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Abstract. Accurate motion estimation in thoracic computed tomogra-
phy (CT) plays a crucial role in the diagnosis and treatment planning of
lung cancer. This paper provides two key contributions to this motion
estimation. First, we show we can effectively transform a CT image of
effective linear attenuation coefficients to act as a density, i.e. exhibiting
conservation of mass while undergoing a deformation. Second, we propose
a method for diffeomorphic density registration for thoracic CT images.
This algorithm uses the appropriate density action of the diffeomorphism
group while offering a weighted penalty on local tissue compressibility.
This algorithm appropriately models highly compressible areas of the
body (such as the lungs) and incompressible areas (such as surrounding
soft tissue and bones).
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1 Introduction

According to the Centers for Disease Control and Prevention, lung cancer is
the leading cause of cancer death, accounting for 27 % of all cancer deaths in
the United States [1]. Accurate modeling of the motion and biomechanics of
the lungs under respiration is essential for the diagnosis and treatment of this
disease. In particular, accurate estimation of organ movement and deformations
plays a crucial role in dose calculations and treatment decisions in radiation
therapy of lung cancer [8,11].

Essential to our method of motion estimation is that CT images act similar
to densities: i.e. they exhibit some conservation of mass properties while under-
going deformations. The relationship between CT images and densities can be
clearly seen by viewing a single patient thoracic CT throughout the breathing
cycle. During inhalation, lung volume increases and lung CT intensities decrease,
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and during exhalation, lung volume decreases and lung CT intensities increase.
Because of these changing image intensities, the L2 image action of a diffeomor-
phism does not accurately reflect motion in CT imaging. Most state-of-the-art
methods deal with these changing intensities by not using the L2 metric between
images but to instead use either mutual information or normalized cross correla-
tion [2]. We incorporate these intensity changes into our deformation model by
treating these images as densities. Some mass-preserving registration methods
using cubic B-splines have also been introduced [9,12]. In contrast, we use the
full space of diffeomorphisms equipped with an H1 metric, and use the recently
discovered link between densities and diffeomorphisms [4]. Furthermore, we show
experimentally that CT images are not inherently mass preserving and must be
transformed to become mass preserving.

We will first introduce the mathematical definition of a density and then
describe how it relates to material density and CT images. Mathematically, a
3D density I(x) dx is a volume form on a domain Ω ⊆ R

3 where I(x) is a
non-negative function on Ω and dx = dx1 ∧ dx2 ∧ dx3 is the standard volume
element on R

3. The key difference between a density and a function is how a
diffeomorphism ϕ ∈ Diff(Ω) acts on them. The left action of ϕ on a function
g(x) (called the L2 action) is simply function composition:

ϕ∗g(x) = g ◦ ϕ−1(x). (1)

The left action of ϕ on a density I(x) dx is:

ϕ∗(I(x) dx) = I ◦ ϕ−1(x)|Dϕ−1(x)| dx, (2)

where |Dϕ−1| is the Jacobian determinant of the diffeomorphism.
A unique property of a density is that the total mass is conserved under the

action of a diffeomorphism, where here the total mass is defined as the integral
of the density over Ω:∫

Ω

I ◦ ϕ−1(x)|Dϕ−1(x)| dx =
∫

Ω

I(y) dy. (3)

This equality holds by performing a change of variables: x = ϕ(y), dx =
|Dϕ(y)|dy, and using the identity |Dϕ−1(x)| = 1

|Dϕ(y)| .
This conservation of mass property extends to its traditional meaning in

a physical mass density ρ(x) (units g/cm3). Physical mass density integrated
over a domain becomes physical mass (units g). Similarly, the narrow beam
X-ray linear attenuation coefficient (LAC) for a single material (units cm−1)
is defined as μ(x) = mρ(x), where m is a material-specific property called the
mass attenuation coefficient (units cm2/g) that depends on the energy of the
X-ray beam. In a mixture of materials, the total linear attenuation coefficient
is μ(x) =

∑
i miρi(x). Integrating μ(x) over a domain gives us the total LAC,

which we will call the LAC mass (units cm2). Therefore, conservation of physical
mass implies conservation of LAC mass in a closed system.

During respiration, we assume that the change in physical lung mass due to
air in the lungs is negligible. We then expect conservation of LAC mass in the
lungs.
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2 CT Images as Densities

We have shown that LAC mass is theoretically conserved. Unfortunately, CT
image intensities do not represent true narrow beam linear attenuation coeffi-
cients. Instead, modern CT scanners use wide beams that yield secondary photon
effects at the detector. CT image intensities reflect effective linear attenuation
coefficients as opposed to the true narrow beam linear attenuation coefficient.

To see the relationship between effective LAC and true narrow beam LAC,
we ran a Monte Carlo simulation using an X-ray spectrum and geometry from a
Philips CT scanner at various densities of water (since lung tissue is very similar
to a mixture between water and air) [6]. The nonlinear relationship between
effective LAC and narrow beam LAC relationship is clear (see Fig. 1).

