
Spatially Adaptive Spectral Denoising
for MR Spectroscopic Imaging using
Frequency-Phase Non-local Means

Dhritiman Das1,3(B), Eduardo Coello2,3, Rolf F. Schulte3,
and Bjoern H. Menze1

1 Department of Computer Science, Technical University of Munich,
Munich, Germany

dhritiman.das@tum.de
2 Department of Physics, Technical University of Munich, Munich, Germany

3 GE Global Research, Munich, Germany

Abstract. Magnetic resonance spectroscopic imaging (MRSI) is an
imaging modality used for generating metabolic maps of the tissue in-
vivo. These maps show the concentration of metabolites in the sam-
ple being investigated and their accurate quantification is important to
diagnose diseases. However, the major roadblocks in accurate metabo-
lite quantification are: low spatial resolution, long scanning times, poor
signal-to-noise ratio (SNR) and the subsequent noise-sensitive non-linear
model fitting. In this work, we propose a frequency-phase spectral
denoising method based on the concept of non-local means (NLM) that
improves the robustness of data analysis and scanning times while poten-
tially increasing spatial resolution. We evaluate our method on simulated
data sets as well as on human in-vivo MRSI data. Our denoising method
improves the SNR while maintaining the spatial resolution of the spectra.

1 Introduction

Magnetic Resonance Spectroscopic imaging (MRSI), also known as chemical shift
imaging, is a clinical imaging modality for studying tissues in-vivo to investigate
and diagnose neurological diseases. More specifically, this modality can be used
in non-invasive diagnosis and characterization of patho-physiological changes by
measuring specific tissue metabolites in the brain. Accurate metabolite quan-
tification is a crucial requirement for effectively using MRSI for diagnostic pur-
poses. However, a major challenge with MRSI is the long scanning time required
to obtain spatially resolved spectra due to abundance of metabolites that have a
concentration which is approximately 10,000 times smaller than water. Current
acquisition techniques such as Parallel Imaging [13] and Echo-Planar Spectro-
scopic Imaging [9] focus on accelerated scanning times combined with recon-
struction techniques to improve the SNR of the spectral signal. Despite this,
further accelerated acquistions are desirable. Furthermore, an improved SNR is
needed as the non-linear voxel-wise fitting to noisy data leads to a high amount
of local minima and noise amplification resulting in poor spatial resolution [7].
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The SNR of the signal can be improved by post-processing methods such
as denoising algorithms [8], apodization (Gaussian/Lorentzian), filter-based
smoothing and transform-based methods [3]. However, these methods reduce
resolution and remove important quantifiable information by averaging out the
lower-concentration metabolites. Recently, data-dependent approaches such as
the Non-local Means (NLM), which use the redundancy inherent in periodic
images, are being used extensively for denoising [3]. In the case of MRS, this
periodicity implies that the spectra in any voxel may have similar spectra in
other voxels in the frequency-phase space. Therefore, it carries out a weighted
average of the voxels in this space, depending on the similarity of the spec-
tral information of their neighborhoods to the neighborhood of the voxel to be
denoised.

Our Contribution. In this work, we propose a method for spectrally adaptive
denoising of MRSI spectra in the frequency-phase space based on the concept of
Non-local Means. Our method compensates for the lack of phase-information in
the acquired spectra by implementing a dephasing approach on the spectral data.
In the next section, we introduce the experimental methods beginning with the
concept of NLM in the frequency-phase space followed by the spectral dephasing
and rephasing approach. Our proposed method is then validated quantitatively
and qualitatively using simulated brain data and human in-vivo MRSI data sets
to show the improvements in SNR and spatial-spectral resolution of MRSI data.

2 Methods

MR Spectroscopy. Magnetic resonance spectroscopy is based on the concept
of nuclear magnetic resonance (NMR). It exploits the resonance frequency of a
molecule, which depends on its chemical structure, to obtain information about
the concentration of a particular metabolite [12]. The time-domain complex sig-
nal of a nuclei is given by: S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗

2 )dw. The frequency-
domain signal is given by S(ω), T ∗

2 is the magnetization decay in the transverse
plane due to magnetic field inhomogeneity and p(ω) comprises of Lorentzian
absorption and dispersion line-shapes function having the spectroscopic infor-
mation about the sample. Φ represents the phase, (ωt + ω0), of the acquired
signal where ωt is the time-varying phase change and ω0 is the initial phase.
For the acquired MRSI data, I, Φ is unknown. This process allows generation of
metabolic maps through non-linear fitting to estimate concentration of metabo-
lites such as N-acetyl-aspartate (NAA), Creatine (Cr) and Choline (Cho).

