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Abstract. In this paper, we propose a novel approach to study cardiac
motion in 4D image sequences. Whereas traditional approaches rely on
the registration of the whole sequence with respect to the first frame
usually corresponding to the end-diastole (ED) image, we define a more
generic basis using the barycentric subspace spanned by a number of ref-
erences images of the sequence. These subspaces are implicitly defined
as the locus of points which are weighted Karcher means of k + 1 refer-
ences images. We build such subspace on the cardiac motion images, to
get a Barycentric Template that is no longer defined by a single image
but parametrized by coefficients: the barycentric coordinates. We first
show that the barycentric coordinates - the coefficients of the projection
of the motion during a cardiac sequence - define a meaningful signa-
ture for group-wise analysis of dynamics and can efficiently separate two
populations. Then, we use the barycentric template as a prior for reg-
ularization in cardiac motion tracking, efficiently reducing the error of
tracking between end-systole and end-diastole by almost 40 % as well as
the error of the evaluation of the ejection fraction. Finally, to best exploit
the fact that multiple reference images allow to reduce the registration
displacement, we derived a symmetric and transitive registration that
can be used both for frame-to-frame and frame-to-reference registration
and further improves the accuracy of the registration.

1 Introduction

Understanding and analyzing the cardiac motion pattern in a patient is an impor-
tant task in many clinical applications. It can give insight into a pathology, by
evaluating for example how the cardiac function is affected by a cardiovascular
disease and if a therapy is needed or not. On top of traditional simple parameters
such as the ejection fraction (EF), it can also be used to compute more com-
plex parameters - such as strains in different directions - giving deeper insight
to the efficiency of the heart motion and function. The cardiac motion is usu-
ally studied by finding correspondences - the registration step - between each of
the frame of the sequence and the first frame corresponding to the end-diastole
(ED) image, yielding a dense displacement field that tracks the motion of the
myocardium. Taking the ED image as a reference is natural as it is the starting
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point of the contraction of the heart which is the most important phase in eval-
uating the efficiency of the cardiac function but this specific choice can lead to
important biases in quantifying the motion especialy at end-systole (ES) where
the deformations to be evaluated are large [8].

In this paper, we propose a novel approach to study cardiac motion. Instead
of taking an unique image as the reference to evaluate the motion, we build affine
subspaces on the manifold of deformations encoding cardiac motion. There are
different ways to extend the concept of principal affine spaces from an Euclidian
space to something defined on manifolds. The simplest generalization is tangeant
PCA, where a covariance matrix is build on the tangeant space of the Karcher or
Frechet mean. In Principle Geodesic Analysys (PGA) [2], subspaces are spanned
by the geodesics going through a point and the tangent vector is restricted to
belong to a linear space of the tangent space. In this paper, we use more general
type of family of subspaces on manifolds called Barycentric Subspaces which
were first introduced in [4]. With respect to the method previously mentioned,
it has the benefit not to be controlled by the central value. This gives a more
consistent framework to study data in the case the underlying distribution is
either multimodal or simply not sufficiently centered.

In the context of deformation analysis in medical imaging, the points of
the manifold corresponds to 3D images whereas the geodesic are deformations
mapping two images together. Optimal paths (geodesics) are represented by
the initial velocity field at the geodesic path resulting from the registration of
images. In the first part of this article, we define the barycentric subspaces of
manifold and introduce the way to compute the barycentric coefficients and the
projection of an image on a Barycentric Subspace of dimension k based on k +1
images. Instead of performing registration with respect to a single template, we
build a subspace based on multiple references images and take advantage of the
information of group-wise registration [10], by building a Barycentric Template
of dimension 2 parametrized by the barycentric coefficients. Experiments are
conducted on sequences of healthy and pathological patients and show that the
barycentric coefficients of both populations present significant differences and
two clear clusters appear. Then, we improve the registration of cardiac motion
by relaxing the regularization within the 2-dimensional barycentric template
representing a cardiac sequence. Finally, we further improve the methodology
by deriving a formula leading to symmetric and transitive registration.

