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Abstract. The Mean Time to Failure continues to decrease as the scaling of
computing systems. To maintain the reliability of computing systems, checkpoint
has to be taken more frequently. Incremental checkpointing is a well-researched
technique that makes frequent checkpointing possible. Fine-grained incremental
checkpointing minimizes checkpoint size but suffers from significant monitoring
overhead. We observe the memory access at page granularity and find that the
size of contiguous memory regions visited by applications tends to be propor‐
tional to size of corresponding memory allocation. In this paper, we propose the
Application-Based Coarse-Grained Incremental Checkpointing (ACCK) that
leverages the priori information of the memory allocation to release the memory
monitoring granularity in an incremental and appropriate way. This provides
better opportunities for balancing the tradeoff between monitoring and copying
overhead. ACCK is also assisted by hugepage to alleviate the TLB overhead. Our
experiment shows that ACCK presents 2.56x performance improvement over the
baseline mechanism.

1 Introduction

As more of high performance computing systems are being deployed in practice, fault-
tolerance and self-healing are becoming increasingly important. Large-scale machines
are often used by the scientific community to solve computationally intensive applica‐
tions typically running for days or even months. Fault-tolerance is also a must-have
characteristic of large-scale software system used in safety-critical and business-critical
domains. However, large systems exponentially increase the total number of failure
points and suffer [1, 2]. For instance, if mean-time-to-failure (MTTF) of an individual
node is as long as ten years, the MTTF of 64,000 node system is expected to decrease
to the order of tens of minutes [5, 12]. Therefore, it is critical to tolerate hardware and
software failures with low impact on application performance and avoid re-computation.

Checkpoint-restart is an effective mechanism for preventing applications from
restarting from scratch when unexpected system failure or scheduled maintenance
occurs [3–5]. A checkpoint is a snapshot of application state in non-volatile devices used
for restarting execution after failure. However, the scaling of computing system puts
additional pressure on checkpoint mechanism. On the one hand, checkpoint has to be
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taken more frequently [6, 7] relative to the failure rate of the system which, in turn,
directly impacts the application execution time and non-volatile storage requirements.
On the other hand, the overhead of global checkpoint increases due to the large check‐
point size.

With the emerging non-volatile memory technologies, fast in-memory checkpoint
helps alleviate the data transfer bandwidth problem, which is recognized as a major
bottleneck of checkpointing. Moreover, in-memory approach allows frequent check‐
pointing to meet the requirements of large-scale systems. The presence of non-volatile
memory provides opportunities for incremental checkpointing technique. Since the in-
memory checkpointing makes it possible to take checkpoints every few seconds, it
reduces the overhead of incremental checkpointing. As the checkpoint interval
decreases, a small number of memory blocks are modified, hence, the average size of
an incremental checkpoint decreases. Recent work [3–5] has demonstrated that the
incremental checkpointing shows its advantage over full-size checkpointing when the
checkpoint interval is within one minute.

To employ an incremental checkpointing technique, dirty page management is
required for every page in the DRAM. Page-based incremental checkpointing techniques
leverage the hardware page protection to track dirty pages and back up the dirty pages
at the end of checkpoint interval [8]. Generally, the overhead of incremental check‐
pointing is made up of two parts, the monitoring overhead and the copying overhead.
These two parts are a pair of trade-off factors and the key to balance the tradeoff is the
granularity of the monitor. Finer-grained monitoring identifies the modified data in finer
granularity with higher monitoring overhead, but is able to copy less unmodified data.
With coarser-grained monitoring, the monitoring overhead is reduced but more unmodi‐
fied data needs to be copied. Our experiment reveals that page-based incremental check‐
pointing technique suffers more from significant monitoring overhead. It indicates that
a coarser-grained implementation will better balances the tradeoff and boosts the overall
performance. However, blindly releasing the granularity does benefit to the monitoring
overhead anyway, but results in extremely large checkpoint size which slow both the
checkpoint and restart processes.

