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Abstract. Diffusion MRI is a frequently-used imaging modality that
can infer microstructural properties of tissue, down to the scale of
microns. For single-compartment models, such as the diffusion tensor
(DT), the model interpretation depends on voxels having homogeneous
composition. This limitation makes it difficult to measure diffusion para-
meters for small structures such as the fornix in the brain, because of
partial volume. In this work, we use a segmentation from a structural
scan to calculate the tissue composition for each diffusion voxel. We
model the measured diffusion signal as a linear combination of signals
from each of the tissues present in the voxel, and fit parameters on a
per-region basis by optimising over all diffusion data simultaneously. We
test the proposed method by using diffusion data from the Human Con-
nectome Project (HCP). We downsample the HCP data, and show that
our method returns parameter estimates that are closer to the high-
resolution ground truths than for classical methods. We show that our
method allows accurate estimation of diffusion parameters for regions
with partial volume. Finally, we apply the method to compare diffusion
in the fornix for adults born extremely preterm and matched controls.

1 Introduction

Diffusion imaging is a vital tool for probing the microstructure of in-vivo
tissue. Parametric models of diffusion offer an informative way to summarise the
information from many different b-values and gradient directions. The model
parameters are often averaged over a region, under the reasonable assump-
tion that tissue within a structure will have similar diffusion properties. This
approach works well in large regions, where we can erode a probabilistic seg-
mentation to obtain voxels that are fully within the tissue. But, the diffusion
parameters within structures such as the fornix—a narrow white matter struc-
ture, surrounded by cerebrospinal fluid—might not be measured well by this
approach, especially at typical diffusion resolutions [1]. Because of the large
scale of diffusion MRI voxels relative to the fornix many, and perhaps all, voxels
will contain partial volume. This partial volume affects the ability to interpret
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the parameters of diffusion parameter models. For instance, the size of the fornix
may confound parameter estimation by introducing varying amounts of partial
volume in different subjects or at different timepoints (for example, due to atro-
phy). In order for the measured diffusion parameters to accurately represent
microstructure, we must remove the confound of partial volume.

In this work, we extend the calculation of a region’s parameters to include
information from all voxels in the region during the model-fitting, instead of
fitting voxel-wise and then averaging. While there has been work on eliminating
the contribution of free water to diffusion parameter estimates [2], our proposed
approach directly estimates the diffusion parameters of all tissue types within
the image, without relying on a priori diffusion models or values. In the proposed
framework, we use a probabilistic segmentation as weights for canonical diffusion
signals, optimised for each segmentation class or tissue (we use the terms inter-
changeably). The modelled signal in a voxel is calculated as a weighted sum of
each tissue present in the voxel, where the weights are given by the segmentation
probabilities (which represent the proportion of each tissue type present).

We first validate the method on in-vivo diffusion data from the Human Con-
nectome Project [3]. By using such high-resolution data, we can measure diffu-
sion parameters in the fornix directly, using hand-drawn regions of interest. By
downsampling this data, we simulate a more typical diffusion acquisition, and
are able to test whether our approach retrieves the correct parameter values.
After validating our approach, we apply it to adults born extremely preterm,
comparing the diffusion within the fornix to that of term-born controls. The
comparison is interesting as the patient group has pervasive differences in brain
morphology and function, including memory (associated with the fornix).

This framework presented is similar to [4] in its use of multi-modal imaging to
make a diffusion mixture model. This work differs in that there is no requirement
of multiple shells of diffusion data, an important advantage for using this method
in older data.

2 Methods

2.1 Theory

In this work we attempt to measure diffusion parameters from below the reso-
lution at which they were obtained. If we imagine a voxel at a higher resolution
(for example, the T1-weighted scan) being downsampled to a lower resolution
(the diffusion scans), the proportion of the tissue in a voxel of diffusion space
will be reduced. Even in a best case scenario, the probability of there being at
least a threshold T% of the tissue within a voxel depends on the position of
the tissue relative to the voxel borders. Our approach eliminates the dependence
of measured parameters on the precise voxel boundaries, by using all diffusion
information within the region of interest.

In diffusion MRI, the diffusion of water within is summarised with a mathe-
matical model. Within a given voxel, the water diffusion from several microstruc-
tural environments is measured together. A voxel’s signal, S, in the diffusion
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tensor (DT) model, is given by:

S

S0
= e−bgTDg (1)

where S0 is the diffusion signal with zero diffusion weighting, b are the b-values,
g are the gradient directions and D is the second-rank diffusion tensor.