2 Barycentric Subspaces in Deformation Manifolds

In this section, we introduce barycentric subspaces following the notation
described in [4]. In order to adapt the framework from Riemaniann Manifolds
to the context of computational anatomy (image deformation analysis), we fol-
lows the framework of [3]. Working in the space of images M, we define I as a
point of this space, which can be for example an image of a cardiac sequence
and we identify paths to deformations. In the following, we will use (k + 1)
points Rj , the references images, on this Manifold as well as (k + 1) coeffi-
cients λj the barycentric coefficients. The Barycentric Subspace of dimension k
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BARYCENTRIC SUBSPACE

Image

Projection

Fig. 1. Barycentric subspace of dimension 2 built from 3 references images (R1, R2, R3).
Î is the projection of the image I within the barycentric subspace such that ‖ v̂ ‖2 is
minimum under the conditions

∑
j λj v̂j = 0 and v̂ + v̂j = vj .

spanned by these points is then defined as the set of points (images) Î in M
such that:

∑k+1
j=1 λj

−−→
ÎRj = 0, where

−−→
ÎRj = logÎ(Rj) is the smallest velocity field

that registers I to Rj . Contrary to the Riemaniann setting where we would have

exactly Rj = expÎ(
−−→
ÎRj), we obtain through registration an inexact matching

that approximates the log vector. This is the tangeant vector of the geodesic
shooting I to Rj . In the following, we will place ourselves in stationary velocity
fields (SVF) framework [9] which gives a simple and yet effective way to para-
metrize smooth deformations along geodesics using one-parameter sub-group. In

this case, the tangent vector
−−→
ÎRj will be parametrized by the SVF v̂j and the

condition simply becomes
∑k+1

j=1 λj v̂j = 0. The notation are summed up in Fig. 1.

2.1 Projection on Barycentric Subspace

Having defined the barycentric subspace spanned by a set of k + 1 references
Rj , we are looking to find the projection Î of any image I in M on this sub-
space together with the coefficient λj representing the coordinates of Î within
the barycentric template. The projection Î of I is the closest point to I that
belongs to the barycentric subspace. We define the SVF v̂ which parametrizes

the projection of I such that
−→̂
II = v̂ as well as the SVFs (vi)i=1,...,k+1 such that−−→

RiI = vi as shown in Fig. 1. The distance between I and Î is represented by the
norm of the SVF ‖ v̂ ‖2. As seen previously, the constraint that Î belongs to the
barycentric subspace can be written as

∑
j λj v̂j = 0. Using the Baker-Campbell-

Hausdorff (BCH) [9] formula, we get a first order development of vi = v̂ + v̂i.
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Fig. 2. (Left): Optimal references for the two group for each of the 3 references. (Right):
Barycentric coefficient curves λ projected on the 2D-plan

∑
i λi = 1.

The problem can now be written as:

min
v̂

‖ v̂ ‖2, subject to
∑

i

λi(vi − v̂) = 0,
∑

i

λi �= 0

whose set of solutions is:

λ = αA−11, α ∈ R
∗, A = 〈vi|vj〉i,j .

With the additional constraint
∑

j λj = 1, we get the unique solution by nor-
malizing the λ.

Finally, given a set of N images In, we can define the distance of a barycentric
subspace spanned by the references (Rj)j=1,...,M to the set of images (In)n=1,...,N

as the sum of the error over all the residual projection vector v̂n such that:

E((Rj)j=1,...,M ) =
∑

n=1,...,N

‖ v̂n ‖2, (1)

and find the closest subspace with respect to the cardiac sequence by minimizing
this distance over all set of references.

