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1	 �Introduction

There is growing evidence that early life may have 
a profound impact on health and disease in later life 
(Gluckman et al. 2008; Hales et al. 1991). Because 
this growing evidence about the prenatal and pre-
conception origins of health and disease is vast, this 
chapter will primarily focused on early life origins 
of metabolic risk for obesity and type 2 diabetes 
(T2DM). Obesity and type 2 diabetes affect all age 
groups including mothers and young children 
(International Diabetes Federation 2013), espe-
cially in poor minority populations (Al-Rubeaan 
2015). Increasing evidence points to a profound 
impact of early life factors (e.g., maternal obesity, 

diabetes, and unhealthy diet) on offspring metabolic 
risk (Barbour 2014a), leading to a transgenerational 
amplification of obesity and diabetes. The period 
from conception to birth is a time of very rapid 
growth, cellular differentiation, and functional mat-
uration of organ systems. This early life period is 
particularly sensitive to alterations of the intrauter-
ine environment including the metabolic milieu. 
Epigenomic variations (regulation of gene expres-
sion) are largely established in utero (Bogdarina 
et al. 2004) and are particularly sensitive to prenatal 
environmental factors that may have a lifelong 
impact on health and disease. Moreover, babies that 
are large at birth are more likely to be overweight or 
obese in childhood, with these conditions persisting 
into adulthood (Knittle et al. 1979; Rolland-Cachera 
et al. 2006). Recent data suggest that elevated insu-
lin levels may also originate in utero and persist into 
early childhood (Wang et al. 2014a). Taken together, 
the prenatal period is a critical developmental stage 
for obesity and metabolic outcomes (Wang et  al. 
2014b; Dietz 2004). In light of the global obesity 
and T2DM epidemic and growing evidence of early 
life origins of obesity and diabetes, early identifica-
tion of individuals at high risk and early prevention 
of obesity and metabolic syndrome are a key to 
achieve primary prevention and reverse the trends 
of the obesity and T2DM epidemics.

As illustrated in Fig. 1, human health is inter-
connected from conception to fetal life to child-
hood and on into adulthood and influenced by 
multilevel factors from gene to society. This 
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chapter will discuss the impact of important 
preconceptional and prenatal factors, including 
maternal obesity and/or diabetes, gestational 
weight gain, and maternal micronutrient status, 
on in utero and lifelong metabolic outcomes and 
the possible gene–environment interactions and 
epigenetic mechanisms underlying early life ori-
gins of metabolic risk. Finally, it will provide 
perspectives on current knowledge gaps and rec-
ommendations to advance the field.

2	 �The Effects of Maternal 
Preconceptional Obesity 
and/or Diabetes 
and Micronutrient Status 
on Offspring Metabolic 
Outcomes

Evidence is growing about the associations 
between early life exposures and later health. 
Major exposures encompass multilevel and mul-
tifactorial influences from the societal level 
through to individual lifestyle and biological fac-
tors. While a discussion of all of the possible 
risks or protective factors is beyond the scope of 
this chapter, below we highlight some important 
preconceptional and prenatal factors, including 

prepregnancy obesity, excessive weight gain dur-
ing pregnancy, preexistent or gestational diabe-
tes, and maternal micronutrient status.

2.1	 �Maternal Prepregnancy 
Obesity and Gestational 
Weight Gain

In parallel with the global obesity epidemic, the 
prevalence of obesity among women of child-
bearing age has also increased. In 2009–2010, 
the National Health and Nutrition Examination 
Survey (NHANES) found that 56% of US women 
aged 20–39 were overweight or obese (body 
mass index (BMI) ≥ 25 kg/m2), and in particular, 
32% were obese (BMI  ≥  30.0  kg/m2) (Flegal 
et al. 2012). Thus, more than half of women start-
ing their pregnancy are already overweight or 
obese, and most of them remain overweight or 
obese during their entire pregnancy. To further 
complicate things, women who are overweight or 
obese going into pregnancy are at an increased 
risk for developing metabolic disorders, such as 
gestational diabetes mellitus (GDM) (Torloni 
et al. 2009), hypertensive disorders of pregnancy 
(Bautista-Castano et  al. 2013), and excessive 
gestational weight gain (GWG)  (Chu et  al. 
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2009). More important, maternal obesity and its 
relevant metabolic disorders may impact off-
spring metabolic risk in later life.