We observe the memory access characteristics at page granularity and find that the
size of contiguous memory regions visited by applications tends to be proportional to
the size of corresponding memory allocation. It indicates that the memory allocation
information can be leveraged to appropriately release the monitoring granularity. Based
on this observation, we propose Application-Based Coarse-Grained Incremental Check‐
pointing (ACCK) mechanism that strikes the balance between the monitoring overhead
and copying overhead in incremental checkpointing. Based on the relationship between
contiguous memory regions visited by applications and the corresponding memory allo‐
cation, ACCK mechanism releases the monitoring granularity by not monitoring the
memory regions that the applications tend to visit. Since page-based incremental check‐
pointing works with normal-size pages to enable fine-grained monitoring, it inevitably
increases the TLB overhead. We implement merge and split operation in Linux kernel
which merges normal-size pages (4 Kbyte) to huge-size page (2 Mbyte) and splits huge-
size page back to normal-size pages. ACCK merges normal-size pages when it decides
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to keep them unmonitored and splits huge-size page at checkpoint time to maintain fine-
grained monitoring. This effectively alleviates the TLB overhead during the runtime.

Compared to traditional page-grained incremental checkpointing, ACCK mecha‐
nism largely reduces the monitoring overhead with bearable increase in copying over‐
head. The experimental results show that the performance of memory access monitoring,
which accounts for around 70 % of the checkpointing time, improves 9x on average. As
a result, ACCK presents a 2.5x performance improvement over the baseline page-
grained based incremental checkpointing mechanism with the copying overhead
increases by 7 % and the TLB overhead alleviated.

The remainder of this paper is organized as follows: Sect. 2 introduces the back‐
ground and our motivation. We describe the design and implementation of ACCK in
detail in Sect. 3. Section 4 gives the experiments results. Related work is discussed in
Sect. 5 and we conclude in Sect. 6.

2 Background and Motivation

2.1 Non-volatile Memory

Non-volatile memory (NVM) is maturing fast in recent years. NVM features fast access,
non-volatile, large capacity, and byte-addressable. Currently, phase change memory
(PCM) is the most developed non-volatile memory technology [8–10]. The read speed
of PCM is comparable with DRAM, while the write speed is much slower (typically
10x slower). There are many studies at architecture level focusing on mitigating the
write latency [11, 12]. In this paper, we emulate the slow write by adding latency to test
its performance on supporting checkpoint.

HDD data transfer bandwidth has long been a main concern for checkpointing tech‐
nologies [11]. NVM allows in-memory copy to accelerate checkpointing. With the NVM
support, the age-old checkpoint/restart mechanism seems more attractive due to its
simplicity and low cost. Recent work [11] has shown that PCM-supported in-memory
checkpointing is 50 times faster than the conventional in-HDD checkpointing. We
assume the non-volatile memory can be directly accessed by CPUs via load and store
instructions. It shares the same physical address with DRAM.

2.2 Incremental Checkpointing with Non-volatile Memory

As the scaling of computing systems, MTTF continues to decrease from days to hours,
and to several minutes [11, 12]. The checkpoint interval decreases with MTTF since if
the checkpoint time surpass the failure period, it means the possibility of ending up with
infinite execution time. As noticed by previous work [11], frequent checkpointing is
only possible by using PCRAM and is critical to benefit from incremental checkpointing
schemes. As the checkpoint interval decreases, the probability of polluting a clean page
becomes smaller, hence, the incremental checkpointing shows advantages over full-size
checkpointing in terms of average checkpoint size.
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Incremental checkpointing features user-transparency, decent portability and flexi‐
bility [3, 5, 11]. It requires a memory access monitor to track the dirty data and period‐
ically backs them up to non-volatile memory or hard-disk. Existing researches leverage
the hardware page protection mechanism to monitor write operations and back up the
data in the granularity of pages. At the beginning of each checkpoint interval, all the
writable pages are marked as read-only using mprotect system call. When an mprotected
page is written, a page fault exception occurs and sends the SIGSEGV signal. The
memory access monitor receives the signal and call the page fault exception handler to
save the address of the dirty page in an external data structure. The page fault signal
handler also marks the written page as writable by calling unprotect system call. At the
end of the checkpoint interval, the monitor scans the data structure that tracks the dirty
pages and backs up all the dirty pages. In this paper, we implement this page-protection
based memory access monitor in runtime level and trigger checkpoint operation with
the time interval of 5 s.

2.3 The Problem with Current Checkpoint

Generally, the overhead of incremental checkpointing is decided by the granularity
of memory access monitoring [13]. The finer the granularity, the more page faults
will be triggered but less data will be copied. The coarser the granularity, the less page
fault occurs but more unmodified data has to be moved. The ideal case falls some‐
where between which involves the least overhead to the total system performance.