2.2 Cardiac Motion Signature for Group-Wise Analysis
of Dynamics

We applied the previously defined methodology to compare the cardiac motion
signature of two different populations. The first group consists of 15 healthy
subjects from the STACOM 2011 cardiac motion tracking challenge dataset [8]:
an openly available data-set, and the second group is made of 10 Tetralogy of
Fallot (ToF) patients. Short axis cine MRI sequences were acquired with T = 15
to 30 frames. The methodology described was applied by projecting each of
the T frame of the cardiac motion to a barycentric subspace of dimension 2
spanned by 3 references. This set of 3 references is chosen by building the optimal
barycentric subspace as induced by the distance defined in Eq. 1. Significant
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differences in the frame for the optimal references can be seen between the two
populations (Fig. 2, left). In particular, the second reference - corresponding
the end-systole - is significantly higher for the ToF patients showing that this
population has on average longer systolic contraction. Then we project the whole
cardiac motion on the barycentric subspace made of these three references to
compute the barycentric coefficients (Fig. 2, right). We see significant differences
between both group of curves, especially in the region λ1 < 0 showing that
this signature of the motion is encoding relevant features and classical machine
learning algorithms can separate the two populations using this representation.

3 Registration Using Barycentric Subspaces

In this section, we show how the use of barycentric subspaces as a prior on the
cardiac motion can improve the registration by relaxing the regularization. Most
of the registration methods rely on a trade-off between a fidelity-to-data term -
capturing how well the registration matches the intensities of the voxels of the
images - and a smoothness regularization term - encoding our prior information
about the regularity of the deformations we are looking. It is standard practice
in registration algorithms to consider slowly varying deformation as our prior
knowledge of the transformation (either by constraining the deformation to be
within a small subspace of all diffeomorphisms or by penalizing large defor-
mations). While this methodology works well to find small deformations, the
regularization often leads to an underestimation of the large deformations as
the one happening between the ED and ES frame. To overcome this drawback,
solutions usually rely on performing the registration in a group-wise manner:
a group of images are considered simultaneously and an additional criteria is
added to ensure temporal-consistency [1,5]. In this paper, we propose to use the
barycentric template defined by 3 frames of the sequence as an additional prior
on the transformations by considering that only the distance to the closest image
within this barycentric subspace should be minimized. In the regularization step,
we no longer consider the whole velocity field v but we run the regularization
only with respect to v̂ which encodes the distance of the current image to the
closest image within the barycentric template representing the cardiac motion.

3.1 Barycentric Log-Demons Algorithm

We apply this methodology to the Symmetric Log-Domain Diffeomorphic
Demons algorithm [9] which successively updates the velocity field to match the
data, then smooths the velocity field with a gaussian filter. Instead of perform-
ing the regularization on the complete velocity field (the “standard” method),
we decompose the velocity field vi as the sum of v̂i mapping the reference Ri

to the projection Î inside the template and the residual velocity field v̂ of the
projection (see Fig. 1) and we regularize only the residual v̂ with the gaussian
filter. The barycentric template is therefore used as a prior on the cardiac motion
for which we do not perform regularization. The method was evaluated using a
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Fig. 3. (Left): Image of heart at end-systole, the contour of the warped mesh of the
initial frame 1 (ED) using barycentric (red), standard (blue) registrations are shown
together with the ground truth (green). Using barycentric regularization, the regis-
tration is less constrained and we manage to get a more accurate contours for the
end-systolic endocardium. (Middle): Error of the registration with respect to 3 ref-
erence images using the two methods, barycentric (dotted lines) and standard (plain
lines). (Right): volume curves induced by the registration and comparison with the
ground truth volume. (Color figure online)