In our approach, we aim to obtain D for each of the k tissue classes (in the
case of the fornix, white matter and CSF). In a given voxel, we model the signal
as being represented as a weighted sum of each of the tissue classes that are
present:

S = S0

k∑

j=1

pje
−bgTDjg (2)

Dj is now the diffusion tensor for a given region or tissue. The pj are non-
negative, and constrained between 0 and 1. The Dj are unknown parameters
that are optimised to best fit the data. This is a mixture-model approach, that
generates the diffusion parameter estimates for the entire volume simultaneously,
instead of per voxel. For the case of two tissue classes, this reduces to the signal
model in [1].

In order for a single DT to represent the diffusion properties in different
voxels, we must account for different orientation in different parts of the same
tissue. Conventionally, we would use the same b-matrix for each voxel in the
image. However, we are mainly interested in orientationally-independent mea-
surements, such as the fractional anisotropy (FA). In this work, we redefine the
gradient-directions for each voxel, so that the principal directions of all voxels
in the image align. The gradient directions at each voxel are calculated by first,
performing a tensor-fit to the voxel and establishing v1 and v2, the first and
second eigenvectors of D. We then calculate the rotation matrix R such that v1

and v2 align with [1,0,0] and [0,1,0]. Our vector for the ith voxel then becomes
gi = Rg.

After calculating principal diffusion directions in every voxel, and the S0,
with a weighted-least-squares tensor fit, we initialise a 3 × k matrix with identi-
cal diffusivities in each of the tissue classes. At each iteration of the optimisation,
we calculate the signal for the entire volume simultaneously, before the 3 k dif-
fusion parameters are updated. We fit using Matlab 2014b, using non-linear
optimisation [5].

3 Experiments and Results

3.1 MRI Data

To test the proposed approach, we use data from the HCP [3]. The diffusion
data has a resolution of 1.253 mm3, with 108 volumes with b ≈ 1000 s.mm−2

(including reference volumes). The T1-weighted MRI is at resolution 0.703 mm3.
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For the experiments on adult subjects, we collected MRI data at 19 years of
age from 15 adolescents. Eight (4 Male) of these were born extremely preterm
(fewer than 26 weeks completed gestation) and seven (3 Male) were recruited
as matched controls. We acquired 3D T1-weighted volume at 1 mm isotropic
resolution (TR/TE = 6.78/3.06 ms) for segmentation and diffusion MRI with
the following characteristics: four b-values at b = (0, 300, 700, 2000) s.mm−2

with n = (4, 8, 16, 32) directions respectively at TE=70 ms (2.5× 2.5× 3.0 mm).
For the fitting, we discarded the highest shell of b-values. All data was acquired
using a Philips 3T Achieva. For the segmentations, we manually drew the fornix
on a T1-weighted segmentation and also labelled the surrounding tissue using
multi-atlas label propagation and fusion [6] based on the Neuromorphometrics,
Inc. labels.

3.2 Validating Method Using HCP Data

We used the high resolution of the HCP data to determine pseudo ground-truth
values for diffusion parameters in the column, the crus and the body of the
fornix. Each of these regions is hand-drawn onto the subject’s T1-weighted MRI.
We downsample the segmentation from categorical labels into a probabilistic
diffusion segmentation, where the probabilities represent fractions of the tissue
in that diffusion voxel. We varied the downsampling to achieve voxels of isotropic
dimension from 1.25 mm to 3.5 mm. In order to use HCP data as a model for a
more typical diffusion acquisition, we adjust it in the following ways. We added
rician noise to the downsampled data, to bring the data to a clinically realistic
SNR. We only use one shell of the acquired data, to ignore effects that are not
modelled with the DT. For each experiment, we used a subset of the 108 volumes.
We tested the performance of our algorithm with between 12 and 60 of these
volumes.

We compare three approaches for analysing average parameter values:

M1 For each region, we identify voxels where the membership to that region is
above the threshold and average their values.

M2 We resample the downsampled DWI to high-resolution HCP space before
fitting the DT model and, again, averaging the values for each region. For
this, we use 7th-order b-splines, as recommended in [7].

M3 (proposed): We calculate parameter values for each region, explicitly
accounting for partial volume. The p are given by downsampling labels from
the T1-weighted segmentation into diffusion space.

3.3 Results

In Fig. 1 we test approach M1. As the threshold changes, so do the results for
the classical approach. At a resolution of 2 mm isotropic, all fornix tissue has
partial volume, so we would be unable to use a threshold of 90 % even at this
good resolution. However, as we decrease the threshold, increasing the voxel
dimension results in decreasing FA, as CSF partial volume contaminates the
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Fig. 1. In this graph, we see the effect of downsampling the resolution (x axis) on para-
meter estimates from a threshold-based approach. As the voxel dimension increases,
the parameter estimation is less reliable and at some point stops, as there are no
more supra-threshold voxels to sample. The choice of the threshold will influence the
measured parameter value

estimates. For the body of the fornix, the measured FA decreases by up to 13 %
by changing the thresholding, and when downsampled to 2.5 mm, the measured
FA is up to 25 % lower than the pseudo-gold-standard.

