Vascular Registration in Photoacoustic Imaging
by Low-Rank Alignment via Foreground,
Background and Complement Decomposition

Ryoma Bise! ™| Yingqiang Zheng', Imari Sato’, and Masakazu Toi?

! National Institute of Informatics, Chiyoda, Japan
{bise-r,yqzheng,imari}@nii.ac. jp
2 Kyoto University Hospital, Kyoto, Japan
toi@kuhp.kyoto-u.ac. jp

Abstract. Photoacoustic (PA) imaging has been gaining attention as
a new imaging modality that can non-invasively visualize blood ves-
sels inside biological tissues. In the process of imaging large body parts
through multi-scan fusion, alignment turns out to be an important issue,
since body motion degrades image quality. In this paper, we carefully
examine the characteristics of PA images and propose a novel registra-
tion method that achieves better alignment while effectively decomposing
the shot volumes into low-rank foreground (blood vessels), dense back-
ground (noise), and sparse complement (corruption) components on the
basis of the PA characteristics. The results of experiments using a chal-
lenging real data-set demonstrate the efficacy of the proposed method,
which significantly improved image quality, and had the best alignment
accuracy among the state-of-the-art methods tested.

1 Introduction

Photoacoustic (PA) imaging is a promising new technology for early clinical diag-
nosis of cancer, tumor angiogenesis, and many other diseases [1]. PA takes advan-
tage of the thermoacoustic effect; that is, objects (i.e., blood vessels) absorb
short-pulsed near-infrared irradiation and emit ultrasonic waves thereafter. 3D
structures of objects can be reconstructed by sensing the thermoacoustic waves
[2]. This technique can non-invasively visualize blood vessels in vivo with high
spatial resolution without any contrast media. In order for PA imaging to cap-
ture entire portions of the human body, multi-scan and registration systems [3]
have been developed that separately scan local areas of the sample and merge
them. A single-shot volume reconstructed by PA technology usually suffers from
severe noise caused by sound and light scattering and sensor layout limitations
(Fig.1). The goal of this study is to generate high-quality 3D volumes from these
noisy shot volumes, in which vessels become clearly visible.

To reduce such noise, image averaging techniques have often been used, where
the average of the random noise in the background becomes a small constant,
and the linearly correlated foreground becomes apparent. Image averaging is
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effective as long as the sample is static or the size of the target is much larger
than the motion. However, in the case of PA images reconstructed by merg-
ing shot-volumes of local scans, the patient often moves during scanning, and
this assumption rarely holds true. It should be easy to imagine that even small
motions adversely affect the image quality, considering the fact that blood ves-
sels are thin (0.5mm). What is required, therefore, is an accurate alignment of
multiple shot volumes that can cope with such body motion.

A low-rank based alignment framework has a potential to address aligning
such challenging data that contain severe dense noise and small foreground area.
In the low-rank based alignment framework, an observation matrix D is first
generated from given multiple images, where the i-th row indicates the i-th
vectorized image. If we successfully make images well-aligned and eliminate the
differences among aligned images, this results in making the data matrix low-
rank. The low-rank based alignment framework achieves this by searching for
the transform function 7 and the difference component « that convert D into a
low-rank component as D o 7 — a. Since this optimization problem is basically
ill-posed, it is usually required to introduce some assumptions for the difference
components in the optimization.

Contribution: The main contribution of this work is designing the difference
component and the optimization method for aligning multiple PA volumes that
contain small foreground, severe dense noise, and corrupted foregrounds based
on the characteristics of PA images. To achieve this goal, we propose a coarse-
to-fine approach to correctly extract the small blood vessel area without falling
into a local minimum. For coarse-alignment, Frangi-filter [4] is first applied to the
PA volumes to reduce the background noise and enhance blood vessels. A multi-
scale pyramid scheme is then used for optimizing the transform function that
converts the aligned data into low-rank. Given the initial estimate of transfor-
mation function at the previous step, we further align the data by decomposing
it into a low-rank foreground (blood vessels), dense background (severe noise),
and sparse complement components (complementary parts of the foreground)
based on characteristics of PA imaging. A key novelty here is effective use of a
statistical prior of PA imaging for optimization, in which the average of the dense
noise background at each spatial voxel is forced to be a constant. Experimental
results using real PA data demonstrate that the propose approach is effective for
aligning and finding blood vessels without suffering from severe dense noise and
corruption, and yields high quality 3D volumes with clear vascular structures.