2.1 Non-local Means (NLM) in Frequency-Phase Space

As proposed by Buades et al. [3], the Non-local Means (NLM) method restores
the intensity of voxel xij by computing a similarity-based weighted average of all
the voxels in a given image. In the following, we adapt NLM to the MRSI data:
let us suppose that we have complex data, I : Ω3 �−→ C of size M ×N and noisy
spectra Sij(ω), where (xij |i ∈ [1,M ], j ∈ [1, N ]) and Ω3 is the frequency-phase
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grid. Using NLM for denoising, the restored spectra Ŝij(ω) is computed as the
weighted average of all other spectra in the frequency-phase space defined as:

Ŝij(ω) =
∑

xkl∈Ω3

w(xij , xkl)Skl(ω) (1)

As a probabilistic interpretation, spectral data S11(ω), ..., SMN (ω) of voxels
x11, ....., xMN respectively are considered as MN random variables Xij and the
weighted average estimate Ŝij(ω) is the maximum likelihood estimate of Sij(ω).

Nij = (2p + 1)3, p ∈ N is the cubic neighborhood of voxel xij within the
search volume Vij = (2R+1)3 around xij along the frequency, phase and spatial
directions. R ∈ N, where R is the radius of search centered at the voxel xij .
The weight w(xij , xkl) serves as a quantifiable similarity metric between the
neighborhoods Nij and Nkl of the voxels xij and xkl provided w(xij , xkl) ∈ [0, 1]
and

∑
w(xij , xkl) = 1. The Gaussian-weighted Euclidean distance is computed

between S(Nij) and S(Nkl) as shown below:

w(xij , xkl) =
1

Zij
e− ||S(Nij)−S(Nkl)||22

h2 (2)

where Zij serves as the normalization constant such that
∑

j w(xij , xkl) = 1,
S(Nij) and S(Nkl) are vectors containing the spectra of neighborhoods Nij and
Nkl of voxels xij and xkl respectively and h serves as a smoothing parameter [5].

To increase the robustness of our method for MRSI data, in the next section
we propose a dephasing approach tailored for use in the frequency-phase NLM.

2.2 Spectral Dephasing

For the acquired data I, as the spectral phase Φ(I) is unknown, the probability
of finding a similar neighborhood spectra are very low. To counter this effect, a
dephasing step is performed to consider a wide range of possible phase variations
in the pattern analysis. For each voxel xij , the complex time-domain signal Sij(t)
is shifted by a set of phase angles Θ. This is given by SΘ

ij (t) = Sij(t).e−(iΘ),
where Θ ∈ [−n1π, (n2 + 2)π], {n1, n2 ∈ R |n1, n2 ≥ 0}. Θ here is defined to be
the range of angles through which the spectrum can be shifted. The dephased
signal is transformed into the frequency-domain, SΘ

ij (t)
F−→ SΘ

ij (ω), following
which its real component, R(SΘ

ij (ω)), is taken to generate a 2D spectral-phase
matrix. Note that in this 2D matrix generated, for each voxel xij , the imaginary
part at a given Θ is I(Θ) = R(Θ + π/2). This approach is illustrated in Fig. 1.

Repeating this step for all MN voxels gives us a 3-D dataset on which the
NLM is implemented to give the denoised spectra ŜΘ

ij (ω) ∈ R. Our approach has
2 key innovations: the denoising method is (i) robust to phase shifts as the range
of angles considered varies from 0 to 2π periodically for all spectral signals, and
is (ii) adaptive to the imaging sequence as the spectrum is denoised by relying
on similar signals in the given data and not on predefined prior assumptions.
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Fig. 1. MRSI data dephasing shown here for a sample voxel: (A) Changes in spectral
pattern as it is shifted by different phase angles. (B) Corresponding 2D frequency-phase
image space generated for the voxel. A sample patch (black box) is selected and then
denoised by the NLM-based matching in the frequency-phase space.

Algorithm 1. Frequency-Phase NLM denoising for MRSI
MRSI Input I : Ω3 = (S(ω) × M × N) �−→ C

Define Phase Angle range Θ : [−n1π : (n2 + 1)π] {n1, n2 ∈ R | n1, n2 ≥ 0}
Spectral Dephasing:
Sij(t) = F−1(Sij(ω)) : for each voxel ij ∈ (M × N)
SΘ

