
Enhancing Access Control Trees for Cloud
Computing

Neil Ayeb, Francesco Di Cerbo(B), and Slim Trabelsi

Security Research, SAP Labs France,
805, Av. du Docteur Maurice Donat, 06250 Mougins, France

francesco.di.cerbo@sap.com

Abstract. In their different facets and flavours, cloud services are
known for their performance and scalability in the number of users and
resources. Cloud computing therefore needs security mechanisms that
have the same characteristics. The Access Control Tree (ACT) is an
authorization mechanism proposed for cloud services due to its perfor-
mances and scalability in the number of resources and users. After an
initial set-up phase, the ACT permits to simplify the evaluation of an
authorization request to a simple visit to the tree structure. Our con-
tribution extends ACT towards instance-based access control models
by allowing the expression and evaluation of conditions in access con-
trol decisions. We evaluated our contribution against an Open Source
authorization mechanism to evaluate its performance and suitability to
production settings. Early results seem encouraging with this respect.

Keywords: Access control · Data structures · Cloud

1 Introduction

In all its different facets and variations, cloud computing offers a common set of
characteristics like elastic computing and resource pooling [4] in order to serve its
tenants and their end-users with high performances. To achieve this objective,
cloud service providers commit significant resources, for example in terms of
processing and storing. Compelled by normative requirements and service level
agreements, cloud services must be secured and protected, as well as any data
they host; leaks or abuses may result in severe losses for cloud providers, in terms
of liability, fines and reputation on the market.

These simple observations lead us to consider the importance of security
aspects in the design, implementation and operation of cloud services. It is pos-
sible to derive some basic requirements for security controls in cloud computing,
among them:

– R1 cloud security mechanisms must cope with high volumes of requests and
with their quick evaluations, and

– R2 cloud security mechanisms must be able to cope with high amount of users
and resources.

c© Springer International Publishing AG 2016
S. Casteleyn et al. (Eds.): ICWE 2016 Workshops, LNCS 9881, pp. 29–38, 2016.
DOI: 10.1007/978-3-319-46963-8 3



30 N. Ayeb et al.

We claim that these requirements are particularly important for cloud Access
Control (AC) mechanisms: they regulate access to cloud resources and oper-
ations, by making authorization decisions depending on parameters like the
callee’s identity, the requested resource or service and the attempted opera-
tion. These parameters and the indications on how to analyse them, compose an
AC rule.

These rules can be aggregated in two different forms, through AC lists or
policies (from now on ACL). The former approach consists of lists of rules that
in essence provide an answer to the question, whether a given user could or
not access to a given resource. This solution may result limiting, as poten-
tially many combinations of cloud-hosted resources and end-users for each ten-
ant must be explicitly mentioned in ACL, resulting in complex ACL authoring
and maintenance. On the contrary, AC policies can capture rules that specify
conditions/actions and offer a powerful, yet conceptual, tool of expressiveness
and are particularly useful for complex systems [5]. However, in this case it is
required a more sophisticated rule processing, performed through a specific AC
engine, in charge of rules interpretation. Ultimately, it must be able to make a
reasoning process on the given rules and make a decision: permission or denial.
Intuitively, a drawback of expressing sophisticated rules is the need for a reason-
ing process that could be time consuming. In fact, this has been pointed out in
[8,9], namely for resource access in cloud computing, where performance could
be seriously affected.

In [9], the authors proposed a new access control mechanism to make fast
authorization decisions, based on an high-speed caching tree. The Access Control
Tree (ACT) is designed in order to simplify the AC decision making the process
to a visit to the ACT. Our contribution consists of an extension to this concept
to support a form of instance-based AC, by introducing conditions expressed
in AC rules as elements of the ACT. This extension permits to represent more
sophisticated policies as part of the decision tree, thus easing the adoption of
ACT in more complex scenarios. To illustrate our contribution, Sect. 2 presents
a number of findings from previous research initiatives to support the need for
cloud-specific AC mechanisms, as well as two brief introductions to XACML and
to the ACT. Section 3 presents our extension to ACT while Sect. 4 the results of
our performance tests. Lastly, Sect. 5 concludes the paper.