Related works: Many registration methods have been proposed for aligning
multiple images in medical imaging [5-7]. Since it is difficult to segment blood
vessels in PA shot-volumes because of severe noise and corruption, modeling-
and-alignment methods [8] do not work well. Blood vessels observed in PA
images tend to be sparsely distributed throughout a dense noisy background,
and it is difficult to align such images by using these alignment methods that
rely on image similarities computed from both foreground and background. To
reduce the influence of image corruption, a robust alignment method (RASL) [9]
has been proposed, and successfully applied to registration problems in
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medical imaging [10,11]. RASL optimizes an image transformation while sepa-
rating an image into a low-rank foreground and sparse error components, where
they assume that the differences among aligned images are caused from sparse
corruptions. Compared with the images handled by RASL, the area of blood
vessels is small with severe noise in vascular images in PA imaging. The error
component becomes no longer sparse in this case, and RASL does not work
properly; the low-rank component is optimized by adjusting the error compo-
nent instead of properly transforming the data. To relax this sparse assumption,
new decomposition methods have been proposed for recovering low-rank, sparse,
and Gaussian noise components from the input data [12]. These methods assume
that the foreground area is not small and the magnitude of the Gaussian noise is
small. Thus, they are not suitable for PA images that contain heavy dense noise
and the small area of blood vessels. In addition, these decomposition methods
consider images that are well aligned and thus alignment problems were not
considered before. In this paper, we propose a unified framework which simulta-
neously estimates the transformation and three-component decomposition.

2 Characteristics of PA Image

Figure 1 shows examples of x-y MIPs of PA shot volumes obtained from the same
position, where the intensity range of each volume is —1 to 1. Let us first define
the three components in these images. The first component is the foreground
that represents blood vessels with high intensities. The second component is the
background that represents noise that is in parts other than the blood vessels.
The third is the complement that represents parts where foreground corruption
occurs; in PA images, parts of vessels are corrupted by inhomogeneous light irra-
diation in vivo. For instance, in Fig. 1, the blood vessel in the red circle of the
right image is not visible, while the corresponding vessel is visible in the left
image. This missing portion corresponds to the complement. By examining real
PA data, we found a statistical prior wherein the intensity distribution of the
background is close to a Gaussian distribution with a large standard deviation
(0.249), and the distribution of the averages of the aligned background at each
spatial voxel is close to a Gaussian distribution with a constant mean (—0.001)

Fig. 2. Left: intensity distri-
Fig.1. Examples of x-y maximum intensity pro- bution of background, Right:
jection (MIP) of shot volume data in PA, where that of each spatial voxel aver-
high-intensity curves are blood vessels. (Color figure ages.
online)
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and a small standard deviation (0.081), as shown in Fig.2. By contrast, the
average intensity in the vessels has a high value since the vessels are linearly
correlated among well-aligned shot volumes. Note that this statistical prior is
often true not only in our PA imaging system but also in many applications since
the traditional image averaging techniques, which are widely used for reducing
noise, use this prior implicitly. We effectively use these characteristics for simul-
taneously estimating the transform and the three-component decomposition.

3 Coarse-to-Fine Low-Rank-Based Alignment

In the case of PA images that contain dense noise and small foreground area,
the current low-rank based methods tend to optimize the low-rank component
by adjusting the difference component. To avoid this problem, we take a coarse-
to-fine approach. For coarse alignment, we use a multi-scale pyramid scheme for
optimizing the transformation using the noise-reduced data, without considering
any difference components. This helps to find a proper transformation without
falling into a such local minimum. To further refine the alignment, we optimize
the transform function while decomposing the properly aligned data into three
components, i.e., the low-rank foreground, dense noisy background, and sparse
complement on the basis of the characteristics of PA imaging. The details of this
procedure are described in the following sections.

3.1 Coarse Alignment by Low-Rank Minimization with Pyramid

Suppose we are given m volume data I, ..., 10 € R"=wx"xd of a certain speci-
men, which might have moved during scanning. This step roughly aligns these
volumes by using preprocessed foreground data, in which the background noise
is reduced by enhancing the blood vessels with a Frangi filter [4], which uses the
eigenvectors of the Hessian to compute the likeliness of tubular structures. The
filtered data still include false positives in the background, and the vessels are
corrupted. Yet, it is good enough for coarse alignment.