ij(ω) = F(Sij(t).e
(−iΘ)) : Phase shift by Θ

NLM: Ŝij/
Θ(ω) = NLM [R(SΘ

ij(ω)) × MN ] : ∀ voxels
Spectral Rephasing:
C(ŜΘ

ij(t)) = F−1[R(ŜΘ
ij(ω)) + I(ŜΘ

ij(ω))]: Re-generate complex data for all Θ

C(Ŝ−Θ
ij (ω)) = F(C(ŜΘ

ij(t)).e
(iΘ)): Rephase by −Θ

Frequency-Phase NLM Output: C(Ŝij(ω)) = mean(C(Ŝ−Θ
ij (ω))) ∀ Θ

2.3 Spectral Rephasing and Recombination

Post-NLM, ŜΘ
ij (ω) is rephased in order to generate the denoised complex sig-

nal C(Ŝij(ω)). The complex spectral signal C(ŜΘ
ij (ω)) is re-generated ∀Θ by

combining R(ŜΘ
ij (ω)) and I(ŜΘ

ij (ω)) (= R(ŜΘ+π/2
ij (ω))). The equivalent time

signal is obtained by C(ŜΘ
ij (ω)) F−1

−−−→ C(ŜΘ
ij (t)). After this, C(ŜΘ

ij (t)) under-
goes an inverse phase shift by −Θ to remove the dephasing effect as given by
C(Ŝ−Θ

ij (t)) = C(ŜΘ
ij (t)).e

(iΘ). This re-phased signal is transformed back to the
spectral domain to obtain C(Ŝ−Θ

ij (ω)). Thereafter, the C(Ŝ−Θ
ij (ω)) are averaged

over all Θ to generate a single complex spectra C(Ŝij(ω)). The entire pipeline
for dephasing and rephasing the spectra is shown in Algorithm 1.

3 Experiments and Results

We performed two different experiments to test the improvement in SNR and
metabolite quantification using our proposed denoising method. In the first exper-
iment, we evaluate our method on the publicly available BrainWeb database [4],
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while in the second experiment we use human in-vivo MRSI data. The SNR of a
metabolite was calculated by dividing the maximum value of the metabolite peak
by the standard deviation of the spectral region having pure noise. For both exper-
iments, we tested with different noise levels against a ground-truth data to assess
the improvement in SNR and spatial-spectral resolution.

3.1 Data Acquisition

We used BrainWeb to simulate a brain MRSI image (size: 64× 64 voxels, slice
thickness = 1 mm, noise level = 3 %) with segmented tissue types, namely White
Matter (WM), Grey Matter (GM) and Cerebro Spinal Fluid (CSF) as shown in
Fig. 2. In order to have a comparable spectrum with the in-vivo data, water was
added to the signal and the main metabolites- NAA, Cho and Cr- were simulated
using Priorset (Vespa) [1]. Metabolite concentrations for WM, GM and CSF were
based on commonly reported literature values [10,14]. Next, Gaussian noise of
levels 2 and 3 times the standard deviation, σ, of the original image data were
added to the ground-truth signal.

Fig. 2. Simulated brain MRSI dataset. (A) The simulated brain with the region of
interest (red box). (B) Highlighted regions corresponding to GM, WM and CSF (c)
Corresponding spectrum of GM, WM and CSF. Note that CSF has only water. (Color
figure online)

In the case of in-vivo data, we acquired a 2D-MRSI data of the brain of
a healthy human volunteer using a 3T-HDxt system (GE-Healthcare). PRESS
localization [2], CHESS water suppression [6] and EPSI readout [9] were used
as part of the sequence. The acquisition parameters were: Field of view (FOV)
= 160 × 160 × 10mm3, voxel size = 10 × 10 × 10mm3, TE/TR=35/2000 ms
and spectral bandwidth = 1 kHz. The dataset was zero-filled and reconstructed
to generate a grid of 32 × 32 voxels and 256 spectral points. 6 (ground truth),
3 and 1 averages were acquired with a total scan duration of 33 min (5.5 min
per average). Figure 4(A) shows the in-vivo data acquired along with the entire
field-of-view (white grid) and the corresponding spectra of a voxel (red box).
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Fig. 3. NLM Denoising results in the simulated data. (From Top) Row 1 (L-R): Full
SNR of NAA in – original data, with additive noise 2σ, and noise 3σ (σ is the standard
deviation of the original data). Row 2 & 3: 32×32 Region of Interest (ROI) for applying
the frequency-phase NLM: SNR of NAA in the original data, noise level 2σ, 3σ and the
corresponding spectra of reference WM voxel (red box). Row 4 & 5 (L-R): Denoised
SNR for noise level 2σ (SNR improvement = 2.9), for noise level 3σ (SNR improvement
= 2.2), and the corresponding denoised spectrum. The SNR improves significantly while
retaining the spatial-spectral resolution (seen by no voxel bleeding in the CSF). (Color
figure online)

3.2 Results

Simulated data: In Fig. 3, we show the SNR improvement for NAA for data
with noise levels 2σ and 3σ in a 32 × 32 region of interest. It is evident that while
the spectral SNR improves significantly, the spatial resolution is preserved as the
lower concentration metabolite peaks have only a small amount of smoothing
and there is no voxel bleeding in the CSF (containing only water).