Excessive maternal prepregnancy weight and 
GWG are consistent risk factors for offspring 
obesity and cardiometabolic risk (Lawlor 2013; 
Hochner et al. 2012). In the Jerusalem Perinatal 
Family Follow-Up Study, greater maternal pre-
pregnancy BMI, independent of GWG and con-
founders, was significantly associated with 
higher offspring blood pressures, serum insulin 
and triglyceride concentrations, BMI, waist cir-
cumference, and lower high-density lipoprotein 
cholesterol (Hochner et  al. 2012). Of note, the 
associations between maternal BMI and off-
spring BP, insulin, and lipids appeared to be 
largely mediated by offspring concurrent body 
size (both BMI and waist circumference) 
(Hochner et  al. 2012). This finding emphasizes 
the impact that maternal adiposity may have 
through offspring adiposity on various predictors 
of subclinical and clinical disease, including dia-
betes mellitus and cardiovascular diseases. A 
large US cohort study reported that excessive 
maternal GWG was independently associated 
with a 46% increased risk of overweight or obe-
sity in offspring at 2–5 years of age (Sridhar et al. 
2014). In a retrospective cohort study, excessive 
maternal GWG had an adverse impact on the risk 
of childhood overweight and abdominal adipos-
ity (Ensenauer et  al. 2013). Kaar et  al. further 
reported that maternal prepregnancy BMI was 
not only associated with increased general adi-
posity (BMI) and abdominal adiposity (waist cir-
cumference) in offspring but visceral adipose 
tissue at age 10 years (Kaar et al. 2014). A recent 
study points to an association between maternal 
excess weight in pregnancy and offspring BMI 
increase from adolescence to adulthood 
(Lawrence et al. 2014). Early pregnancy obesity 
has also been associated with an increased risk of 
premature death in adult offspring (Reynolds 
et  al. 2013a). To further the negative impact, 
maternal prepregnancy BMI was also associated 
with increased offspring insulin resistance at age 
10 years (Kaar et al. 2014) and an increased risk 
of developing T2DM (Dabelea et al. 2008).

2.2	 �Preexistent and Gestational 
Diabetes

In parallel with the obesity epidemic is a diabetes 
pandemic, which includes an increasing number 
of women with type 1 diabetes (T1D), T2DM, and 
GDM (Torloni et al. 2009). A body of studies has 
established a link between exposure to maternal 
diabetes in utero and metabolic risk in later life. In 
a multiethnic population aged 6–13 years, expo-
sure to maternal GDM was associated with higher 
BMI, waist circumference, and more abdominal 
fat (Crume et al. 2011). Adjustment for socioeco-
nomic factors, birthweight, gestational age, mater-
nal smoking during pregnancy, diet, and physical 
activity did not alter the associations; however, 
adjustment for maternal prepregnancy BMI atten-
uated all associations (Crume et al. 2011), suggest-
ing that maternal obesity is an important mediator. 
The studies in Pima Indians of the long-term 
effects of diabetic pregnancy on offspring revealed 
that the offspring of women with preexistent dia-
betes and GDM were more obese and had higher 
glucose concentrations and more diabetes than the 
offspring of nondiabetic women or women who 
developed diabetes after pregnancy (Pettitt et  al. 
1993). In the Chicago Diabetes in Pregnancy 
study, offspring of mothers with preexistent diabe-
tes and GDM had significantly higher 2-h blood 
glucose and insulin levels and rate of impaired glu-
cose tolerance than the control group of nondia-
betic mothers (Silverman et  al. 1995). In the 
SEARCH Case–Control Study (Dabelea et  al. 
2008), maternal diabetes and obesity were associ-
ated with 5.7 times and 2.8 times the risk of T2DM 
in young offspring aged 10–22 years, respectively. 
Notably, combined prenatal exposure to maternal 
diabetes and obesity could explain about 47% of 
the offspring risk of T2DM (Dabelea et al. 2008). 
Among Pima Indian adults, individuals whose 
mothers had diabetes during pregnancy had a 40% 
lower acute insulin response to a 25 g intravenous 
glucose challenge than those whose mothers 
developed diabetes at an early age but after the 
birth of the child (Gautier et al. 2001).