Fig. 1. Effective LAC from Monte Carlo simulation
(solid line) and NIST reference narrow beam LAC
(dashed line). The true relationship between effec-
tive LAC and narrow beam LAC is nonlinear.

If we have conservation of
mass within a single subject in
a closed system, we expect an
inverse relationship between
average density in a region
Ω and volume of that region:
Dt = M

Vt
. Here Vt =

∫
Ωt

1dx,
Dt =

∫
Ωt

It(x)dx/Vt, Ωt is
the domain of the closed sys-
tem (that moves over time),
and t is a phase of the breath-
ing cycle. This relationship
becomes linear in log space
with a slope of −1:

ln(Dt) = ln(M) − ln(Vt) (4)

Our experimental results
confirm the Monte Carlo sim-
ulation in that lungs imaged
under CT do not follow this inverse relationship. Rather, the slope found in
these datasets in log space is consistently greater than −1 (see Fig. 3). Because
of this, we seek a nonlinear intensity transformation for CT images such that
CT mass is preserved under deformation.

In this paper, we model this intensity transformation as an exponential func-
tion, i.e. I(x) �→ I(x)α, and we solve for the α that yields the best mass preserva-
tion. We chose an exponential model because it is a single parameter monotonic
function that preserves the density of air at zero. Furthermore, using an expo-
nential function makes our analysis invariant to image scaling. That is, if It(x)α

exhibits conservation of mass, so does (cIt(x))α, for c ∈ R
+.

Note that the field of view of the CT scanner is not a closed system, as por-
tions of the body leave and enter the field of view during respiration. We there-
fore evaluate the accuracy of this intensity transformation inside the lungs, which
is essentially a closed system. We evaluate our methods using the Deformable
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Image Registration (DIR) Laboratory dataset (http://www.dir-lab.com/) [7],
which consists of ten subjects with ten 4DCT timepoints each. Second, we eval-
uate on a set of 30 subjects with ten 4DCT timepoints each procured at UT
Southwestern Medical Center. The lungs for each patient at each timepoint
are segmented with active contours using ITK-SNAP [13] (http://www.itksnap.
org/) combined with an intensity based segmentation to remove high-density
regions in the lungs and around the lung border due to imperfect initial segmen-
tations.

For each subject, we perform a linear regression of the measured LAC density
and calculated volume in log space. Let d(α) = log

(∫
Ωt

It(x)αdx/
∫

Ωt
1dx

)
(the

log density) and v = log(
∫

Ωt
1dx) (the log volume), where again t is a breathing

cycle timepoint. The linear regression then models the relationship in log space
as d(α) ≈ av + b. Let aj(α) be the slope solved for in this linear regression for
the jth subject. To find the optimal α for the entire dataset, we solve

α = arg min
α′

∑
j

(aj(α′) + 1)2, (5)

which finds the value of α that gives us an average slope closest to -1. We solve
for α using a brute force search.

Applying this exponential function to the CT data allows us to perform our
density matching algorithm described in the next section.

3 Weighted Diffeomorphic Density Matching

Mathematically, our problem is to find a diffeomorphic (bijective and smooth)
transformation between two densities I0 and I1, using our exponentially trans-
formed CT images defined in the previous section as our densities. We use the
Fisher-Rao metric on densities which has the unique property that it is the only
metric between densities that is invariant to the action of a diffeomorphism [3].
When vol(Ω) is infinite, the Fisher-Rao metric between two densities becomes
the Hellinger distance:

d2F (I0dx, I1dx) =
∫

Ω

(
√

I0 −
√

I1)2dx. (6)

The Riemannian geometry of the diffeomorphism group with a Sobolev H1

metric is intimately linked to the geometry of the space of densities with the
Fisher-Rao metric. In particular, there are Sobolev H1 metrics on the diffeo-
morphism group that descend to the Fisher-Rao metric on the space of densities
[4]. This descending property from Diff(Ω) to Dens(Ω) allows us to compute the
distance on Diff(Ω) by using the Fisher-Rao metric. Since the space of densities
is flat, we can solve for the distance in Diff(Ω) in closed form: we do not need
to time-integrate velocity fields or solve for adjoint equations as is necessary in
LDDMM [5].

http://www.dir-lab.com/
http://www.itksnap.org/
http://www.itksnap.org/
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We therefore seek to minimize the following energy functional:

E(ϕ) = d2F (ϕ∗(f dx), (f ◦ ϕ−1)dx) + d2F (ϕ∗(I0 dx), I1 dx)) (7)

=
∫

Ω

(
√

|Dϕ−1| − 1)2 f ◦ ϕ−1 dx

︸ ︷︷ ︸
E1(ϕ)

+
∫

Ω

(√
|Dϕ−1|I0 ◦ ϕ−1 −

√
I1

)2

dx

︸ ︷︷ ︸
E2(ϕ)

.