The widely supported page sizes in operating system are 4K and 2M. Page-based
incremental checkpointing works with 4K memory pages. 2M page is too coarse for
monitoring which largely increases the checkpoint size. This will make incremental
checkpoint fall back to full-size checkpoint with useless monitoring. However,
current incremental checkpointing suffers from significant monitoring overhead (as
well as TLB overhead) with 4K pages. Once a page is visited, a page fault occurs to
handle the fault and the page will be copied at the checkpoint time. We quantify the
monitoring overhead and copying overhead to clear our motivation. The rdtsc instruc‐
tion is used to reckon the page-fault handler by time. We estimate the data move‐
ment from DRAM to PCRAM to simulate the copying overhead where each 8 byte
atomic writes costs 600 ns. Note that both monitoring and copying overhead are
generic and application-independent. Table 1 shows the average monitoring over‐
head and copying overhead at 4K and 2M granularity. Monitoring overhead is around
2.5x the time of copying at 4K level while copying data accounts for the most of
overhead (~200x) with 2M huge page.

Table 1. Comparison of monitoring and copying overhead at 4K and 2M granularity

Granularity Monitoring overhead Copying overhead
4K ~100 us per 4 KByte < 40 us per 4 KByte
2M ~0.2 us per 4 KByte < 40 us per 4 KByte

Our experiments in Sect. 4 shows that monitoring overhead accounts for around 70 %
of total checkpointing time. Therefore, a key to optimize the incremental checkpointing
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performance is finding a way to minimize the monitoring overhead. Specifically, a
coarser-grained monitor that adapts well to the memory access pattern of applications
will yield much better results. Previous work [13] has tried some intuitive methods to
reduce the number of page faults during checkpoint interval, such as leaving the pages
around the written pages unmonitored. However, these methods without priori infor‐
mation shows marginal improvement.

3 Design and Implementation

3.1 Contiguous Memory Regions to be Visited

Since no priori information is used to predict the memory regions to be visited, previous
page-based incremental checkpointing has to track every write operation that trigger the
page fault. We observe the memory access pattern of PARSEC and SPLASH benchmark
suites at 4 K granularity and find that the size of contiguous memory regions visited by
applications tends to be proportional to the size of the corresponding memory allocation.
For example, if an application malloc a chunk of memory space sizing 100 pages, usually
a 30 % or 50 % of pages will be contiguously visited, which are 30 and 50 pages. Given
the same ratio (30 % or 50 %), for applications typically allocate thousands of pages,
these numbers (30 and 50 pages in last example) will be proportionally increased. In
this experiment, the total size of applications’ memory allocation is divided into 2n
pieces where n can be a reasonably large integer, such as 6 or 7. Each piece is regarded
as “hot” piece if more than 80 % of pages inside the piece has been visited. In this
definition of “hot” piece, we do not put strict limitation that all pages have to be visited
in order to cover some more flexible memory access patterns.

Figure 1 shows the cumulative distribution function (CDF) and histogram of the
priori information we are interested, which is the proportion between contiguous
memory space visited by applications and the size of memory allocation, and their
corresponding frequency. We run and statistic all applications in PARSEC and
SPALSH2 to make this observation more reliable and generic. The parameter n is set to
6 so each memory allocation is divided into 64 pieces. In the histogram and CDF figures,
the x-axis shows the ratio between the contiguous pieces visited by applications and the
total pieces of memory allocation and y-axis shows the frequency or the proportion of
corresponding ratio for memory allocations in all applications. It is noticeable that nearly
30 % has no “hot” pieces at all. Around 18 % (from 27 % to 45 %) of allocation has “hot”
pieces between 30 % and 40 % of total pieces allocated while around 17 % of allocation
has “hot” pieces between 60–70 % of total pieces allocated. This observation sheds new
light on memory access pattern which can be utilized to appropriately loose the moni‐
toring granularity to achieve better performance of incremental checkpointing for appli‐
cations with large memory footprint.
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Fig. 1. Histogram and cumulative distribution function (CDF) of the ratio between contiguous
memory pieces visited by applications and total allocated pieces
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3.2 Application-Based Coarse-Grained Checkpoint: Loose Monitoring
Granularity for “Hot” Applications

Our observation shows that applications tend to visit contiguous memory regions with
its length often proportional to the size of the corresponding memory allocation. Based
on this observation, we propose Application-Based Coarse-Grained Incremental Check‐
pointing (ACCK) that looses monitoring granularity for “hot” applications. ACCK first
records of the start address and size of memory regions applied by applications. ACCK
keeps track of the memory access pattern at 4K page granularity and divides the memory
allocation into 2n pieces (at least one page for each piece). Here, we adopt a new
definition of “hot” piece that for each piece of memory, if more than 80 % pages out of
first 10 % of pages are visited, it is marked as a potential “hot” piece.