One important mediator is maternal blood glu-
cose level during pregnancy. The Hyperglycemia 
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and Adverse Pregnancy Outcome (HAPO) study 
demonstrated that maternal glucose levels below 
those diagnostic of diabetes were positively asso-
ciated with increased birthweight and cord blood 
C-peptide levels (Metzger et al. 2008). Poor gly-
cemic control in women with pregestational dia-
betes increased the risk of congenital 
malformations and spontaneous abortions 
(Kendrick 2004; Miller et  al. 1981). Although 
T1D and T2DM have different pathogeneses, the 
rates of pregnancy loss were similar (Cundy et al. 
2007). Another factor related to diabetes is the 
comorbidities. Diabetic gastropathy, a form of 
diabetic neuropathy, not only worsens nausea and 
vomiting but also can cause difficulty with glu-
cose control during pregnancy (Kitzmiller et  al. 
2008). Reece et  al. reviewed the literature and 
reported that maternal diabetic nephropathy is 
complicated by hypertension (60%), preeclamp-
sia (41%), premature delivery (22–30%), and 
fetal growth restriction (16%) (Reece et al. 1998). 
Taken together, better control of blood glucose 
levels and diabetic complications may improve 
prenatal outcomes.

2.3	 �Maternal Micronutrient Status

Growing evidence suggests that maternal nutri-
tion, through its impact on the fetal intrauterine 
environment, has a profound and lifelong influ-
ence on later health (Barker et al. 1993). Among 
a number of specific nutrients that have been 
implicated, folate is particularly important. 
Folate is an essential vitamin B involved in 
nucleic acid synthesis, DNA methylation, cellu-
lar growth, differentiation, and repair (Crider 
et  al. 2012; Kim 2000). The demand for folate 
increases during pregnancy due to the need for 
fetal and placental growth and uterus enlarge-
ment (Greenberg et al. 2011). The causal role of 
folate deficiency in fetal neural tube defects 
(NTDs) is well established (De Wals et al. 2007). 
A recent study showed that low maternal folate 
concentration was associated with higher BMI in 
offspring at 5–6 years (Krikke et al. 2016). Our 
study also showed that maternal low folate was 
not only independently associated with offspring 

overweight or obesity but also worsened the 
adverse effects of maternal prepregnancy obesity 
on offspring metabolic risk (Wang et al. 2016). 
On the other hand, excess maternal folate sta-
tus may also link to offspring adverse metabolic 
outcomes. A study in an Indian population 
reported a positive association between maternal 
folate level and offspring homeostatic model 
assessment-insulin resistance (HOMA-IR) 
(Krishnaveni et al. 2014). What we gather from 
the combined results of these studies is that opti-
mizing folate nutrition in women, and especially 
OWO women, may offer a safe, simple, and 
effective way to decrease the risk of transgenera-
tional obesity and diabetes.

2.4	 �Adverse Birth Outcomes

Birthweight reflects cumulative growth in utero. 
A body of studies has suggested that maternal 
obesity is associated with a risk for large for ges-
tational age (LGA) or macrosomia in the off-
spring (Bautista-Castano et al. 2013). In addition, 
Brumbaugh et al. demonstrated that newborns of 
obese mothers with GDM showed increased 
intrahepatic fat at birth (Brumbaugh et al. 2013). 
Prepregnancy obesity also has been shown to 
increase the risk of Cesarean section (Martin 
et  al. 2015; Dzakpasu et  al. 2014) and preterm 
birth (Cnattingius et al. 2013). In a case–control 
study of 914 women with pregestational diabetes 
and 4000 controls, diabetes was associated with 
an increased risk of preterm birth (Cnattingius 
et  al. 1994). Maternal diabetes has also been 
linked to macrosomia and Cesarean section 
(Barbour 2014b; Koyanagi et al. 2013).