To find a proper transform function instead of adjusting the difference com-
ponents, we only optimize the transform function 7 to convert the preprocessed
data matrix D into a low-rank component, A = D o 7, without considering any
difference components. D € R™*" is the observation data matrix, and n is the
number of voxels in each shot volume. 7 denotes a certain transformation, such
as the affine transform. According to [9], when the change in 7 is small, DoT = A
can be approximated by linearizing about the current estimate of 7, and the rank
minimization is relaxed into minimizing the nuclear norm || A||..

min |All, st.Dor+ Zi JiAreiel = A (1)
where A7 denotes the variance of 7 in each iteration, J; = %(Ii 0() |le=r €

R P is the Jacobian of the i-th data, and ¢; denotes the standard basis for
R™. Equation (1) can be efficiently solved using augmented Lagrange multiplier
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Algorithm 1. fine alignment by decomposing data into three components

1: Input: vectorized 3D volume data I4, ..., I, € R", initial transformations 71, ..., 7.

2: while not converged do
3: (1) compute the Jacobian matrices
. ) I;0¢ S
4: JZ<— H(m) |<:7—i,l—17...,m
5. (2) warp and normalize the images:
. Ior ImoTm -
6: Dot « [Hlio‘ril\ ey |\Imo-rm|\]7 i=1,...,m
7:  (3) (inner loop): solve the linearized convex optimization:
8: (A*, B*,C*, AT*) «— argmina p,c,ar || A« + Ai]|jaB — b + X2||C|1
9: st. Dot + 3, JiAreie] = A+B+C  use Eq. (4)
10:  (4) update transformation: 7 «— 7 + A7":

11: end while
12: OUTPUT: solution A*, B*,C*, t*

(ALM) algorithm [13], in a similar manner to [9]. This optimization is applied
with a multi-scale pyramid scheme, which successively aligns data with finer
Gaussian pyramids.

3.2 Fine Alignment via Three Components Decomposition

The aforementioned preprocessed data may include false-positive and false-
negative noise, which lead to small alignment errors because the optimization
in the previous step does not consider noise. We further refine the results from
the coarse alignment by using original volumes considering noise. To handle
images that contains dense noise, we introduce a dense-noise term in the align-
ment, wherein our method aligns the data while decomposing it into a low-rank
foreground A, dense noisy background B, and sparse complement C, by using
characteristics of the dense noisy background. Specifically, the distribution of the
averages of the aligned dense noise at the same positions becomes a Gaussian dis-
tribution with a constant mean and small variance. We introduce this statistical
prior into the formulation of the decomposition problem as follows:

o mmin, lAll« + A1llaB = ]| + X2||Cll1 st Do+ Zi JiAreel = A+ B+C (2)
where A and B denote the aligned foreground and background data matrix
respectively, and C' denotes the complement matrix. The sum of A, B, and C
equals the aligned data D o 7. a denotes a 1 x m vector whose elements are all
1. b denotes a 1 x n vector whose elements are all constant value b that is the
mean of the Gaussian. We set b to 0 on the basis of our observations of real PA
data. The term \;||aB — b||? penalizes the optimization function when the mean
of the aligned backgrounds in the same positions stays away from the mean of
the Gaussian. We set the weighting parameters A1 as k1/(m x d X y/n), and g

as ka/y/n, where k1 = 1, k3 = 3 in all our experiments.

Algorithm 1 shows the complete procedure. At each iteration of the outer
loop, we need to solve a linearized optimization problem by linearizing the trans-
formation at the current estimate of 7. This optimization problem is convex and
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thus solvable via ALM. Specifically, the optimization problem to minimize the
augmented Lagrange function is as follows:

. 2 T
- lAll« + AllaB —b)|2 + A2||Cll1 + (Y, Dot + Zi JiAreiel —A— B —C)

+ g||DOT+Zi JiArei el —A—B-C|>? (3)

where Y € R™*™ is a Lagrange multiplier matrix, p is a positive scalar, and
(+,-) denotes the matrix inner product. This problem is iteratively minimized as
follows:

