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Abstract. Since the introduction of wide cone detector systems, CT
myocardial perfusion has been an area of increased interest, for which
non-rigid registration [NRR] is a key step to further analysis. We pro-
pose a novel motion management pipeline for perfusion data, GPNLPerf
(Group-wise, non-local, NRR for perfusion analysis) centering on group-
wise NRR using non-local spatio-temporal constraints. The proposed
pipeline deals with the NRR challenges for 4D perfusion data and results
in generating clinically relevant perfusion parameters. We demonstrate
results on 9 dynamic perfusion exams comparing results quantitatively
with ANTs NRR and also show qualitative results on perfusion maps.

1 Introduction

Full coverage dynamic CT contrast scans are key to quantify myocardial per-
fusion parameters such as blood flow which are key to the diagnosis of cardiac
disease [1]. An important challenge that needs to be addressed for computing
reliable perfusion maps is motion induced by repiration and cardiac movement.
Such respiratory/cardiac motion would result in gross errors in the estimated
perfusion maps. In this work, we propose a fully automatic end-end solution for
addressing the motion challenges of 4D CT perfusion studies. In order to deduce
clinically meaningful perfusion parameters, any NRR approach has to handle
challenges of large motion, intensity variations due to contrast dynamics, and
presence of small structures like vessels. Further, it is important for NRR to
preserve the inherent contrast dynamics, and work in a feasible compute time.
Although there have been several works for NRR of perfusion data in the context
of dynamic CT perfusion ([2,3]) and for DCE MR ([4,5]), previous works have
not fully handled the above challenges to offer a viable clinical solution.

Two broad categories of aligning 4D data are ‘reference’ based methods and
groupwise NRR (see [6]). Unlike reference based methods, groupwise NRR is
not biased by the choice of the reference image. In general, for cardiac contrast
data, there are dramatic changes in intensity that vary spatially, with structures
becoming visible at different time points. Thus, large differences in NRR results
could occur depending on the choice of the reference image. Hence, groupwise
NRR could prove quite useful for dynamic cardiac perfusion data.
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Fig. 1. GPNLPerf: pipeline composed of (a) Outlier Rejection and interpolation
(b) Group-wise NRR (c) Adaptive temporal filtering.

However, a challenge for groupwise NRR is to handle small populations of
data with large motion in the absence of a good initial guess for both the evolv-
ing reference image and the transforms. Previous groupwise NRR methods for
perfusion data, [4,5], have been for 2D DCE MRI data where typically sev-
eral timepoints [TPs] are available giving a good initial guess for the groupwise
mean. Secondly, schemes such as breaking the data into groups of pre- and post-
contrast as in [4] may not be feasible for CT cardiac perfusion given that there
might be very few TPs (e.g. 12–15) with large regions peaking with contrast
at different times. In [7], the issue of large motion for small populations within
groupwise NRR is handled for PET data using non-local spatio-temporal penal-
ties. In our work, we address groupwise NRR for CT dynamic perfusion data,
adapting and extending the framework in [7]. As a result, compared to previous
groupwise NRR works for perfusion, we can effectively handle the challenge of
large motion of small number of TPs.

Our proposed solution GPNLPerf is a generic pipeline composed of (a) Out-
lier Rejection and interpolation (b) Robust group-wise NRR using non-local
spatio-temporal constraints, and (c) Adaptive temporal filtering. Firstly, we call
out ‘innocuous’ TPs with extreme motion as outliers and drop them from 4D
NRR. These TPs are later interpolated from neighbouring registered TPs. Next,
in the core of the algorithm, we propose a metric that models the contrast
dynamics seen in perfusion studies, within the groupwise NRR approach [7].
Lastly, to meet computational feasibility for clinically deployment, we run NRR
at a manageable lower resolution and later arrest the jitter due to interpolation
effects using an adaptive temporal filtering approach. Results are analyzed on
9 dynamic perfusion exams. We quantitatively compare our performance to a
pairwise approach using the ANTs package. Finally, a qualitative assessment of
reconstructed perfusion maps is presented using standard visualization.