These adverse birth outcomes are also associ-
ated with obesity and metabolic syndrome 
(including hypertension, dyslipidemia, obesity, 
and insulin resistance/diabetes) in later life. 
Hypertension: Previous studies demonstrated 
that preterm birth was associated with hyperten-
sion in childhood (Sipola-Leppanen et al. 2014) 
and adulthood (Irving et  al. 2000; Johansson 
et al. 2005). In a prospective study, Irving et al. 
found that preterm birth was associated with the 
risk of hypertension and hyperglycemia in adult-
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hood (Irving et al. 2000). A meta-analysis of 27 
studies further confirmed that preterm birth was 
associated with cardiovascular risk factors, such 
as higher systolic and diastolic blood pressure 
and low-density lipoprotein cholesterol in adult-
hood (Parkinson et  al. 2013). Even more 
interesting is that the difference in blood pressure 
between those born preterm and those born at 
term may be greater in women than in men 
(Parkinson et  al. 2013). Dyslipidemia: A large 
cohort study reported that boys born early pre-
term had 6.7% higher total cholesterol, 11.7% 
higher low-density lipoprotein cholesterol (LDL-
C), and 12.3% higher apolipoprotein B concen-
trations than their term peers (Sipola-Leppanen 
et  al. 2014). Obesity: As fat deposition occurs 
largely during the third trimester of pregnancy, 
preterm babies are born with low levels of body 
fat (Rigo et  al. 1998; Uthaya et  al. 2005). 
Postnatally, preterm babies are more likely to 
gain excessive weight, a known risk factor of 
childhood obesity (Ong et al. 2000), and tend to 
have a higher proportion of central adiposity 
(Uthaya et al. 2005). Insulin resistance/diabetes: 
Like children who were born at term and small 
for gestational age (SGA), children born preterm 
have lower insulin sensitivity (Wang et al. 2014a; 
Hofman et al. 2004). Hovi et al. reported that pre-
term birth itself, independent of birth size, may 
contribute to insulin resistance, elevated blood 
glucose, and higher blood pressure (BP) in young 
adulthood (Hovi et  al. 2007). In addition, a 
Swedish study found that preterm birth was asso-
ciated with later T2DM: the hazard ratio for 
T2DM comparing very preterm (≤32  weeks of 
gestation) with term birth was 1.67 (Kaijser et al. 
2009). There is a particular lack of large-scale 
longitudinal birth cohort studies to examine the 
effects of preterm birth on metabolic outcomes 
over critical developmental windows. One pro-
spective birth cohort study found that preterm 
birth is associated with elevated plasma insulin 
levels (indirect evidence of insulin resistance) at 
birth that persist to age 6.5  years (Wang et  al. 
2014a), suggesting that insulin resistance origi-
nates in utero and persists into later life. There is 
also evidence from a mechanistic study, which 

revealed that preterm birth increased the risk of 
T2DM via diminished insulin sensitivity 
(Pilgaard et  al. 2010), and yet another study 
showed that preterm birth was associated with 
changes in the cord blood adipokine profile that 
may contribute to the impairment of glucose 
metabolism (Bhargava et al. 2004).

3	 �Mechanisms/Pathways 
Underlying Early Life Origins 
of Metabolic Risk

Compelling evidence suggests that prenatal expe-
riences influence metabolic alterations in late life 
via multiple pathways, including genetic, in utero 
environment, gene–environment interaction, and 
epigenetic and shared familial socioeconomic 
and lifestyle factors (Fig. 1).

3.1	 �Genetics

Several lines of evidence support that genetics 
play a key role in the long-term effects of mater-
nal obesity and diabetes on offspring metabolic 
risk. First, obesity and diabetes tend to aggregate 
among families. We also know that GDM is asso-
ciated with a history of T2DM. One study showed 
that, compared to women with nondiabetic par-
ents, women with any parental history of T2DM 
experienced a 2.3-fold increased risk of GDM, 
suggesting that the risk of GDM was positively 
associated with parental history of T2DM 
(Williams et  al. 2003). Second, the extensive 
study of genetic variation in obesity and diabetes 
has led to the identification of numerous candi-
date genes. Although currently identified genetic 
markers only explain a small proportion of meta-
bolic risks, twin studies reveal that BMI, body fat, 
and insulin sensitivity are all highly heritable 
(Zhang et al. 2009; Ouyang et al. 2010). Finally, 
some gene variants related to adult diseases have 
been linked to offspring outcomes. A epidemio-
logical study showed that a genetic risk score 
(GRS) comprised of SNPs associated with adult 
obesity-related traits may provide an approach for 
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predicting LGA birth and newborn adiposity 
beyond established risk factors (Chawla et  al. 
2014). A genome-wide association study of 
women of European descent established that 
common variants near the melanocortin-4 recep-
tor (MC4R) influence fat mass, weight and obe-
sity risk and over transmission of the risk allele to 
obese offspring (Loos et  al. 2008). GDM is not 
only associated with later risk of diabetes in moth-
ers but also with metabolic changes that may lead 
to the development of diabetes in their offspring 
(Silverman et  al. 1998). Some genes and their 
interactions in functional networks between the 
mother and fetus may also play a role in organ 
development (Charalambous et al. 2007).