In approach M2, we use the segmentation at the HCP resolution. After down-
sampling the data and adding noise, we interpolate the diffusion data back to
the HCP resolution in order to fit the diffusion tensor and average the results
over the ROI. These results are displayed in Fig. 2. The measured diffusion para-
meters diverge from their ’true’ values as we interpolate data of lower resolution.
With no downsampling, the values of nearby white matter, the column and the
crus of the fornix are similar. However, as the downsampling increases, the FA
estimates decrease due to the partial volume. This means that parameter values
that should be similar are diverging because of local surroundings.

With the proposed method, the FA in the column and crus of the fornix
is constant (Fig. 2). The body of the fornix has an increasing FA. The mean
diffusivities are more constant in the proposed method than with the classical.

3.4 Comparison of Preterm-Born and Term-Born Young Adults

We compare fornix DTI parameters as calculated with M2 (upsampling DWI to
T1-space and fitting the tensor) and M3 (proposed) in Fig. 3. The MD in the
fornix is higher in general for the classical approach compared to ours. In the
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Fig. 2. In our method (left), the diffusion parameters in the fornix are fairly consistent
with downsampling. While the results for larger regions match the classical approach,
we improve for the fornix. We present the results for a thresholding approach with prior
upsampling of the data (right). The results here, for diffusion parameters of the fornix,
show a divergence of the diffusion parameter readings depending on their surrounding
tissue. The scale factor is the factor by which we’ve downsampled the volume. In these
experiments, we used 12 diffusion readings, 2 of which were reference volumes

(a) Control (b) Subject (c)

Fig. 3. In a–b the fornix is highlighted with an arrow in a control and a preterm
subject. The preterm-born subject has noticeable abnormalities in the corpus callosum,
and enlarged ventricles. In c, we display the measured parameters using our proposed
approach vs the classical.
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classical approach, there is a significant difference in the MD with the subject
group having higher MD (p ≤ 0.0005), which does not appear with the proposed
method. Both approaches measure higher mean FA in the control group, but
neither is significant when accounting for multiple comparisons. The fitting took
less than a minute for each subject.

4 Discussion

Our method achieves consistent and accurate parameter estimates for small
regions in partial volume. Although interpolating data reveals some details that
are hidden at low resolution [7], interpolation of downsampled HCP data biased
the results of the measured diffusion parameters in the fornix. FA values in all
parts of the fornix tended to be underestimated and diverged from FA estimates
in other white matter regions. This means that the local surroundings of the
fornix biased the diffusion results, which our method was able to address.

There is promise in using this approach in subject groups, such as the
preterm-born young adults in this study. Our approach reduces the impact of
partial volume on measuring the properties of the fornix. The lower MD we
measured for both subjects and controls is in accord with this. The higher FA
values suggest that we are able to measure the diffusion in the highly-anisotropic
region of the fornix with less impact from the surrounding cerebrospinal fluid.
While this is not a conclusive result, due to the small number of subjects, it is
a promising sign. There is some evidence from both methods that preterm-born
adults have lower FA in the fornix than controls, which is congruent with the
known result that preterm-born adults exhibit lower FA values in white matter.

While there are a range of biophysical compartment models in use in diffusion
imaging, most of these rely on multi-shell data to fit compartments in each voxel,
or else have to heavily restrict the available parameters. We circumvent this by
fitting on a per-tissue basis, by using information from a structural segmentation.

Another way to calculate diffusion parameters would be using super-
resolution techniques. Image Quality Transfer [8] uses a machine-learning app-
roach to super-resolve the diffusion data from diffusion tensors. For this par-
ticular method, it is unclear how generalisable the approach is without high-
resolution training data from each scanner in use. Our validation only used 12
diffusion volumes, and no training data, which renders the method suitable to
past datasets.

We show that it is feasible and possible to estimate diffusion parameters for
regions that are small on the scale of diffusion MRI. In large, contiguous regions
we achieved the same results as for the classical approach, of thresholding and
averaging. We used the fornix as a region of interest to show that our approach
was able to recover diffusion parameter estimates consistently, when the classical
approach failed. Although results were good in the fornix, the model would have
to be extended significantly to cope with geometry such as crossing fibres.

The presented approach achieves close-to gold-standard results with minimal
processing time and requirements for the diffusion acquisition. This is because
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we aggregate data from all voxels in which a particular tissue is present, even
in part. This type of approach fits conceptually with more sophisticated, multi-
compartment models, in its representation of a voxel’s signal as coming from
multiple sources.

In this work, we proposed a method to extract diffusion tensor parameters
from tissue that has partial volume. We have validated the method using high-
quality data from the HCP, and applied it in a new cohort of clinical interest.
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