In-vivo data: Figure 4 reports the SNR improvement in NAA for the 3-averages
and the 1-average data as compared to the ground-truth 6-averages data. The
figure also presents the results from the LCModel [11] which is the gold stan-
dard quantitation tool in MRS analysis. LCModel fits the spectral signal S(ω)
using a basis set of spectra of metabolites acquired under identical acquisition
conditions as the in-vivo data. As explained earlier for noisy data, the non-linear
fitting leads to poor spatial resolution. Therefore, the LCModel can be used to
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Fig. 4. Denoising results for in-vivo data. (A) Original human in-vivo brain MRSI data
with the excitation region shown (white grid). (From Top) Row 1 & 2: SNR of NAA
and the corresponding WM voxel spectra in: (B) 6-averages data (ground-truth),
(C) 3-averages data (original) and (D) denoised, (E) single-scan data (original) and
(F) denoised with corresponding spectra. Row 3: LCModel based absolute concentra-
tion estimate of NAA in: 6-averages data, 3-averages data (original) and denoised,
1-average data (original) and denoised. The NAA concentration estimate and spectral
SNR improve considerably as seen in columns D (SNR = 23.29) and F (SNR = 11.38)
against the ground-truth (SNR = 11.44).

Table 1. SNR and LCM Quantification results for NAA, Cho and Cr before and after
using frequency-phase NLM on in-vivo MRSI data. Mean SNR for the denoised data is
comparable or better than the ground-truth data while the FWHM of the water peak
is lower than the ground-truth data thereby preserving spatial-spectral resolution.

Data Mean SNR SNR Mean SNR SNR Mean SNR SNR FWHM

(NAA) improvement (Cho) (Cho) (Cr) improvement

(NAA) (Cr)

1-average 5.70 – 3.74 – 4.04 – 0.125

3-averages 8.82 – 5.59 – 5.97 – 0.135

6-averages 11.44 – 6.96 – 7.61 – 0.135

(ground-truth)

Single scan (NLM) 11.38 1.98 6.89 1.82 7.78 1.90 0.130

3-averages (NLM) 23.29 2.63 14.08 2.48 15.59 2.57 0.134

assess the improvement in spatial resolution through a better fit. Due to space
constraints, we present the results for NAA only and mention the SNR values
for Cho and Cr. LCModel quantification (Fig. 4) shows that the absolute con-
centration estimation of NAA in the denoised data improves significantly. The
Full-Width Half Maximum (FWHM) shows information about the water peak –
a narrow peak gives a better spatial resolution. As shown in Table 1, the FWHM
of the denoised 1- and 3-averages data is lower than the 6-averages data while
the corresponding mean SNR improves considerably. Therefore, we observe here
that our method can accelerate MRSI data acquisition by almost 2 times by
reducing the number of scans acquired.
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4 Conclusion

In this work, we proposed a novel frequency-phase NLM-based denoising method
for MRS Imaging to improve the SNR and spatial resolution of the metabolites. A
spectral dephasing approach is promoted to compensate for the unknown phase
information of the acquired data. To the best of our knowledge, this is a novel
application of the concept of NLM and has been validated on both simulated
and in-vivo MRSI data.

In particular, we assessed the effect of our method on metabolites such as
NAA, Cho and Cr and obtained a visible improvement in SNR while the spatial
resolution was preserved which, subsequently, led to a better estimation of the
absolute concentration distribution of NAA. This has direct benefits as it would
accelerate data acquisition by taking fewer scan averages. Future work would
involve using a more robust metabolite-specific search in the given dataset with
less smoothing. This can be coupled with optimal computational efficiency and
better estimation of the in-vivo metabolites.

Acknowledgments. The research leading to these results has received funding from
the European Union’s H2020 Framework Programme (H2020-MSCA-ITN-2014) under
grant agreement no 642685 MacSeNet.

References

1. Vespa project (Versatile simulation, pulses and analysis). https://scion.duhs.duke.
edu/vespa/project

2. Bottomley, P.A.: Spatial localization in NMR spectroscopy in vivo. Ann. N. Y.
Acad. Sci. 508, 333–348 (1987). doi:10.1111/j.1749-6632.1987.tb32915.x

3. Buades, A., Coll, B.: A non-local algorithm for image denoising. Comput. Vis.
Pattern 2(0), 60–65 (2005)

4. Collins, D.L., Zijdenbos, P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J.,
Evans, C.: Design and construction of a realistic digital brain phantom. IEEE
Trans. Med. Imaging 17(3), 463–468 (1998)
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