
Efficient Low-Dose CT Denoising by Locally-Consistent
Non-Local Means (LC-NLM)

Michael Green1, Edith M. Marom2, Nahum Kiryati1,
Eli Konen2, and Arnaldo Mayer2(✉)

1 Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel
green1@mail.tau.ac.il, nk@eng.tau.ac.il

2 Diagnostic Imaging, Sheba Medical Center, Affiliated to the Sackler School of Medicine,
Tel-Aviv University, Tel-Aviv, Israel

{edith.marom,eli.konen,arnaldo.mayer}@sheba.health.gov.il

Abstract. The never-ending quest for lower radiation exposure is a major chal‐
lenge to the image quality of advanced CT scans. Post-processing algorithms have
been recently proposed to improve low-dose CT denoising after image recon‐
struction. In this work, a novel algorithm, termed the locally-consistent non-local
means (LC-NLM), is proposed for this challenging task. By using a database of
high-SNR CT patches to filter noisy pixels while locally enforcing spatial consis‐
tency, the proposed algorithm achieves both powerful denoising and preservation
of fine image details. The LC-NLM is compared both quantitatively and qualita‐
tively, for synthetic and real noise, to state-of-the-art published algorithms. The
highest structural similarity index (SSIM) were achieved by LC-NLM in 8 out of
10 denoised chest CT volumes. Also, the visual appearance of the denoised
images was clearly better for the proposed algorithm. The favorable comparison
results, together with the computational efficiency of LC-NLM makes it a prom‐
ising tool for low-dose CT denoising.

1 Introduction

In the last decade, low dose CT scan techniques have been successful at reducing
radiation exposure of the patient by tens of percent, narrowing the gap with X-ray radio‐
graphs [1]. However, generating diagnostic grade images from very low SNR projec‐
tions is too demanding for the classical filtered back-projection algorithm [2]. Iterative-
reconstruction algorithms [3] have been successful at the task and were implemented
by most commercial CT scan developers. These methods, however, are computationally
very demanding, generally requiring significantly longer reconstruction times [1] and
expensive computing power.

In recent years, post-processing algorithms have been proposed to denoise low-dose
CT after the back-projection step [1, 4–8]. In [6], a previous high quality CT scan is
registered to the low dose scan and a (non-linearly) filtered difference is computed.
Eventually, a denoised scan is obtained by adding the filtered difference to the co-regis‐
tered high quality scan. The method assumes the availability of an earlier scan and
depends on registration accuracy.
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In [1], a modified formulation of the block matching and 3-D filtering (BM3D)
algorithm [9] is combined with a noise confidence region evaluation (NCRE) method
that controls the update of the regularization parameters. Results are shown for a few
phantom and human CT slices.

Non-local mean (NLM) filters [10] have also been proposed for low-dose CT
denoising [4, 5, 7]. In [5], the weights of the NLM filters are computed between pixels
in the noisy scan and an earlier, co-registered, high quality scan. Artificial streak noise
is added to the high quality scan to improve weights accuracy. In [4], a dataset of 2-D
patches (7 × 7) is extracted from high quality CT slices belonging to several patients.
At each position in the noisy scan, the 40 Euclidean nearest-neighbors patches (hereafter
denoted filtering patches) of the local 7 × 7 patch (hereafter denoted query patch) are
found by exhaustive search in the patch dataset. The denoised value at each position is
computed by NLM filtering of these 40 nearest-neighbor patches. While the method
does not need previous co-registered scans, it requires the extraction of 40 nearest-
neighbor patches for every pixel, at high computational cost. The method shows initial
promising results, although it was validated on a very small set of 2-D images. It suggests
that small CT patches originating from different scans for the same body area (chest in
that case) contain similar patterns.

We further observe that in [4], local consistency in the filtered image is not explicitly
enforced: the filtering patches are just required to be similar to the query patch, but not
to neighboring patches which still have a significant overlap with the query patch. As a
result, fine details may be filtered out in the denoised image.

In this work, we propose a computationally efficient algorithm for the denoising of
low-dose CT scans after image reconstruction. By using a database of high-SNR patches
to filter the pixels while locally enforcing spatial consistency, the proposed algorithm
achieves both powerful denoising and preservation of fine image details and structures.
The remainder of this paper is organized as follows: The LC-NLM algorithm is detailed
in Sect. 2 and validated on synthetic and real noisy data in Sect. 3. A discussion concludes
the paper in Sect. 4.