2 State of the Art

2.1 Access Control Mechanisms for Cloud Computing

Many popular cloud services use AC solutions that are not specifically designed
for the cloud and for its requirements, especially for R1 and R2. This observation
is shared by a number of authors (for instance, [7]). This results in a serious
gap that can affect at least the configuration and operation of cloud computing
solutions. For this reason, Younis et al. [10] identify performance and scalability
as the first requirement for modern cloud-ready AC mechanisms.



Enhancing Access Control Trees for Cloud Computing 31

Well known cloud services like Amazon S3 or Microsoft Windows Azure Stor-
age, still offer very simple ACL-based solutions, essentially allowing access only
to known users or publicly available, without giving the possibility to selectively
grant access to principals outside of their domain.

The adoption of caching solutions for cloud mechanisms has been proposed
in the past. Reeja [6] propose the usage of two policy decision points (PDP), one
for new access requests and another one for access requests that were already
processed by the primary PDP. Harnik et al. [3] propose a capability-based
system that allows the integration of existing AC solutions thus leading to
hybrid architectures for AC systems. Such hybrid systems combine the bene-
fits of capability-based models with other commonly used mechanisms such as
ACLs or RBAC. On the other hand this study points out the weakness of ACL
used by many major cloud providers like Amazon and Microsoft.

2.2 XACML

XACML [2] is an open standard for the specification of access control policies
defined by OASIS.

The standard defines a reference architecture for the implementation of the
authorization functionality in an application. Such architecture is composed by
a number of components. Among them, we find the Policy Enforcement Point
(PEP), a part of the application that intercepts and regulates the access to pro-
tected resources or functionalities. The PEP permits an access request to take
place if authorized by another component, the Policy Decision Point (PDP); the
latter is responsible for making the decisions on the basis of a set of security
policies and on the parameters of the request transmitted by the PEP (e.g. the
target resource, the desired operation, the entity requesting for it). Such decision-
making process considers attributes of the user, of the resource, of the system
environment. These attributes are used for evaluating conditions stated in secu-
rity policies expressed using the XACML policy language; the latter is an XML-
based standard designed to support ABAC (Attribute Based Access Control).
Policies are stored, maintained and made available to the PDP though another
architectural component, the Policy Administration Point (PAP), and are eval-
uated with attributes coming from different sources (e.g. an LDAP directory
containing user’s attributes) by means of the Policy Information Point (PIP).

In the XACML policy specification, the policy element can be a policy set,
a policy or a rule. A policy set is composed of multiple policies, while a policy
consists of a number of rules. Each policy has a Target, that defines with which
attributes the policy is applicable (e.g., resource, subject, action). Moreover,
the policy contains an ’effect’ element that determines if the set of identified
attributes are related to a Permit or a Deny. It is also possible to define condi-
tions that will be applied prior returning the decision taken by the engine. The
XACML standard (with a particular attention in version 3.0) defines ’obligation’
handling. An Obligation is an action that must be executed by the PEP when
it receives the decision (e.g., logging the access history for a resource). Figure 1
presents an elaboration of the architecture proposed in [9] for the deployment



32 N. Ayeb et al.

of XACML AC mechanisms in the cloud. In this setting, the access to cloud
resources, be them services, virtual machines, storage or any other, is mediated
by the XACML engine that can make decisions considering aspects like multi-
tenancy and service-level agreements.

2.3 Access Control Tree

The ACT was introduced by Trabelsi et al. in [9]. The ACT aggregates different
policies and their rules in a tree entity in order to make authorization decisions
with high performances, through the application of hashing techniques on the
tree for efficient data search functions. ACT can be used in an XACML archi-
tecture as in Fig. 1 for optimizing the decision making process. For mapping
XACML rules into tree elements, Trabelsi et al. adapted a model proposed by
Gabillon et al. [1] and adapted it to the XACML policy schema. In their model,
only accessible data objects are part of the tree. If the access to an object is
denied, it will not appear. This permits to simplify the decision making process
and to reduce the number of tree elements. Due to its construction, the tree
structure is called ‘Permit Tree’ and it is indicated in the following with ‘P’.