Appr =USL[Z]V, (U, X,V)=svd(DoT+ Z JiAreie], — By, — Ci + ich)y
P T 125

1
Bry1 = M%(D oT + Zl JiATkGiEZT — Agt1 —Cr + EY;C),

1
Cry1=8x2[Dot+ E JiArgeiel — Apy1 — Bipr + — Y],
Hr i Mk

1
ATpy1 = ZZ JI(Ags1 4 Bey1 + Cryr — Dot — EYIQ)&QT,

Y1 =Ye +pux[Dor + ZZ Jz‘ATk+1€i€1T — Agt1 — Biy1 — Cr1] (4)

where svd(-) denotes the singular value decomposition operator, and shrinkage

operator Sg[-] = sign(x)-max{| z | —3, 0} is for the singular value thresholding
algorithm to optimize the nuclear norm. py is a monotonically increasing positive
sequence. We set iy = (1.25)%/||D||, according to [9].

4 Experimental Evaluation

First, we evaluated the robustness and accuracy of the proposed method on shot
volumes of real 3D PA data. We created five ground-truth data-sets by fixing the
body during the scanning so that, there would be no pixel-level misalignment.
We synthetically added different levels of position gaps to the shot volumes of
the ground-truth, wherein the original volumes were randomly displaced with a
uniformly distributed pseudorandom number [—d d] of voxels along each axis (x,
¥, z). The voxel size was [0.25 0.25 0.25] mm, and the thickness of a vessel was
0.5 to 2mm. We set the misalignment level d from 1 to 10. In total, we generated
10 x 5 data-set, in which each data-set included 21 to 36 shot volumes.

For comparison, we compared our results with those obtained by the follow-
ing state-of-the-art methods: B-spline free-form deformation(B-FFD) [6] which
optimizes the control points while minimizing the similarity function; spectral
log demon registration [7], which finds the pointwise correspondence between
images with simple nearest-neighbor searches (called Log-demon); and RASL
[9] with the pyramid scheme. These methods were applied to vessel-enhanced
data for a fair comparison. Figure 4 shows the results for each method, where a
small value on the vertical axis indicates that the method successfully aligned
the data-set. It shows that the proposed method works well until misalignment
level 7; it should be good enough for dealing with real body motions. The other
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Fig. 3. Examples of averaging images Fig. 4. Evaluation results, where the
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Fig. 5. Examples of the decomposition results. The images are x-y MIPs of the input
data, decomposed foreground (A), background (B), and complement (C) respectively.

methods could not align the data so well, even with very low misalignment levels.
Figure 3 shows examples of the x-y MIPs of the average images of the aligned
results obtained by each method at misalignment level 6. The computational
time of the proposed method is comparable with that of the other methods.

Figure 3(a) shows the ground-truth, in which the vessels are clearly visi-
ble. The synthetic misalignment makes the image quality significantly worse
(Fig.3(b)). The result of the proposed method (Fig.3(f)) shows clear vessels,
and the image is similar to the ground-truth. This indicates that the proposed
method properly aligned the shot volumes. By contrast, vessels are still hard to
identify in the results of the other methods (Figs. 3(c), (d), and (e)).

Now let us examine how well the proposed method decomposes real PA data
into three components. For example, Fig. 5 shows the results at misalign level 6.
The background noise is correctly decomposed in B, all vessels clearly appear
in the low-rank component A, and the sparse corruptions of the vessels appear
in the complement component C. This results show that the proposed method
successfully decomposed the original noisy and misaligned PA data into three
meaningful components.

Next, let us examine the robustness of the proposed method against real
body motion. To get the real data, a hand was scanned using a wide-field range
PA imaging system that scans local areas multiple times with a spiral pattern,
and real body motions were added during scanning. The total number of shot
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Fig. 6. Examples of registration results. x-y MIP of (a) average data without alignment,
(b) from our method, (c), (d) enlarged images of (a), and (e), (f) results of using the
proposed method on (¢), (d). (Color figure online)

volumes was 2048, and the total scanning time was about 2 min. Successive local
shot volumes were overlaid over 85 %. The entire data was 512 x 512 x 100. Since
each shot volume is a peace of local-area data, we first generated the data-sets
of the local areas (168 x 168 x 100), which included 16 to 59 shot volumes. Next,
we aligned the shot volumes in each data-set, then stitched together the aligned
average volumes in order to generate the entire data. For comparison, an image
averaging technique without alignment was applied to the data.

