ayres B, White J, Hedger W, Scurr J (2013) Female upper body and breast skin temperature and thermal comfort following exercise. Ergonomics 56:1194–1202. doi:10.1080/00140139.2013.789554

    Article  Google Scholar 

  65. Simpson KM, Munro BJ, Steele JR (2011) Effect of load mass on posture, heart rate and subjective responses of recreational female hikers to prolonged load carriage. Appl Ergon 42:403–410. doi:10.1016/j.apergo.2010.08.018

    Article  Google Scholar 

  66. Ainslie PN, Reilly T (2003) Physiology of accidental hypothermia in the mountains: a forgotten story. Br J Sports Med 37:548–550

    Article  Google Scholar 

  67. Pugh LG (1964) Deaths from exposure on four Inns walking competition, March 14–15, 1964. The Lancet 1:1210–1212

    Article  Google Scholar 

  68. Young AJ, Castellani JW (2007) Exertional fatigue and cold exposure: mechanisms of hiker’s hypothermia. Appl Physiol Nutr Metab Physiol Appliquée Nutr Métabolisme 32:793–798. doi:10.1139/H07-041

    Article  Google Scholar 

  69. Pugh LG (1969) Thermal, metabolic, blood, and circulatory adjustments in prolonged outdoor exercise. Br Med J 2:657–662

    Article  Google Scholar 

  70. Fournet D, Griggs KE, Redortier B, Havenith G (2013) Sex differences in thermal strain induced by a typical hiking scenario in a cool environment. In: Cotter JD, Lucas SJE, Mundel T (eds) Proceedings of 15th international conference environment ergonomics. International Society for Enviromental Ergonomics, Queenstown, New Zealand, pp 200–201

    Google Scholar 

  71. Tate M, Forster D, Mainwaring DE (2008) Influence of garment design on elite athlete cooling. Sports Technol 1:117–124

    Article  Google Scholar 

  72. Dotti F, Ferri A, Moncalero M, Colonna M (2016) Thermo-physiological comfort of soft-shell back protectors under controlled environmental conditions. Appl Ergon 56:144–152. doi:10.1016/j.apergo.2016.04.002

    Article  Google Scholar 

  73. Filingeri D, Fournet D, Hodder S, Havenith G (2014) Body mapping of cutaneous wetness perception across the human torso during thermo-neutral and warm environmental exposures. J Appl Physiol jap.00535.2014. doi:10.1152/japplphysiol.00535.2014

  74. Gerrett N, Ouzzahra Y, Coleby S et al (2014) Thermal sensitivity to warmth during rest and exercise: a sex comparison. Eur J Appl Physiol 114:1451–1462. doi:10.1007/s00421-014-2875-0

    Article  Google Scholar 

  75. Mancini F, Bauleo A, Cole J et al (2014) Whole-body mapping of spatial acuity for pain and touch. Ann Neurol 75:917–924. doi:10.1002/ana.24179

    Article  Google Scholar 

  76. Ouzzahra Y, Havenith G, Redortier B (2012) Regional distribution of thermal sensitivity to cold at rest and during mild exercise in males. J Therm Biol 37:517–523

    Article  Google Scholar 

  77. Smith CJ, Havenith G (2012) Body mapping of sweating patterns in athletes: a sex comparison. Med Sci Sports Exerc 44:2350–2361. doi:10.1249/MSS.0b013e318267b0c4

    Article  Google Scholar 

  78. Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. doi:10.1007/s00421-010-1744-8

    Article  Google Scholar 

  79. Fukazawa T, Havenith G (2009) Differences in comfort perception in relation to local and whole body skin wettedness. Eur J Appl Physiol 106:15–24. doi:10.1007/s00421-009-0983-z

    Article  Google Scholar 

  80. Wu HY, Zhang WY, Li J (2009) Study on improving the thermal-wet comfort of clothing during exercise with an assembly of fabrics. Fibres Text East Eur 17:75

    Google Scholar 

  81. Jussila K, Kekäläinen M, Simonen L, Mäkinen S (2015) Determining the optimum size combination of three-layered cold protective clothing in varying wind conditions and walking speeds: thermal manikin and 3D body scanner study. J Fash Technol Text Eng 3:1–9. doi:10.4172/2329-9568.1000120

    Google Scholar 

  82. Psikuta A, Frackiewicz-Kaczmarek J, Frydrych IK, Rossi RM (2012) Quantitative evaluation of air gap thickness and contact area between body and garment. Text Res J 40517512436823

    Google Scholar 

  83. Zhang Z, Li J, Wang Y et al (2016) Improving garment thermal insulation property by combining two non-contact measuring tools. Indian J Fibre Text Res IJFTR 40:392–398

    Google Scholar 

  84. Umbach KH (1988) Physiological tests and evaluation models for the optimization of the performance of protective clothing. In: Mekjavic IB, Banister EW, Morrison JB (eds) Environment ergonomics. Taylor & Francis, London, pp 139–161

    Google Scholar 

  85. Kicklighter TH, Edsall JR, Martin M (2011) Effect of moisture-wicking garments on temperature regulation during exercise. Int J Athl Ther Train 16:9–13

    Article  Google Scholar 

  86. Ho C, Fan J, Newton E, Au R (2008) Effects of athletic T-shirt designs on thermal comfort. Fibers Polym 9:503–508. doi:10.1007/s12221-008-0080-7

    Article  Google Scholar 

  87. Wang F, Del Ferraro S, Molinaro V et al (2014) Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode. Int J Biometeorol 58:1673–1682. doi:10.1007/s00484-013-0774-4

    Article  Google Scholar 

  88. Werner J, Heising M, Rautenberg W, Leimann K (1985) Dynamics and topography of human temperature regulation in response to thermal and work load. Eur J Appl Physiol 53:353–358

    Article  Google Scholar 

  89. Domina T, Kinnicutt P, MacGillivray M (2011) Thermal pattern variations analysed using 2D/3D Mapping techniques among females. J Text Appar Technol, Manag, p 7

    Google Scholar 

  90. Kinnicutt P, Domina T, MacGillivray M, Lerch T (2010) Knit-in 3D mapping’s effect on thermoregulation: preliminary results. J Text Inst 101:120–127

    Article  Google Scholar 

  91. De Oliveira F, Moreau S, Gehin C, Dittmar A (2007) Infrared imaging analysis for thermal comfort assessment. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2007:3373–3376. doi:10.1109/IEMBS.2007.4353054

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Fournet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fournet, D., Havenith, G. (2017). Assessment of Sport Garments Using Infrared Thermography. In: Priego Quesada, J. (eds) Application of Infrared Thermography in Sports Science. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-47410-6_7

Download citation

Publish with us

Policies and ethics