2 Methods

Here, we describe the proposed GPNLPerf pipeline. Firstly, we drop out TPs
with extreme motion especially if they would play no role in the final perfusion
map computation. Typically, in breathhold acquisitions, when the patient starts
to free breathe, there is extreme motion in 1 or 2 transition TPs. If these extreme
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Fig. 2. Outlier Rejection for a 4D CT case with 15 TPs: An ‘innocuous’ outlier time-
point (highlighted in Red) is rejected because the resulting PCA weight factors are
large (first plot). The timepoint is innocuous since it does not have peak contrast
activity and this is seen in the weight factors of the 2nd PCA step (second plot).

TPs lie in ‘innocuous’ locations from a contrast dynamics point of view, these
volumes can be safely dropped without the risk of altering the end perfusion
maps. After NRR, these rejected temporal positions can be re-inserted using
interpolation. The algorithm flow is shown in Fig. 1.

2.1 PCA Based Outlier Rejection

The objective here is to conservatively reject one or two time points as motion
outliers and also make sure that they are not key time points for the contrast
dynamics. Here, we use a simple two stage technique based on Principal Compo-
nent Analysis (PCA) to achieve the above. Firstly, motion outliers are identified
by limiting the dynamic range of the data to air and soft tissue, Hounsfield Unit
HU ≤ 200. This data, after spatial down sampling is passed through PCA to get
the principal eigenvectors (restricted to the first two) that quantify large motion
directions. Projecting the eigen vectors back to the data gives the weight factors
that quantifies the motion of each timepoint in the direction of the eigenvectors.
Motion outliers (not more than two TPs) if any, are then identified by looking at
entropy and magnitude of these temporal weight factors. Entropy is a key fea-
ture here to distinguish cases with large motion in several time points (e.g. data
from a free breathing protocol), for which an outlier rejection step would not
make sense. Next, to make sure that only ‘innocuous’ time points are rejected,
we perform one more round of PCA in a higher range HU ≥ 400, to consider
only contrast induced intensity changes across time points. Now, large weight
factors corresponding to first two eigen vectors would tell us the interesting TPs
from a contrast dynamics perspective. If the motion outliers do not fall in the
set of interesting TPs, we can safely reject them as ‘innocuous’ TPs (example
of utility of the two PCA steps are shown in Fig. 2). Post NRR, these rejected
TPs are inserted using standard spline interpolation using neighboring TPs.

2.2 Non-local Group-Wise NRR for Perfusion Data

In this discussion, we address the main contribution of the paper; NRR of the
outlier rejected data. We propose a group-wise NRR energy in a variational
framework with non-local spatio temporal penalties on the transforms. We adapt
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the mono-modal groupwise formulation from [7] proposed for gated PET data,
to handle intensity variations seen in CT perfusion. To do this, we add an addi-
tional contrast term to distinguish intensity changes due to motion from intensity
changes due to contrast flow. Assume we are given N volumes {Io

k}N
k=1 defined on

Ω. Firstly, the input volumes are preprocessed to lie in the HU range [−200,400]
where we would see minimal contrast dynamics, to give N preprocessed volumes
{Jk}N

k=1. We seek a reference volume μmed and deformation fields {wk}N
k=1,

w = [w1, w2, ..., wN ], which minimizes:

L[μmed,w] =
N∑

k=1

∫

Ω

|Jk(. + wk) − μmed|dx + α

∫

Ω

|(Id − V V T )(Io
w − μIo)|2dx

+ β

N∑

k=1

∫

Ω

∫

Ω

m(x, y)|wk(x) − wk(y)|2dxdy

+ β1

N∑

k=1

∫

Ω

∫

Ω

m̂(x, y)|vk(x) − vk(y)|2dxdy

This is a groupwise formulation with the data term tuned to handle contrast
dynamics. The first term minimizes the voxel wise median deviation of the 4D
data. The above term can be minimized by iteratively solving for the median of
the data, μmed, and the transforms w. The second term seeks transforms so that
the registered 4D data (i.e. the transforms w applied to the original data Io)
conforms to learnt contrast trends. Here, we utilize a contrast model term which
uses contrast trends learnt from coarse resolutions. We use PCA once again to
learn principal directions of variation in contrast, V and mean trend, μIo . The
contrast term is useful in finer resolutions to align smaller structures better and
reduce artefacts due to intensity variations induced by contrast dynamics.