ACCK releases the monitoring granularity incrementally and gradually. Given that
there are 2n pieces for each memory allocation, ACCK leaves the pieces unmonitored
based on the memory access pattern at the pace of (20, 21, …, 2n − 3), (20,
21 …, 2n − 3), …, (20, 21, …, 2n − 3) pieces. Specifically, at the beginning of check‐
point, every piece is monitored. If a monitored piece becomes a potential “hot” piece,
it will be left unmonitored by unprotecting all the pages inside the piece. If the following
piece become a potential “hot” piece again, this piece and the following piece (a total
of 21 = 2 pieces) will left unmonitored. Similarly, if following piece becomes potential
“hot”, ACCK leaves the following pieces unmonitored at the pace of 22, 23…until
2n − 3 pieces, then it repeat this process from the pace 20 to prevent over coarse gran‐
ularity. For example, if an application visits all pieces in order, ACCK mechanism (with
n = 6) releases the monitor at the pace of (1, 2, 4, 8) pieces and repeat until the end of
memory regions. Figure 2 (a) shows the ACCK example for an in-order memory access
pattern and Fig. 2(b) shows an ACCK example for an any-order memory access pattern.
The dotted areas in Fig. 2 denote the recognized potential “hot” pieces, which trigger
the following arrows. Note that the arrows in Fig. 2 does not have to occur in order.

0 1 643 7 15 16 18 22 30

44 45 643 7 2829 31 47351 3 7 15

(a)

(b)

…….........

Fig. 2. Example of ACCK mechanism for in-order and any-order memory access pattern
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3.3 Huge Page Support

2M huge page has a theoretical 512x performance improvement in terms of TLB
performance over 4K page. However, previous researches are cautious about the use of
huge pages. If huge pages are not used appropriately, a large amount of unmodified data
has to be copied at the end of checkpoint interval.

In this work, we implement a kernel patch to Linux kernel 3.18 to provide merge
and split operations between 4K pages and 2M huge pages. A merge operation merges
512 contiguous, 2M-alined 4K pages into a huge page (Fig. 3 top). A split operation
splits a 2M huge page into 512 4K pages (Fig. 3 bottom). These functions are exposed
to runtime library via system calls.

Fig. 3. An example of the merge (top) and split (bottom) operation done by modification on
Linux.

In ACCK mechanism, if a large number of pieces with more than 512 4K pages in
total will be unmonitored, these pages will be merged into huge pages if possible (note
that huge pages to be merged into must be 2M-aligned). If the merge succeeds, ACCK
turns off the page protection of the huge pages to leave it unmonitored. If the merge
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fails, ACCK remains to work in the traditional 4K granularity. In order to monitor in
fine granularity at the beginning of checkpoint interval, the merged huge pages will be
split into 4K pages at the end of checkpoint interval. The benefits of huge page comes
from low TLB miss rate and penalty during runtime.

4 Experiments

This paper introduces Application-Based Coarse-Grained Incremental Checkpointing
(ACCK). This section mainly evaluates and compares the performance of ACCK mech‐
anism with the page-grained incremental checkpointing techniques.

4.1 Experimental Setup and Benchmarks

Our experiment platform is an AMD sever equipped with 2.2 GHz 12-core CPU and
16 GB of physical memory. The operating system is Linux 4.2. Our benchmarks come
from PARSEC and SPLASH benchmark suite [14]. It focuses on programs from all
domains, including HPC applications and server applications. The largest “native” input
set is used.

4.2 Performance Metrics and Corresponding Results

Monitoring Overhead. ACCK mechanism mainly focuses on reducing the significant
monitoring overhead of incremental checkpoint. Given the fact that the unit monitoring
overhead is around 2.5x of unit copying overhead (application-independent), ACCK
mechanism appropriately release the monitoring granularity with useful priori informa‐
tion. Figure 4 shows the significant performance improvement in terms of monitoring
overhead in incremental checkpointing. As can be seen, ACCK mechanism lowers the
monitoring overhead for all applications. The improvement can be as significant as 10x
for most applications. The application freqmine is an exception with its reduction not
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as significant as other applications. The reason behind is that there is not enough potential
“hot” pieces in its memory allocation, which does not satisfy the requirements to trigger
ACCK mechanism. In this case, the discrete memory access pattern will cause ACCK
to fall back to the baseline incremental checkpointing. However, due to negligible
management overhead of ACCK, the monitoring overhead of ACCK is always much
better than traditional page-grained incremental checkpointing.