2 Methods

The main steps of the proposed method, shown in Fig. 1 (left), are divided in two major
parts: The creation of the patch dataset, which is performed only once, and the denoising
of input low-dose (LD) scans. Both steps will be described in detail in the following
subsections.

2.1 Patch Dataset Creation

The idea is to create a dataset of high SNR patches to approximate visually similar noisy
patches in the LD scans. It is therefore necessary for the dataset to represent as much as
possible the variability of the patches in order to increase the chance to find a good
match. However, due to memory and performance limitations, the size of the patch
dataset must be limited. Randomly sampling the full dataset is not a good option as most
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of the patches have fairly constant values as can be seen from the patch standard devi‐
ation (SD) histogram (Fig. 1, top-right). We propose a patch selection step in which
patches containing more signal variation have a higher probability of being included in
the dataset. For this purpose, a roulette wheel (RW) selection scheme [11] is imple‐
mented. RW samples uniformly a virtual disk along which patch indices are represented
by variable length segments. The higher the patch SD, the longer the segment and
accordingly the probability to select it. The resulting SD histogram for the selected
patches (Fig. 1, bottom-right) is clearly more balanced than for the random selection
case.

2.2 Denoising of Low Dose (LD) Scans

Given an input LD CT scan, a Ps × Ps patch centered at each pixel position is extracted
in every slice. The approximate nearest neighbor (ANN) is then found for each patch
using the state-of-the-art randomized kd-trees algorithm [12] implemented in the Fast

Fig. 1. (left) The main steps of the proposed method; (right) Patch variance histogram for the
patch dataset: (top) for random sampling; (bottom) for roulettte wheel selection.

Fig. 2. (left) Pixel pj can be viewed as the intersection of P2
s
 partially overlapping Ps × Ps patches

(red). In the example Ps = 3; (right) patch P̂i contributes to the denoised value p̂j via its pixel P̂ij
,

which the way noisy pixel pj is perceived by high-SNR patch P̂i. (Color figure online)
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Library for ANN (FLANN) [13] for the Euclidean norm. These patches will be desig‐

nated as high-SNR patches. Any given pixel pj, distant by at least 
Ps

2
 pixels from the slice

borders, can be viewed as the intersection of P2
s
 overlapping Ps × Ps patches. An example

is shown in Fig. 2 (left) for Ps = 3.
Let NNpj

 be the set of P2
s
 high-SNR patches returned as nearest-neighbor of the P2

s

overlapping patches. We propose to compute the denoised value p̂
j
 at pixel pj as a func‐

tion of the patches belonging to Npj
 (Eq. 1):

p̂j = F
(

P̂1,… , P̂p2
S

)
for P̂i ∈

(
NNpj

)
(1)

where F
(

X
−

)
:P2

s →  and i = 1…P2
s
. A simple choice of F may be the average of all

the pixels from the same location as pj, leading to (Eq. 2):

p̂j =
1
P2

s

∑P2
s

i=1
P̂ij

for P̂i ∈

(
NNpj

)
(2)

where P̂ij
 stands for pixel value in patch P̂i at the location overlapping with pixel

pj.In this approach, each overlapping patch P̂i, (Fig. 2, right, in red) contributes to the
denoised value p̂j via its pixel P̂ij

, which is the way noisy pixel pj is perceived by high-
SNR patch P̂i.

A more powerful choice for F, inspired by the non-local means (NLM) filters [10],
is to weight the contributions P̂ij

, i = 1…P2
s
 by a similarity measure between P̂i and the

original noisy patch centered in pj, formalized by (Eq. 3):
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, P̂i ∈

(
NNpj

)
(3)

where h = Ps ⋅ 𝛾 > 0 is the filtering parameter [10] and 𝛾 a constant, Pj is the noisy patch
centered in pj and D(Pj, P̂i) is the average L1 distance between the overlapping pixels of
Pj and P̂i (Fig. 2, right, in green). Thus, surrounding high-SNR P̂i patches with high
similarity to Pj at their overlap will contribute more to the denoised value of pj. Conse‐
quently, the proposed method explicitly promotes local-consistency in the denoised
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image, resulting in a locally-consistent non-local means (LC-NLM) algorithm. Even‐
tually, to further boost the denoising effect, the LC-NLM can be applied iteratively
several times (Fig. 1, left, dashed line) as will be shown in the experiments.