The ACT is composed of four different levels. The first contains the list
of authorized subjects (or users, or roles, etc.) declared in the XACML policy
repository. The ANY subject ID is used for objects that are accessible to all
users with no restrictions. The second level represents the different actions or
operations that can be executed on the data. If the list of actions is undefined,
there is also an element Any (Action). The third level represents the different
types for data objects. Subsequently, the fourth layer contains a list of accessible
data object IDs. The layer order (in the example subject, action and resource)
can change according to system requirements. For example the first level can
be the ID of the object. In that case the selection is made on the object to be
accessed, for which one gets the list of authorized users.

Fig. 1. Architecture for XACML mechanisms in the cloud, adapted from [9]

3 An Extension to ACT

The ACT as presented in [9] consists of a methodology to organise a set of AC
directives in the form of a tree structure, in such a way that the evaluation of
AC requests boils down to a search navigation in the tree.



Enhancing Access Control Trees for Cloud Computing 33

The ACT is created by means of an insertion algorithm and queried via a
request algorithm. The insertion algorithm allows to construct the tree, struc-
tured in four levels: subjects, actions, resource types, resources. The request
permits to consider the elements of an AC request and to use them as parame-
ters to search the AC tree. If a result is found, the request can be permitted (in
a Permit tree, denied in a Deny tree).

We observed that the ACT achieves the objective of meeting scalability in
the number of users and resources together with significant performances. We
are focussing this contribution on instance-based Access Control, i.e., methods
that permit the expression of fine-grained directives for each individual resource
that is under control.

Our proposal has the objective to extend this result further by supporting
policies with more sophisticated rules. Therefore, our contribution consists of
adding a fifth level to the tree, in order to express the conditions that have to
be evaluated at the moment of the decision making process. Multiple conditions
may be part of this last layer. A diagram representing the new ACT is depicted
in Fig. 2. This new level requires a modification to the ACT insertion and request
algorithms, that are used respectively to populate and to query the Permit Tree.
A detailed explanation of the algorithms is available in [9].

The new insertion algorithm (that takes advantage of Procedure InsCond) is
rendered in Algorithm 1. It starts by considering a set of AC rules in the form
< subject, action, resource >. If a rule does not include one or more of the tuple
constituents, the missing elements are replaced by the special value ÄNY∵. The
algorithm parses each rule and populates the tree by creating a new branch (if
necessary) for each touple elements in the respective level.

Our extension considers, for each rule being analysed, whether the rule con-
tains any conditions and in case, they are added to the fifth level of the Permit
Tree if they are not already inserted.

Conversely, the request algorithm was modified in order to return the condi-
tion(s) that have to be evaluated before issuing an access permission. Algorithm2
describes this extension.

Procedure InsCond(rule, location)
input : policy rule as R, an ACT node as Location
foreach condition C in R do

if C is not in Location then
Add C to Location

4 Evaluation and Preliminary Results

We evaluated our proposal against a standard Open Source AC solution, Balana1,
a well-known XACML engine. We compared the performances of our extended
1 https://github.com/wso2/balana.

https://github.com/wso2/balana


34 N. Ayeb et al.

ACT and Balana by evaluating a set of up to 3600 policies, generated as the set
of all combinations for 60 subjects and 60 resources, performing 7200 requests
equally distributed for permit and deny. The experiments have been repeated
more than 800 times with different policy settings (minimal parameters were 20

Algorithm 1. Insertion algorithm for ACT
input : <R1,R2,. . . ,Rn>as P , Resource, current tree as T
Data: handledRules={} set of rules of type <subject,action>
foreach rule R in P do

if R is of type <subject,action,permit>OR <subject,any decision> then
if T.subject not exist then

