
AttributeLinking: Exploiting Attributes
for Inter-component Communication

Michael Krug(B) and Martin Gaedke

Technische Universität Chemnitz, Chemnitz, Germany
{michael.krug,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. In this paper, we propose exploiting attributes of client-side
web components to provide inter-component communication by external
configuration. With the standardization of WebComponents, the Web is
finally getting a uniform way to define and use client-side components.
We determined that DOM elements already provide a standard configu-
ration interface: attributes. Using the WebComponents technologies for
state-of-the-art user-interface components, attributes can also act as out-
put interfaces. By providing anAttribute-Link component, newweb appli-
cations can be composed directly in the markup without knowledge of
JavaScript. With the integration of a multi-device supporting Messaging-
Service, components can be even linked across multiple connected devices.
This enables the development of distributed user interfaces.

Keywords: Web components · Web application development · Compo-
sition · Distributed user interfaces · Reusable components

1 Introduction

Component-based application development is based on the composition of multi-
ple components that are reused and combined to form new applications. Apply-
ing this to the Web creates new challenges, like the definition of independent
components and loosely coupling. A lot of approaches were developed in the last
years, but a standardized way of defining and using components for client-side
Web application development was missing. Recently, the W3C is working on
creating a new set of standards for components for the Web called WebCom-
ponents1. With those standards developers are now able to define new types of
DOM elements with custom functionality. Similar to UI mashups, where user-
interface components were mostly referred to as widgets, inter-component com-
munication, which is required for application development by composition, is
a central problem. This is unfortunately not covered by the W3C specifica-
tions. We analyzed different DOM elements and determined that most of them
provide an accessible (input) interface, which is mainly used for configuration:
attributes. Consequently, this interface is also available for WebComponents.

1 WebComponents - W3C Wiki https://www.w3.org/wiki/WebComponents/.

c© Springer International Publishing AG 2016
S. Casteleyn et al. (Eds.): ICWE 2016 Workshops, LNCS 9881, pp. 157–161, 2016.
DOI: 10.1007/978-3-319-46963-8 13

https://www.w3.org/wiki/WebComponents/


158 M. Krug and M. Gaedke

<geo -coder address="Chemnitz"// input interface

lat="50.83" // output interface

lng="12.92"> // output interface

</geo -coder >

Listing 1. Geo-Coder component with multiple attributes

With an accordingly configuration, attributes of WebComponents can also be
used as output interfaces. To explain this idea, an example in Listing 1 is stated,
where a Geo-Coder component is shown that converts an address into geographic
coordinates (latitude, longitude), e.g., to show a place on a map. Thus, the
attribute address is used as an input interface and lat and lng are the resulting
output variables. If we now assume that there is also a Map component with
latitude and longitude as input variables mapped to the according attributes, a
composition of those elements can be achieved by connecting the output vari-
ables of the Geo-Coder to the input ones of the Map.

Therefore, we want to encourage developers to use attributes as commu-
nication interfaces when creating new WebComponents. By enabling external
configuration of inter-component data exchange the components do not need to
include any communication functionality by themselves. Thereby, components
stay reusable and do not need knowledge of other components.

2 Related Work

Polymer, a WebComponent framework from Google, supports data bindings
within markup through placeholders in attributes and by placing target and
source within a binding element. There are also several JavaScript frameworks
that support data binding, e.g., AngularJS, Knockout or Rivets.js. They need
an attached data model to specifically bind data to the element’s content or
attributes. Furthermore, some publish/subscribe or event-based communication
approaches for components or widgets, like presented in [1,2] and [3], exist.
They have the disadvantage of configuring communication aspects within the
components. There are only limited options to configure which components shall
exchange data. Data transformation and message distribution for multi-device
applications is not supported.

3 The AttributeLinking Approach

Based on the assumption that WebComponents are DOM-Elements that provide
their in- and output interfaces through attributes, we enable inter-component
communication by linking attributes through external configuration to facilitate
web application development by composition. How to connect those interfaces?