Additionally related is the fetal insulin hypoth-
esis proposed by Drs. Hattersley and Tooke, 
which highlights that fetal genetic factors affect 
not only insulin-mediated fetal growth by regu-
lating either fetal insulin secretion or insulin sen-
sitivity but also insulin resistance in childhood 
and adulthood (Hattersley and Tooke 1999). One 
example is the case in which a mother transmits 
mutations and pleiotropic effects in the glucoki-
nase gene to her child. The glucokinase gene 
codes for the glycolytic enzyme glucokinase, 
which acts as the pancreatic beta-cell glucose 
sensor (Matschinsky et al. 1993). Such mutations 
result in mild beta-cell dysfunction with slightly 
elevated fasting blood glucose concentrations, 
which is present in early childhood and shows 
little change with age (Hattersley 1998).

3.2	 �Intrauterine Environment

Based on observational research, Barker et al. pro-
posed the fetal programming hypothesis, which 
conceptualized that intrauterine experiences mod-
ify fetal systems and influence health in later life 
(Hales and Barker 1992). Fetal development 
responds to changes in the in utero environment in 
response to changing metabolism, hormone pro-
duction, and tissue sensitivity to hormones 
(Gluckman et  al. 2008). These adaptive changes 
may influence the relative development of various 
organs, leading to persistent alterations in physio-
logic and metabolic homeostasis. Maternal pre-

pregnancy BMI: In a large cohort of 4,091 
mother–father–offspring trios in Britain, research-
ers found that the association between parental 
prepregnancy BMI and offspring adiposity at ages 
9–11 years was stronger among mother–offspring 
pairs than among father–offspring pairs (Lawlor 
et al. 2008). Given that maternal and paternal pre-
pregnancy BMI are markers of genetic, behav-
ioral, and environmental factors but that only the 
maternal prepregnancy BMI was reflected in the 
intrauterine environment, this finding provides 
some support for the role of the in utero environ-
ment in lifelong metabolic risk beyond genetic and 
shared environmental contributions. Pregestational 
and Gestational Diabetes: A sibling study of Pima 
Indians showed that the BMI of siblings born after 
the mother developed T2DM was significantly 
higher than that of siblings born before their 
mother developed T2DM (Dabelea et  al. 2000). 
Offspring born to mothers with T2DM or GDM 
had up to a sixfold higher risk of developing 
T2DM as young adults compared to offspring 
born to mothers before they developed T2DM 
(Dabelea and Crume 2011). Other strong evidence 
comes from a study in which comparisons were 
made between sibling groups where one sibling 
was born before the mother experienced dramatic 
weight loss after bariatric surgery and the other 
was born after the surgery (Kral et  al. 2006). 
Siblings born before maternal bariatric surgery 
were at a much greater risk for obesity than sib-
lings born after the weight loss surgery (Kral et al. 
2006). Moreover, infants of mothers who had bar-
iatric surgery before pregnancy were at a reduced 
risk of being LGA at birth (Johansson et al. 2015) 
and developing obesity and insulin resistance in 
childhood and adolescence (Smith et  al. 2009). 
Collectively, these findings support the role of the 
intrauterine environment in transmitting a risk for 
obesity beyond that of genetics.

3.3	 �Gene and Environment 
Interaction and Epigenetics

Epigenetic mechanisms are critical to normal 
human development and play an important role 
in complex human diseases (O’Neill et al. 2014; 
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Reynolds et al. 2013b; Dolinoy et al. 2007). Both 
animal models and human studies implicate the 
intrauterine period as a sensitive time for the 
establishment of epigenetic variability (Heijmans 
et al. 2008; Cook et al. 2007; Tang et al. 2012; 
Radford et al. 2014; Janssen et al. 2013), which 
in turn influences risk for a range of disorders 
that develop later in life. In the Boston Birth 
Cohort, we observed a wide range of interindi-
vidual variations in genome-wide methylation at 
birth (Wang et  al. 2012). One possible mecha-
nism by which maternal obesity affects offspring 
OWO is via alterations in fetal DNA methylation 
induced by maternal obesity.