Figures6(a), (c), and (d) show the average data without alignment. In the
images, the contrast of the vessels is low, and some vessels are blurry because
of body motion. Figures6(b), (e), and (f) show the registration results from the
proposed method. Here, the vessels are obviously clearer than in the original
image and some vessels that are hard to see in the averages data without align-
ment become visible. Here, we should note that the vessels that appear thrice
in the red box in Fig. 6(b), where two veins run side-by-side with artery, are not
blurry. These image features were confirmed by a doctor of anatomy. The results
show that our method significantly improved the image quality of PA imaging.

5 Conclusions

We examined the characteristics of PA images and proposed a registration
method for PA imaging to generate high-quality 3D volumes in which vessels
become clearly visible. By introducing the statistical prior, in which the mean
of the values in the same position of the aligned background data tends to be a
constant, our alignment method is capable of handling challenging PA data with
strong noise and large misalignments. The experimental results on real data-sets
demonstrate the effectiveness of our method; it significantly improved image
quality and achieved the best alignment accuracy in the comparison. Currently,
our method can only handle one global domain transformation per image, such
as affine transformation. We will address the deformable transformation prob-
lems in future work. Besides PA imaging, the proposed method has the potential
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to be applied to many other sorts of medical imaging; these will be explored in
our future work.

Acknowledgments. This work was funded by ImPACT Program of Council for Sci-
ence, Technology and Innovation (Cabinet Office, Government of Japan).

References

1. Kitai, T., Torii, M., Sugie, T., et al.: Photoacoustic mammography: initial clinical
results. Breast Cancer 21, 146-153 (2014)

2. Li, C., Wang, L.V.: Photoacoustic tomography and sensing in biomedicine. Phys.
Med. Biol. 54(19), 5997 (2009)

3. Kruger, R.A., Kuzmiak, C.M., Lam, R.B., et al.: Dedicated 3D photoacoustic
breast imaging. Med. Phys. 40(11), 1-8 (2013). 113301

4. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel
enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MIC-
CAI 1998. LNCS, vol. 1496, pp. 130-137. Springer, Heidelberg (1998)

5. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration:
a survey. IEEE Trans. Med. Imaging 32, 1153-1190 (2013)

6. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.:
Nonrigid registration using free-form deformations: application to breast MR
images. IEEE Trans. Med. Imaging 8, 712-721 (1999)

7. Lombaert, H., Grady, L., Pennec, X., et al.: Spectral log-demons: diffeomorphic
image registration with very large deformations. IJCV 107, 254271 (2014)

8. Aylward, S.R., Jomier, J., Weeks, S., Bullitt, E.: Registration and analysis of vas-
cular images. IJCV 55(2/3), 123-138 (2003)

9. Peng, Y., Ganesh, A., Wright, J., et al.: RASL: robust alignment by sparse and
low-rank decomposition for linearly correlated images. IEEE Trans. PAMI 34(11),
2233-2246 (2012)

10. Liu, X., Niethammer, M., Kwitt, R., McCormick, M., Aylward, S.: Low-rank to the
rescue — atlas-based analyses in the presence of pathologies. In: Golland, P., Hata,
N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III. LNCS, vol.
8675, pp. 97-104. Springer, Heidelberg (2014)

11. Baghaie, A., D’souza, R.M., Yu, Z.: Sparse and low rank decomposition based
batch image alignment for speckle reduction of retinal oct images, ISBI, pp. 226—
230 (2015)

12. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from
incomplete and noisy observations. SIAM J. Optim. 21(1), 57-81 (2011)

13. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented Lagrange multiplier method
for exact recovery of corrupted low-rank matrices, UIUC Technical report UILU-
ENG-09-2215 (2009)



	Vascular Registration in Photoacoustic Imaging by Low-Rank Alignment via Foreground, Background and Complement Decomposition
	1 Introduction
	2 Characteristics of PA Image
	3 Coarse-to-Fine Low-Rank-Based Alignment
	3.1 Coarse Alignment by Low-Rank Minimization with Pyramid
	3.2 Fine Alignment via Three Components Decomposition

	4 Experimental Evaluation
	5 Conclusions
	References