Add subject in T.subjects
Copy actions from T.any into T.subject

if R is of type <subject, action, decision> then
if decision == permit then

Add Resource in T.subject.action
InsCond(R,T.subject.action.Resource)

Add <subject, action>in handledRules

else if R is of type <subject, any, decision> then
actionList = T.decision.subject.actions
foreach action A in actionList do

if <subject, A>not in hanledRules then
if decision == permit then

Add Resource in T.subject.A
InsCond(R,T.subject.A.Resource)

Add <subject, A>in handledRules

else if R is of type <any, action,decision> then
subjectList = T.decision.subjects
foreach subject S in subjectList do

if <S, action>not in handledRules then
if decision == permit then

Add Resource in T.S.actions
InsCond(R,T.S.actions.Resource)

Add <S, Actions>in handledRules

else if R is of type <any, any, decision> then
subjectList = T.decision.subjects
foreach subject S in subjectList do

actionList = T.decision.S.actions
foreach action A in actionList do

if <S, A>not in handledRules then
if decision == permit then

Add Resource in T.S.A
InsCond(R,T.S.A.Resource)

Add <S, A>in handledRules



Enhancing Access Control Trees for Cloud Computing 35

Algorithm 2. Request Algorithm for ACT
input : <subject, action>as R, Resource, current tree as PT
Data: handledRules={} set of rules of type <subject,action>
if R.subject not exist in PT then

Return set of data objects ids resulting form PT.any.action and their
conditions

else
Return set of Data object ids resulting form PT.subject.action and their
conditions

subject1

subject2

action1

action2

subject3

type1

type2

resource1 condition1

resource2

P

condition_n

Fig. 2. The extended ACT

users, 20 resources and 800 requests) to confirm the soundness of the results. The
policies were generated from the same policy template that contains a rule with
a condition requiring for its evaluation an interaction with the PIP to retrieve
the value of an attribute. Both ACT and Balana were extended in order to share
exactly the same source code for the PIP attribute retrieval operation from a
database. The ACT tree structure has been stored in memory.

To simulate a realistic usage in the cloud of the two platforms, we ran
our experiments by starting multiple execution threads which request access to
resources. For completeness, we also considered the case with a single requestor
thread. The number of requests is twice as high as the number of resource/ user
combination. This is due to the fact that the requests are intended to cover all
the possible cases (i.e., Permit and Deny cases, with and without DB access).

The experimental setting used for the evaluation consisted of an Intel(r)
Core(tm) i7 4790 CPU (4 Haswell Cores, 3.75 GHz), 16 GB of System Memory,
a 240 GB PCI-EX SSD.

4.1 Performance Tests and Analysis

The first experiment we conducted, depicted in Fig. 3, consisted of measuring the
total average time on several executions needed by ACT and Balana to evade 800,
1800, 3200 and 7200 requests when they are issued by single execution thread.
The testing scenario of single-threaded sequential query on both of the Balana
engine and the ACT shows that the latter always outperforms the former: the
difference between ACT and Balana grows from the initial of 5x for 800 requests,
to 2 orders of magnitude for 7200 requests. This can be explained by the time



36 N. Ayeb et al.

Fig. 3. Comparison of experiments using ACT and Balana

Fig. 4. Execution time in ms for single request using ACT and Balana with 2, 4, and
8 threads.



Enhancing Access Control Trees for Cloud Computing 37

needed for Balana to scan all the available policies in the repository and trying
to match between the request attributes and the policies attributes.