3 Experiments

Quantitative validation on real data requires the availability of high-SNR and LD CT
scans pairs acquired with exactly the same body position and voxel size for each subject.
As these conditions are difficult to meet in practice, we have adopted the pragmatic
approach proposed in [4]: LD scans were generated by adding artificial noise to real
high-SNR CT scans. Zero-mean additive Gaussian noise (𝜎 = 2000) was added to the
sinogram re-computed from the high-SNR slices before returning to the image space.

A dataset was built from 10 high-SNR real full chest scans (voxel
size = 1 × 1 × 2.5 mm3) and the 10 corresponding synthetic LD scans. The patch size, Ps, and
the 𝛾 constant, were set to 5 and 18, respectively, for all the experiments. A leave-one-out
cross validation methodology was implemented: 10 training-test sets were generated, keeping
each time another single LD scan for testing and using the remaining 9 high-SNR scans to
build the high-SNR patch dataset (training set). The training set was generated using the
roulette wheel methodology (see Sect. 2) to sample 2 % of the total number of patches in the
9 training scans while preserving inter-patch variability. The structural similarity index (SSIM)
[14] was used to quantify the similarity between the denoised LD scan and the corresponding
high-SNR scan used as ground truth. For a pair of LD and high-SNR patches, denoted P1 and
P2, respectively, the SSIM is given by (Eq. 4):

SSIM
(
P1, P2

)
=

(2𝜇1𝜇2 + c1)(2𝜎12 + c2)

(𝜇2
1 + 𝜇

2
2 + c1)(𝜎

2
1 + 𝜎

2
2 + c2)

(4)

where, 𝜇1,𝜇2 and 𝜎1, 𝜎2 are the mean and standard deviation, respectively, for P1 and P2, and
𝜎12 their covariance. We set the constants c1 = 6.5, c2 = 58.5 and quantized the pixels to [0
255], as suggested in [4]. The LC-NLM was compared to three state-of-the-art denoising
algorithms: (1) The original NLM [10] as implemented in [1] with default parameters, except
for max_dist, that was set to 3. (2) Our implementation of the patch-database-NLM (PDB-
NLM) [4] with parameters taken from [4]. (3) BM3D [9] with code and parameters from [1,
15], respectively.

In Table 1, the average SSIM is given for the LC-NLM (1-4 iterations), NLM and
BM3D algorithms for the 10 scans datasets. Due to its very high running time, the PDB
-NLM algorithm is compared to LC-NLM for a single representative slice per scan in
separate Table 2. In this case, leave-one-out is performed on a total dataset of 10 slice
pairs (LD and high-SNR), instead of 10 full scans. In 8 out of 10 cases, the best SSIM
score (bold in Tables 1 and 2) is obtained for the proposed LC-NLM algorithm. In two
cases alone (#2 & #8), BM3D reached a higher score than LC-NLM. For LC-NLM, the
SSIM generally improved for 3–4 iterations before decreasing.
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Table 1. Average SSIM for 10 full scans: LC-NLM vs. other methods (best score in bold)

case # LC-NLM,
it#1

LC-NLM,
it#2

LC-NLM,
it#3

LC-NLM,
it#4

NLM [10] BM3D [9]

1 0.614 0.633 0.629 0.620 0.463 0.623
2 0.549 0.600 0.619 0.624 0.513 0.639
3 0.563 0.601 0.614 0.608 0.478 0.610
4 0.571 0.610 0.627 0.620 0.490 0.625
5 0.595 0.605 0.595 0.581 0.419 0.584
6 0.609 0.62 0.625 0.615 0.447 0.618
7 0.589 0.611 0.607 0.598 0.453 0.606
8 0.608 0.636 0.639 0.634 0.494 0.643
9 0.600 0.618 0.614 0.605 0.454 0.607

10 0.589 0.594 0.581 0.567 0.410 0.579

Table 2. LC-NLM vs PDB-NLM (PDB-NLM) [4] for the 10 slices dataset (best score in bold)

slice # LC-NLM it#1 LC-NLM it#2 LC-NLM it#3 LC-NLM it#4 PDB-NLM
[4]

1 0.571 0.616 0.631 0.635 0.620
2 0.616 0.646 0.650 0.64 0.638
3 0.565 0.614 0.631 0.636 0.620
4 0.587 0.632 0.648 0.653 0.637
5 0.639 0.670 0.677 0.675 0.667
6 0.639 0.667 0.669 0.66 0.661
7 0.591 0.611 0.609 0.601 0.600
8 0.587 0.634 0.649 0.652 0.638
9 0.527 0.624 0.657 0.648 0.645