Copying Overhead. As mentioned in the previous section, the copying overhead is
not as significant as monitoring overhead per memory page. ACCK mechanism releases
monitoring granularity and increases copying overhead during checkpoint. However,
our experimental results proves that the additional copying overhead is minimal
compared to the improved monitoring performance. Figure 5 shows the total copying
overhead of ACCK and the baseline incremental checkpoint. Only an average of 7.4 %
more data has to be copied. Moreover, we argue that the preCopy mechanism [12] to
pre-move data before checkpoint time reduces the memory pressure at checkpoint time.
Therefore, the additional copying overhead can be effectively amortized.
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TLB Overhead. We also evaluate the performance of the page size adjustment. ACCK
mechanism merge 4K pages into huge pages if a large number of pieces with more than
512 4K pages in total will be unmonitored. The use of huge page helps improve the TLB
performance since each TLB entry maps much larger memory region with huge page.
We use oprofile profiling tool to evaluate the data TLB miss using DTLB_MISS counter
where the sampling count is set to 500. Figure 6 shows the normalized data TLB miss
of ACCK mechanism with and without huge page support. Note that the merged pages
will fall back to 4K pages at checkpoint time to maintain fine-grained monitoring at start.
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Overall Checkpointing Performance. Generally, the overhead of incremental check‐
point consists of the monitoring overhead and the copying overhead. ACCK mechanism
sacrifices the copying overhead for significant reduction in monitoring overhead and our
experimental results prove it to be very effective in terms of overall checkpointing
performance. Figure 6 gives the overall checkpointing performance of ACCK mecha‐
nism and the baseline incremental checkpoint. The overall checkpointing performance
is defined as the reciprocal of the summation of the monitoring overhead and copying
overhead. ACCK mechanism achieves 2.56x performance improvement over the base‐
line incremental checkpointing. It is noticeable that the performance improvement of
each benchmark is pretty average, with the highest improvement 2.79x (ocean_cp) and
lowest improvement 2.2x (freqmine) (Fig. 7).

0

0.5

1

1.5

2

2.5

3

N
or

m
al

iz
ed

 O
ve

ra
ll 

Pe
rf

or
m

an
ce

PGCK ACCK

Fig. 7. Overall performance

Application-Based Coarse-Grained Incremental Checkpointing 55



5 Related Work

As checkpoint-restart is the commonly-used technique for fault-tolerance, the related
research is abundant. Non-volatile memory sheds new light on fault tolerance. Previous
work [11, 12] leverages the byte persistency of non-volatile memory to do in-memory
copy to accelerate checkpointing. To address the slow write speed and limited bandwidth
during checkpoint, [11] proposes a preCopy mechanism to move checkpoint data to non-
volatile memory before checkpoint time to amortize the memory bandwidth pressure at
checkpoint time. [12] proposes a 3D PCMDRAM design at architectural level to facil‐
itate data movement between DRAM and PCM. These two studies both focus on hiding
the long write latency of non-volatile memory.

Most of related work of reducing the checkpoint size uses the incremental check‐
pointing technique [15] that only saves the dirty data between two consecutive check‐
points. Since then, the hardware memory management mechanism has been leveraged
to monitor the dirty data. However, incremental checkpoint technique still suffers from
significant monitoring overhead and struggle with the granularity of memory access
monitor. This paper propose a novel monitoring mechanism which can reduce the moni‐
toring overhead with bearable increase in checkpoint size. Our work is orthogonal to
previous studies (e.g. pre-copy mechanism [12]) and can be combined to achieve better
performance.

6 Conclusion

Checkpoint-restart has been an effective mechanism to guarantee the reliability and
consistency of computing systems. Our work mainly addresses the significant moni‐
toring overhead of current incremental checkpointing technique. This paper proposes
Application-Based Coarse-Grained Incremental Checkpointing (ACCK) mechanism
based on non-volatile memory. We observe the memory access characteristics and find
that the size of contiguous memory regions heavily visited by applications tends to be
proportional to the size of allocated memory space. ACCK leverages the priori infor‐
mation of the memory allocation to release the memory monitoring granularity in an
incremental and appropriate way. The experimental results shows that ACCK largely
reduces the monitoring time and presents 2.56x overall checkpointing performance
improvement. This work can be applied to frequent checkpoint of a wide range of appli‐
cations and databases and can be combined with other work (e.g. pre-copy mechanism)
to achieve better checkpoint performance.
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