Similar to [7], the regularization terms on the transforms w consist of a
non-local [NL] spatial term, and a NL temporal term seeking spatial coherence
of velocity vk = wk+1 − wk. The NL penalties are critical in robustly handling
large motion, residual intensity variations (inspite of pre-processing and the con-
trast term), and maintaining integrity of key structures such as myocardium and
coronories. Scalars α, β, β1 balance the terms; m(x, y), m̂(x, y) are spatial weight
functions defined by Gaussians. We minimize the above equation using steepest
descent, in a multi-resolution framework. In the coarse resolutions, the contrast
term is turned off, i.e. α = 0. The contrast trends V, μIo learnt at the end of
coarse resolutions are then applied in finer resolutions. A brief illustration and
importance of contributions of the NL terms and the contrast term is shown in
a synthetic experiment, Fig. 3. As seen, the contrast term handles NRR better
under contrast dynamics (thus distinguishing our work from [7] which is suscep-
tible to intensity variations, third row, Fig. 3.

2.3 Adaptive Temporal Filtering

Lastly, given that we want a computationally tractable solution, the deformation
fields are at a finest resolution of 1.5 mm3 while the original data is typically
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Fig. 3. Contribution of the NL priors and the contrast term: the synthetic data (first
row) has 11 TPs, results for 3 TPs are shown in columns 1 to 3. The last column is
the mean across TPs. The second row is Eq. 1 w/o any priors. The contrast dynamics
combined with motion creates artefacts (e.g. shrinking of bright structures) in the
registered images. The third row shows slightly improved results with only the NL
priors (as in [7]). The last row shows the best results with the contrast term and the
NL priors (GPNLPerf).

at higher resolution. For visualizing the perfusion maps and the registered data,
the deformation fields are upsampled and applied to the original data at native
resolution. The resulting jitter artifacts due to this interpolation step is han-
dled using a simple temporal filtering step. A moving temporal median filter is
employed at each voxel location. The median filter is also made adaptive to work
only in non-contrast regions (defined using a smooth sigmoid cutoff on a suitable
HU range ≤ 400).The above adaptive filter ensures that interpolation artifacts
are arrested and contrast activity is preserved for the perfusion maps.

3 Experiments

We show a qualitative example in Fig. 4 with large motion. The proposed algo-
rithm has resulted in a motion corrected result (as seen by the good agreement of
the red ellipse marker with the inner boundary of the myocardium) which is rea-
sonable for myocardial perfusion analysis. Next we show quantitative results on
9 dynamic perfusion exams acquired with a wide axial coverage (16 cm). Each
exam consisted 15 cardiac volumes acquired at different time points with an
average acquisition time of 35s. The end-end computational time of GPNLPerf
was ≈ 6 min for processing a 4D dataset of dimensions (512 × 512 × 224 × 15),
voxel size (0.45 × 0.45 × 0.625), on a 8 core HP Z-800 workstation.

Here, for comparison, we choose ANTs [8] with a combination of Mutual
Information [MI] and Local Cross Correlation [CC] as the metric posed in a
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Fig. 4. GPNLPerf result on a 4D CT perfusion large motion case with 15 TPs. 5 TPs
are shown in this figure. The alignment quality is visually seen in the red ellipse which
lies very close to inner boundary of the myocardium post NRR.

symmetric diffeomorphic framework (SyN). Previous works in CT dynamic car-
diac perfusion NRR ([2,3]) have mainly used MI and CC as registration metrics
and posed in a reference based framework. Given that ANTs SyN has been quite
successful in registration/segmentation competitions, we have used ANTs since
it is similar in flavour to the above perfusion NRR works. The middle TP of
each exam was picked as the reference volume for ANTs NRR. The pre-process
steps and the deformation resolution (1.5 mm3) are the same for GPNLPerf and
ANTs. Below, we consider two validation metrics based on expert given LMs.