(8)

To better understand this energy functional, we describe its two terms. The
first term E1(ϕ) is the metric on the regularity of the deformation, descended
from the Sobolev H1 metric. This penalizes ϕ as it becomes non volume pre-
serving: a unitary Jacobian determinant at a location indicates that the trans-
formation is volume preserving. Furthermore, the density f(x) dx is a positive
weighting on the domain Ω: regions where f(x) is high have a higher penalty on
non-volume preserving deformations and regions where f(x) is low have a lower
penalty on non-volume preserving deformations.

Physiologically, we know the lungs are quite compressible as air enters and
leaves. Surrounding tissue including bones and soft tissue, on the other hand,
is essentially incompressible. Therefore, our penalty function f(x) is low inside
the lungs and outside the body and high elsewhere. For our penalty function, we
simply implement a sigmoid function of the original CT image: f(x) = sig(I0(x)).

The second term E2(ϕ) is the Fisher-Rao distance between the deformed
density and the target density.

We take the Sobolev gradient with respect to the energy functional which is
given by

δE = −Δ−1
(

− ∇(
f ◦ ϕ−1(1 −

√
|Dϕ−1|))

−
√

|Dϕ−1| I0 ◦ ϕ−1∇(√
I1

)
+ ∇(√|Dϕ−1| I0 ◦ ϕ−1

)√
I1

)
. (9)

Then, the current estimate of ϕ−1 is updated directly via a Euler integration of
the gradient flow [10]:

ϕ−1
j+1(x) = ϕ−1

j (x + εδE) (10)

for some step size ε. Since we take the Sobolev gradient the resulting deformation
is guaranteed to be invertable with a sufficiently small ε.

4 Results

For the DIR dataset, we used the method from Sect. 2 to solve for the exponent
that yields conservation of mass. We solved for α = 1.64 that gives us the best
fit. Without using the exponential fit, the average slope of log density log volume
plot was −0.66 (SD 0.048). After applying the exponential to the CT intensities,
the average slope is −1.0 (SD 0.054). The log-log plots of all ten patients in the
DIR dataset as well as box plots of the slope is shown in Fig. 2.
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Fig. 2. Density and volume log-log plots. Upper left: log-log plots without applying
the exponential correction for all ten DIR subjects. The best fit line to each dataset is
in red and the mass-preserving line (slope = −1) is in black. Upper right: log-log plots
after applying the exponential correction I(x)α to the CT images. In this plot, the best
fit line matches very closely to the mass-preserving line. Bottom row: corresponding
box plots of the slopes found in the regression. (Color figure online)

For the 30 subject dataset, we solved for α = 1.90 that gives us conservation
of mass. Without using the exponential fit, the average slope of the log-log plot
was −0.59 (SD 0.11).

We applied our proposed weighted density matching algorithm to the first
subject from the DIR dataset. This subject has images at 10 timepoints and
has a set of 300 corresponding landmarks between the full inhale image and
the full exhale image. These landmarks were manually chosen by three indepen-
dent observers. Without any deformation, the landmark error is 4.01 mm (SD
2.91 mm). Using our method, the landmark error is reduced to 0.88 mm (SD
0.94 mm), which is only slightly higher than the observer repeat registration
error of 0.85 mm (SD 1.24 mm).

We implement our algorithm on the GPU and plot the energy as well as the
Fisher-Rao metric with and without applying the deformation. These results
are shown in Fig. 3. In this figure, we show that we have excellent data match,
while the deformation remains physiologically realistic: inside the lungs there is
substantial volume change due to respiration, but the deformation outside the
lungs is volume preserving. With a 256 × 256 × 94 voxel dataset, our algorithm
takes approximately nine minutes running for four thousand iterations on a single
nVidia Titan Z GPU.
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Fig. 3. Registration results. Top row: full inhale, full exhale, and the deformed exhale
density estimated using our method. Middle row: Jacobian determinant of the trans-
formation, initial Fisher-Rao metric, and Fisher-Rao metric after applying the density
action. Notice that outside the lungs the estimated deformation is volume preserving.
Bottom row: Energy as a function of iterations, and penalty function.

5 Discussion

In this paper, we have shown that although the narrow beam linear attenuation
acts as a density, the effective linear attenuation coefficient found in CT does
not act as a density. However, applying a simple exponential function transforms
the CT dataset into a set of images that exhibit conservation of mass. This
simple non-linear approximation yields excellent results even when using the
same exponential function for multiple subjects in a single dataset.

We suspect that the biggest cause of the nonlinearity between true linear
attenuation and effective attenuation is the presence of X-ray scatter and sec-
ondary photons, which are dependent on the scanner geometry and the energy
spectrum. Therefore, we do not necessarily expect that the same α parameter of
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the exponential functions works across different CT scanners; however we found
that the same α parameter accurately corrects the nonlinearity across multiple
subjects on the same scanner.

We have also shown that we can use these corrected images as densities with
a great deal of accurately. Our method uses the appropriate density action when
dealing with CT images, and our weighting function on the domain constrains
the deformation to be physiologically realistic.
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