Animal studies have shown that certain tran-
sient environmental influences in utero can pro-
duce persistent changes in epigenetic marks that 
have lifelong consequences (Sinclair et al. 2007; 
Anway et  al. 2005). In humans, our previous 
study showed an association between maternal 
prepregnancy BMI and alterations in fetal DNA 
methylation (Liu et al. 2014). Other studies also 
showed the link between maternal obesity and 
fetal epigenome alterations (Lesseur et al. 2013; 
Yang et al. 2013). In addition, the use of methyl 
donor supplementation has been shown to pre-
vent transgenerational obesity (Waterland et  al. 
2008). A recent study indicated lower DNA 
methylation plasticity in skeletal muscle among 
low birthweight vs. normal birthweight men, 
which potentially contributes to our understand-
ing of the link between low birthweight and an 
increased risk of T2DM (Jacobsen et al. 2014).

Genes related to metabolic risk are regulated 
by epigenetic alteration: Evidence suggests that 
epigenetic mechanisms are involved in the risk of 
obesity. Current evidence supports the important 
role of epigenetic regulation in key genes involved 
in the control of adipogenesis, glucose homeosta-
sis, inflammation, and/or insulin signaling, includ-
ing leptin (Milagro et  al. 2009), peroxisome 
proliferator-activated receptor gamma (Noer et al. 
2007), insulin (Yang et  al. 2011), glucose trans-
porter (Yokomori et  al. 1999), proliferator-
activated receptor-γ (Fujiki et al. 2009), lipoprotein 
lipase (Noer et  al. 2007), and fatty acid-binding 
protein 4 (Noer et al. 2007). In addition, greater 
methylation in the promoter region of the retinoid 

X receptor-a gene was also related to greater adi-
posity in childhood (Godfrey et al. 2011).

Genes subject to genomic imprinting are pre-
dominantly expressed from one of the two paren-
tal chromosomes and are often clustered in the 
genome and epigenetically regulated. The role of 
imprinted genes in growth control has been appar-
ent since the discovery of imprinting in the early 
1980s. A related study found altered methylation 
at multiple imprint regulatory regions in children 
born to obese parents compared with children born 
to nonobese parents (Soubry et al. 2015).

4	 �Preconception and Prenatal 
Care

Maternal health is not only important for the 
mother but also for the fetus and neonate, which 
makes it critical for women to be and stay healthy 
during their reproductive years. It is well recog-
nized that optimizing a woman’s health and 
knowledge before planning and conceiving a 
pregnancy may eliminate or reduce health risks to 
her and her baby. As emerging clinical and scien-
tific advances come to be realized through a life 
course health development approach to health 
optimization, the AAP/ACOG Guidelines for 
Perinatal Care have shifted from framing precon-
ceptional care as appropriately targeted toward 
prospective parents who are contemplating preg-
nancy to an emphasis on the integration of pre-
conception health promotion throughout the 
lifespan. Taking this approach, all women and 
men can benefit from preconception health, 
whether or not they plan to have a baby one day. 
The implementation of effective interventions 
that prioritize risk factors and the provision of 
quality health services during prepregnancy and 
pregnancy are recommended (Bilano et al. 2014). 
In a multicenter randomized trial, 1108 over-
weight (BMI ≥ 25 kg/m2) women were random-
ized to a comprehensive dietary and lifestyle 
intervention. Infants born to women who had 
received lifestyle advice were significantly less 
likely to have a birthweight above 4000 g; treat-
ment effect (95%CI):0.82, 0.68–0.99; P = 0.04) 
(Dodd et al. 2014). All women with T2DM should 
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be advised regarding safe, effective contraception 
and the benefits of optimal glycemic control, folic 
acid supplementation, and avoidance of poten-
tially harmful medications before attempting 
pregnancy. Adequate glucose control in a woman 
with diabetes before conception and throughout 
pregnancy can decrease maternal morbidity, 
spontaneous abortion, fetal malformation, fetal 
macrosomia, intrauterine fetal death, and neonatal 
morbidity (American College of Obstetricians 
and Gynecologists 2005).