3.1 Spatial Alignment

To quantify motion correction achieved by NRR, an expert marked 4 different
locations on the edge of the myocardium and at bifurcation points in most of
the TPs of each exam. Each of the expert-marked landmarks formed a tempo-
ral cluster due to motion across TPs. To evaluate the efficacy of registration,
distance of every landmark from its temporal cluster center is calculated. NRR
should give improved temporal alignment resulting in lower distance values.

Figure 5 shows results after consolidating landmarks across datasets (9
exams, 4 landmarks, 294 landmarks in total), shows both ANTs and GPNLPerf
reducing error compared to before registration. It can also be seen from the
Scatter plot and error Histogram that GPNLPerf has resulted in lesser, tighter
errors. It is also observed that the fine accuracy of GPNLPerf is better than
ANTs resulting in a significant number of LMs having error ≤ 1.5mm (defor-
mation field resolution) as seen from the histogram. A paired t-test between
ANTs and GPNLPerf was done. The p-value was less than 0.001 and the 95 %
confidence interval for the difference between ANTs and GPNLPerf results was
0.072 to 0.24 showing statistically significant improvement in alignment using
GPNLPerf.

3.2 Intensity Trend Error

Another metric that we use to quantify registration accuracy is to compare inten-
sity trends observed post NRR to Ground Truth [GT] trends. This metric would
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Fig. 5. Effect of registration at landmark locations (9 datasets: 4 landmarks, 294 land-
marks in total). Scatter Plot: ANTs and GPNLPerf have brought about greater spa-
tial coherence around landmark locations after registration. It can be seen that ANTs
(red circles) has resulted in gross errors in a few cases. Histogram: a consolidated
histogram of errors with a Gaussian fit for before NRR, ANTs, GPNLPerf errors is
shown. GPNLPerf has resulted in lesser, tighter errors compared to ANTs.

Fig. 6. Intensity trend compared to GT trend. For an example case, we see that the
temporal intensity profile in the homogenous region closely matches the GT profile
after registration (Left). The bar plot (on 9 cases, 15 TPs, 2 LMs) and statistics shows
that GPNLPerf trend has matched well with the GT trend compared to ANTs.

additionally catch distortions introduced to the contrast dynamics. We evaluated
the error between expert marked intensity profile (LM in homogeneous regions
tracked by the expert over time) and profile post NRR at the LM location. On
9 datasets with two LMs each in the homogenous myocardium, the error with
respect to the GT profile is seen to have reduced post NRR (Fig. 6, bar plot on
the Right). GPNLPerf shows clearly better alignment (μ = 6.5, σ = 11.7) (on 9
cases, 15 TPs, 2 LMs) with the GT intensity profile compared to ANTs.

3.3 Perfusion Maps

Here, we do a qualitative assessment of the resulting perfusion maps. The
perfusion maps were derived using a deconvolution algorithm based on the
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Fig. 7. Shown MBF computed before (Top row) and with GPNLPerf (Bottom row)
for a few studies. MBFs after GPNLPerf seem more clinically relevant. (Color figure
online)

Lawrence-Lee tissue model [9]. In Fig. 7, Myocardial blood flow (MBF) LUT
of all screen captures have same color code (rainbow) and same threshold (0–
250). GPNLPerf images show much better uniformity within the MBF whereas
original images due to motion, show much wider values: very high values - red
- due to cardiac cavity (both left and right ventricles) contamination and very
low values - dark blue - because of pericardiac fat contamination. Thus, MBF
estimations provided after GPNLPerf maps seem more clinically realistic and
relevant.

4 Conclusion

In GPNLPerf, a fully automatic end-end solution for addressing the motion
challenges of 4D CT perfusion studies is proposed. Quantitative landmark based
comparison is done with ANTs and better NRR is demonstrated in terms of
alignment and artifacts. Finally, the resulting perfusion maps are seen to be
more clinically realistic after registration.
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