AttributeLinking: Exploiting Attributes for Inter-component Communication 159

3.1 The Attribute-Link Component

We propose to connect the attribute interfaces of components using a stand-alone
Attribute-Link component, which is configured using three attributes: source,
target and an optional transformation (see Listing 2). The Attribute-Link com-
ponent is also implemented as a WebComponent. Thus, it can be natively used
in web browsers supporting those standards and can be deployed directly in the
markup without knowledge of JavaScript. To address an element we propose to
use the established CSS selector syntax2. This syntax is applied to both the
source as well as the target selector. Since CSS selectors can return multiple
elements, we also support multiple elements as target and source. Enabling a
cardinality of both ends from 1 to n. The attribute is addressed by its name
separated by an @ sign. Example: geo-coder#id1@address. The Attribute-Link
can be included multiple times in the web application to define a complex inter-
component communication setup. To watch for attribute changes without affect-
ing the responsiveness of the application we use native DOM mutation observers3

that set up microtasks and provide a callback for registered changes of the spe-
cific element’s attribute. If a transformation function was specified, it will be
applied and the resulting value is propagated to the defined attribute of the
according target element.

<attribute -link source=" selector@attribute "

target="selector@attribute ">

transformation="JavaScript -Code"/* Optional*/>

</attribute -link>

Listing 2. Syntax of the proposed Attribute-Link component

3.2 Distributing Attribute Changes

In our approach, we also focus on the development distributed user inter-
faces. Thus, we propose to additionally address target components on connected
devices. This is achieved using a Messaging-Service component and a Messaging-
Server we provide. Our presented Attribute-Link component seamlessly inte-
grates with the Messaging-Service by placing it in the DOM as a child element
like display in Listing 3. It notifies the Messaging-Service of changed attributes
that shall be distributed by dispatching a custom event. This event contains the
target element selector, the attribute name and the new value to be set. Using the
WebSocket protocol4 the Messaging-Server is contacted to distribute this mes-
sage to other connected devices (browsers running the application with the same
endpoint configured that share the same context) (cf Fig. 1). The other devices
also need to have instantiated an accordingly configured Messaging-Service com-
ponent that will then propagate the received messages to the target elements
in their DOM. We also provide a configuration option to only target remote
components.
2 Selectors Level 3 https://www.w3.org/TR/selectors/.
3 DOM Standard https://dom.spec.whatwg.org/#mutation-observers.
4 The WebSocket Protocol http://tools.ietf.org/html/rfc6455.

https://www.w3.org/TR/selectors/
https://dom.spec.whatwg.org/#mutation-observers
http://tools.ietf.org/html/rfc6455


160 M. Krug and M. Gaedke

<messaging -service endpoint="protocol: // address:port"

session="Session -Identifier">

<attribute -link [...] ></attribute -link>

</messaging -service >

Listing 3. Syntax of the Messaging-Service in combination with an Attribute-Link

Fig. 1. Components of the AttributeLinking approach

4 Conclusion

In this paper, we proposed the external linking of attributes of DOM-based com-
ponents to enable the composition of new web applications. Consequently, we
want to start a discussion of the usage of attributes as in- and output interfaces
for components in the Web. To demonstrate our idea, we presented an Attribute-
Link component that is capable of observing and propagating attribute changes
from and to multiple DOM elements. With an optional Messaging-Service those
changes can also be distributed to connected devices. The concept of exter-
nal configuration eliminates the need of modifying the components to enable
communication. Further research will address how to enhance the support for
distributed interfaces by providing more configuration options to e.g., select com-
ponents on specific devices.

Online Demonstration: http://myvsr.eu/demo/dui/

http://myvsr.eu/demo/dui/


AttributeLinking: Exploiting Attributes for Inter-component Communication 161

References

1. Chudnovskyy, O., Müller, S., Gaedke, M.: Extending web standards-based wid-
gets towards inter-widget communication. In: Grossniklaus, M., Wimmer, M. (eds.)
ICWE Workshops 2012. LNCS, vol. 7703, pp. 93–96. Springer, Heidelberg (2012)

2. Krug, M., Gaedke, M.: SmartComposition: bringing component-based software engi-
neering to the web. In: Proceedings of the 17th International Conference on Infor-
mation Integration and Web-Based Applications and Services, pp. 474–477. ACM
(2015)

3. Sire, S., Paquier, M., Vagner, A., Bogaerts, J.: A messaging API for inter-widgets
communication. In: Proceedings of the 18th International Conference onWorldWide
Web, pp. 1115–1116. ACM (2009)


	AttributeLinking: Exploiting Attributes for Inter-component Communication
	1 Introduction
	2 Related Work
	3 The AttributeLinking Approach
	3.1 The Attribute-Link Component
	3.2 Distributing Attribute Changes

	4 Conclusion
	References