synthetic time serie of T = 30 cardiac image frames [6], so that we have ground
truth meshes along the sequence allowing us to estimate the accuracy of the reg-
istration. First, we find the optimal references by minimizing the energy in Eq. 1
giving us the frames 1, 11 and 21 which will be the three references spanning
the barycentric subspace. Then we register each frame i of the sequence using
the method described above to get the deformations from each of the three
references to the current images. We deform the ground truth meshes at the
references frames with these deformations and compare the results with classical
registration. As can be seen in Fig. 3, barycentric registration performs better
at catching the end-systolic deformation with the contour of the warped mesh
at end-systole matching better the ground truth. The estimation of the ejection
fraction from the volume curve is also improved, going from 32 % with the stan-
dard method to 38 %, closer to the ground truth (43 %), reducing the estimation
error by half. Finally, the average point-to-point error for both methods shows
(in Fig. 4, right) that, while barycentric registration has largest error for small
deformations close to each reference, it has around 30% smaller error for largest
deformations as between ED and ES.

3.2 Towards Symmetric Transitive Registration

In this last section, we quickly introduce a way to derive approximately consistent
transitive (at the first-order of the BCH approximation) registration from the
barycentric SVFs computed in the previous section. Symmetry and transitivity
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BARYCENTRIC SUBSPACE

Image

Frame
0 5 10 15 20 25 30Av

er
ag

e 
Po

in
t-t

o-
po

in
t e

rro
r d

ef
or

m
ed

 m
es

he
s 

(m
m

)

0

0.5

1

1.5

2

2.5

3

3.5

4
Symmetric Barycentric Registration

Standard R1
Barycentric R1
Symmetric Barycentric R1

Fig. 4. (Left): Schematic representation of the symmetric multi-references barycentric
registration in the case of a 1-D barycentric subspace spanned by 2 references. It and
Is are two frames of the sequence and Ît, Îs corresponds to the respective projection
to the barycentric subspace. (Right): comparaison of the error between the standard
registration (blue plain), the barycentric method presented in Sect. 3.2 (blue dotted)
and the symmetric-barycentric extension presented in Sect. 3.1 (red dotted). (Color
figure online)

are two important properties for registration methods to improve robustness
and reduce the unpredictability of the results [7]. A registration method is said
to be symmetric if it associates two points regardless of the order of images
that are registered together (in the SVF setting it is equivalent to vj

i = −vi
j).

Transitivity requires that the deformation given by the registration between two
images should be equal whether it is done directly or by the composition of the
result of the registration with an intermediate image (in the SVF setting it can
be stated as vj

i = BCH(vk
i , vj

k) � vk
i + vj

k with the BCH at the first order).
Most registration methods fail to be transitive due to the accumulation of the
registration errors at each step of the registration. Using Barycentric Subspaces
as a basis for the registration at each step, we define the symmetric registration
using the following formula which is schematically represented in Fig. 4:

W t
s = v̂t − v̂s +

1
2

∑

i

(λi
sv̂t

i − λi
tv̂s

i). (2)

In this formula, the first two SVFs on the left represent the residual trans-
formations from the barycentric subspace to the two time points, and the sum
on the right is a symmetric estimation of the SVF Ŵ s

t within the barycentric
subspace by going through each reference image forward and backward. This for-
mula defines registrations that are both symmetric and transitive up to higher
orders of the BCH in the compositions. It can be used for frame-to-frame as well
as for frame-to-reference registration. In the former case, setting the reference to
the first frame (s = 1 in the above formula) leads to improved results as shown
in Fig. 4: the maximum error over the sequence is reduced by approx. 10 % with
respect to barycentric registration.
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4 Conclusion

A new symmetric group-wise paradigm to study cardiac motion was proposed.
Our approach relies on building subspaces as the reference for registration instead
of choosing a specific arbitrary single image which can introduce bias. These
subspaces represent the cardiac motion by meaningful parameters showing dif-
ferent clear patterns between two populations. Using these subspace as a prior,
thereby relaxing the regularization on a 2-dimensional subspace, we achieve a
better evaluation of the deformation between ED and ES frames and in particu-
lar we improve the estimation of the ejection fraction. Finally, the methodology
can also be used to perform symmetric transitive registration, for better tracking
along the sequence.
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funded project MD-Paedigree (Grant Agreement 600932).
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