We then conducted a number of experiments in a multi-threaded setting. We
present in Fig. 4 the time in ms required for evaluating a single request (out
of 7200) using a different number of threads (2, 4 and 8). We calculated these
values by collecting the execution times for more than 800 experiments. In all
cases, the ACT outperforms Balana, even though the latter scales better in the
number of processing threads. On the other hand, the ACT performs slightly
more inconsistently in the 8-thread scenario, resulting in slower execution time
and a more significant variance as shown by the box plot. Considering that the
database used to evaluate the rule condition was deployed on the same execution
machine, the fast execution time per single request of ACT as well as the total
number of (virtual) cores available on the experimentation server (8), we may
conclude that the system resources were almost fully saturated. In the case of
Balana, given the higher time necessary for each execution, this effect cannot be
observed. The variance of the execution times in Balana experiments is in fact
quite limited.

5 Conclusion

Cloud computing needs cloud-designed, performing, efficient and scalable AC
solutions. Our proposal extends a cloud AC mechanism based on the XACML
standard, the Access Control Tree in order to support instance-based decisions,
extending the decision tree with rule conditions. We described our contribution
and we evaluated its impact in comparison with an Open Source XACML solu-
tion. The results are encouraging and seem aligned with the performance and
scalability requirements that we aimed at. As future work we aim at perform-
ing a more extensive evaluation and at enhancing further the ACT support for
XACML features. Particularly interesting challenges are represented by the eval-
uation of the impact of rule combining algorithms on the ACT creation process,
as well as the possibility to evaluate the impact of multiple conditions (possibily
organised in parallel branches) on the performances of the request algorithm.

Acknowledgements. This work was partly supported by EU-funded (FP7/2007–
2013) project CoCo Cloud [grant no. 610853].

References

1. Gabillon, A., Munier, M., Bascou, J.-J., Gallon, L., Bruno, E.: An access control
model for tree data structures. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS,
vol. 2433, p. 117. Springer, Heidelberg (2002)

2. Godik, S., Anderson, A., Parducci, B., Humenn, P., Vajjhala, S.: OASIS eXtensible
access control 2 markup language (XACML) 3. Technical report, OASIS (2002)

3. Harnik, D., Kolodner, E.K., Ronen, S., Satran, J., Shulman-Peleg, A., Tal, S.:
Secure access mechanism for cloud storage. Scalable Comput. Pract. Exp. 12(3),
317–336 (2011)



38 N. Ayeb et al.

4. Mell. P.M., Grance. T.: SP 800-145. the NIST Definition of Cloud Computing.
Technical Report. NIST, Gaithersburg, MD, United States (2011)

5. Popa, L., Yu, M., Ko, S.Y., Ratnasamy, S., Stoica, I.: Cloudpolice: taking access
control out of the network. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, p. 7. ACM (2010)

6. Reeja, S.: Role based access control mechanism in cloud computing using co-
operative secondary authorization recycling method. Int. J. Emerg. Technol. Adv.
Eng. 2(10), 25–34 (2012)

7. Shiftehfar, R., Mechitov, K., Agha, G.: Towards a flexible fine-grained access con-
trol system for modern cloud applications. In: IEEE CLOUD, pp. 966–967. IEEE
(2014)

8. Tang, Z., Wei, J., Sallam, A., Li, K., Li, R.: A new RBAC based access control
model for cloud computing. In: Li, R., Cao, J., Bourgeois, J. (eds.) GPC 2012.
LNCS, vol. 7296, pp. 279–288. Springer, Heidelberg (2012)

9. Trabelsi, S., Ecuyer, A., Alvarez, P.C.Y., Di Cerbo, F.: Optimizing access control
performance for the cloud. In: Proceedings of CLOSER 2014, pp. 551–558 (2014)

10. Younis, Y.A., Kifayat, K., Merabti, M.: An access control model for cloud com-
puting. J. Inf. Secur. Appl. 19(1), 45–60 (2014)


	Enhancing Access Control Trees for Cloud Computing
	1 Introduction
	2 State of the Art
	2.1 Access Control Mechanisms for Cloud Computing
	2.2 XACML
	2.3 Access Control Tree

	3 An Extension to ACT
	4 Evaluation and Preliminary Results
	4.1 Performance Tests and Analysis

	5 Conclusion
	References