5	 �Recommendations 
for Future Study 
and Perspectives

5.1	 �Major Themes and Findings

Growing evidence indicates that preconception 
and prenatal risk factors may play an important 
role both in fetal metabolic reprogramming and 
long-term metabolic disorders in later life. 
Although the onset of obesity and diabetes may 
begin later in childhood or adulthood, program-
ming at the earliest ages may contribute a latent 
susceptibility. In addition to genetic susceptibil-
ity, epigenetic alterations may be important 
molecular mechanisms underlying gene–envi-
ronment interactions in early life origins of dis-
ease. Early identification and intervention may 
improve long-term health outcomes and help to 
reverse the obesity and diabetes epidemics during 
the most sensitive developmental stages, when 
interventions are likely to be most cost-efficient. 
Particular attention is required for US urban low-
income minority populations that have been dis-
proportionally affected by the obesity and 
diabetes epidemics, and most likely fall into 
vicious cycle of transgenerational obesity and 
diabetes.

5.2	 �Research Priorities

5.2.1	 �Epidemiologic research
Despite the notion of early life origins of obesity 
and T2DM, there is a particular lack of well-
powered prospective birth cohort studies to exam-

ine to what degree and how early life factors affect 
pregnancy and infant and child health outcomes 
across multiple developmental windows in a life 
course framework, particularly in high-risk US 
urban low-income minority populations. Findings 
from this line of research will have important 
research, clinical, and public health implications.

5.2.2	 �Mechanism research
In light of growing recognition that epigenetic 
mechanisms may play an important role in medi-
ating early life origins of diseases and that epig-
enome is potentially modifiable and reversible, 
well-designed large-scale prospective birth 
cohort studies are needed to trace the pathways 
from early life factors to adverse pregnancy out-
comes to postnatal long-term metabolic out-
comes and to better understand how epigenome 
changes from fetal to childhood to adolescence in 
response to environmental exposures. The role of 
social and environmental adversity in obesity and 
diabetes among urban low-income minorities has 
taken on new urgency given that these popula-
tions are disproportionally affected by the obe-
sity and diabetes epidemics. In addition to 
genetics and epigenetics, the field may also lever-
age and benefit from the latest advances in other 
“omics” such as metabolomics and microbiome 
as well as system sciences and bioinformatics.

5.2.3	 �Translational research
A particular challenge in preventing childhood 
obesity is to identify important and modifiable 
early life risk and protective factors to design 
safe, effective, and sustainable interventions. 
Evidence is needed to inform clinical guidelines 
regarding the optimal age to screen for obesity in 
children. Conflicting recommendations have 
been proposed for the starting age: age 6 by the 
US Preventive Services Task Force (Barton 2010) 
vs. age 2 by the Expert Committee (Barlow 
2007). While low birthweight has been included 
in current clinical assessment of future metabolic 
risk, there is a need to consider preterm birth as 
an important risk factor of future metabolic risk. 
The American Diabetes Association included 
histories of SGA and maternal history of diabetes 
or GDM during the child’s gestation as part of 
their diabetes risk assessment for children 
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(American Diabetes Association 2014). To date, 
preterm birth has not been included in the diabe-
tes risk assessment guidelines in children and 
adults, an area that requires more research given 
growing evidence linking preterm with subse-
quent metabolic risk.

5.3	 �Data and Methods 
Development Priorities

Advanced analytical methods are needed to com-
prehensively examine temporal and causal links 
of multilevel early life factors with metabolic 
outcomes. Future studies need to fully capture 
the complex interplay of broad environmental 
factors, genome, epigenome, metabolome, and 
microbiome that affect metabolic outcomes 
across lifespan and generations. While some sys-
tems models exist to help characterize particular 
sub-systems of the complex set of factors that 
influences children’s bodyweight, none have 
tried to comprehensively represent the relation-
ship between early life factors and the subsequent 
development of childhood metabolic risk across 
critical developmental stages.

6	 �Conclusions

There is growing evidence that preconceptional 
and prenatal factors play an important role in fetal 
metabolic programming and metabolic risk in later 
life. More research is needed to identify important 
and modifiable early life risk and protective fac-
tors and underlying mechanisms, which will pave 
the road for developing cost-effective early screen-
ing, prevention, and treatment strategies to halt 
and reverse the obesity and T2DM epidemics in 
the US, in particular among the most vulnerable 
populations (urban low-income minorities).
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