10 0.572 0.621 0.637 0.641 0.628

Fig. 3. A sample slice for case #2: (a) Original image; (b) synthetic low-dose image; (c) NLM
[10]; (d) BM3D [9]; (e) PDB-NLM [4]; (f) iter.2 of LC-NLM; (g) iter.3 of LC-NLM.
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A sample slice for case #2 is shown in Fig. 3. The original high-SNR slice (a) is
shown alongside the corresponding synthetic LD image (b), the NLM, BM3D, PDB-
NLM results (c–e), and the LC-NLM results for 2 and 3 iterations (f–g). BM3D
performed significantly better than NLM, but over-smoothed the fine lung texture while
PDB-NLM and LC-NLM better preserved fine details and resulted in more realistic and
contrasted images (Table 3).

Table 3. Average running time for the denoising of a CT slice by the compared algorithms.

LC-NLM (1 iter.) NLM [10] BM3D [9] PDB-NLM [4]
~4 s ~7 s ~16 s ~1800 s

In Fig. 4, a pathological free-breathing porcine slice (1 mm thick), acquired at both
(a) normal (120 kVp–250 mAs) and (b) low-dose (80 kVp–50 mAs) is shown after
denoising the low-dose acquisition by: (c) NLM [10], (d) BM3D [9], (e) PDB-NLM [4],
(f) LC-NLM-2iterations, and (g) LC-NLM-3iterations. In the highlighted area (red), a
3 mm part-solid nodule (yellow box, a–g) was further magnified (g). The solid part of
the nodule is clearly visible (thick arrows) only in the normal-dose slice (a) and the LC-
NLM outputs (f–g). Conversely, a barely distinguishable smeared spot is observed (thin
arrow) for BM3D [9] (d), while the nodule has completely disappeared with NLM [10]
(c) and PDB-NLM[4] (e), and is undistinguishable from noise in the low-dose slice (b).
The dose length product (DLP) was 670.2 and 37.7 mGy·cm for normal and low-dose
porcine scans, respectively, reflecting a dose reduction of about 94 % between them.

Fig. 4. Porcine CT scan slice acquired at (a) 120 kVp and 250 mAs, and (b) 80 kVp and 50 mAs.
Low dose slice denoised by: (c) NLM [10]; (d) BM3D [9]; (e) PDB-NLM [4]; (f) LC-NLM-2iter;
(g) LC-NLM-3iter. The highlighted lung area (red) is zoomed-in. (h) Zoomed view of a 3 mm
part-solid nodule (yellow boxes) for images a–g. The solid part of the nodule is only clearly visible
(thick arrows) in the normal-dose slice (a) and the LC-NLM outputs (f–g). A barely distinguishable
smeared spot is observed (thin arrow) for BM3D [9] (d), while it has completely disappeared with
NLM [10] (c) and PDB-NLM [4] (e), and is undistinguishable from noise in the low-dose slice
(b). (Color figure online)
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4 Conclusions

We have presented a computationally efficient algorithm for the denoising of low dose
(LD) CT scans. The LC-NLM algorithm uses a database of high-SNR filtering patches
to denoise low-dose scans. By explicitly enforcing similarity between the filtering
patches and the spatial neighbors of the query patch, the LC-NLM better preserves fine
structures in the denoised image. The algorithm compared favorably to previous state-
of-the-art methods both qualitatively and quantitatively. While PDB-NLM produced
better visual results than the other published algorithms (NLM and BM3D), it required
prohibitive running times and, also in contrast to LC-NLM, was unable to preserve fine
pathological details such as a tiny 3 mm nodule. Moreover, PDB-NLM [4] performs
exhaustive search of 40-nearest neighbors. An efficient approximate-NN (ANN) imple‐
mentation of [4] would strongly affect quality as patch similarity degrades rapidly with
the ANN’s neighbor order. This problem is avoided with LC-NLM which uses only 1st

order ANNs, thus a much better approximation than the 40th. The encouraging results
and the computational efficiency of LC-NLM make it a promising tool for significant
dose reduction in lung cancer screening of populations at risk without compromising
sensitivity. In future research, the patch dataset will be extended to include pathological
cases and the method will be further validated on large datasets of real LD-scans in the
framework of prospective studies.
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