
Model-Based Regularisation for Respiratory
Motion Estimation with Sparse Features

in Image-Guided Interventions

Matthias Wilms(B), In Young Ha, Heinz Handels, and Mattias Paul Heinrich

Institute of Medical Informatics, University of Lübeck, Lübeck, Germany
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Abstract. Intra-interventional respiratory motion estimation has
become vital for image-guided interventions, especially radiation ther-
apy. While real-time tracking of highly discriminative landmarks like
tumours and markers is possible with classic approaches (e.g. template
matching), their robustness decreases when used with non-ionising imag-
ing (4D MRI or US). Furthermore, they ignore the motion of neighbour-
ing structures. We address these challenges by dividing the computation
of dense deformable registration in two phases: First, a low-parametric
full domain patient-specific motion model is learnt. Second, a sparse sub-
set of feature locations is used to track motion locally, while the global
motion patterns are constrained by the learnt model. In contrast to pre-
vious work, we optimise both objectives (local similarity and globally
smooth motion) jointly using a coupled convex energy minimisation. This
improves the tracking robustness and leads to a more accurate global
motion estimation. The algorithm is computationally efficient and sig-
nificantly outperforms classic template matching-based dense field esti-
mation in 12 of 14 challenging 4D MRI and 4D ultrasound sequences.

1 Introduction

Effective respiratory motion compensation is a key factor for successful non-
invasive radiotherapy or High Intensity Focused Ultrasound (HIFU) treatments
of thoracic and abdominal tumours. Recent advances in imaging technologies
have led to the integration of 4D (3D+t) ultrasound (US)- and magnetic res-
onance imaging (MRI)-guidance into HIFU and radiation therapy [1–3]. Com-
pared to traditional motion management using external breathing signals or
X-ray projections, this opens up new possibilities for accurate intra-fraction
motion estimation. However, the intra-interventional images need to be processed
in real-time to control the treatment beam, which excludes the use of accurate
but computationally demanding deformable image registration approaches.

Most published methods for online respiratory motion estimation based on
temporal MRI or US have limitations compared to traditional deformable image
registration algorithms (see [4] for an overview on US tracking). A common
shortcoming is the use of template matching [5–7], which only focuses on a direct
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tracking of the tumour or sparse landmarks (markers, vessels, . . . ) and ignores
the spatial regularity of organ motion. These approaches achieve high compu-
tational speed with good accuracy for the specified template location, but do
not provide an estimate of the motion of other structures, which requires dense
estimation of displacements (e.g. using [8]). Dense displacement fields for the full
patient body can then be reconstructed from the sparse motion vectors using
trained motion models [7,9–12]. So far, sparse feature point matching and dense
motion field reconstruction have been often treated as separate disconnected
tasks (see e.g. [7,10]). We, however, think that prior knowledge about respira-
tory motion should and can be incorporated into the sparse motion estimation
step for improved robustness and accuracy without substantially increasing the
computation time.

We propose a novel, robust, and efficient model-based method for online res-
piratory motion estimation in image-guided interventions that jointly combines
local similarity-based block matching for sparse feature points with a global
patient-specific statistical motion model for regularisation. The resulting min-
imisation problem is efficiently solved using ideas from discrete coupled convex
optimisation for image registration [13]. This enables the use of very sparsely dis-
tributed feature vectors and achieves highly accurate dense displacement fields
for complex respiratory motion (including a natural handling of sliding motion).
Our approach is (to our knowledge) the first non-linear respiratory motion esti-
mation approach that jointly optimises sparse feature point matching and model-
based regularisation with computationally fast discrete optimisation techniques.
In previous work on the joint use of image data and model-based regularisation,
authors either use all the image data available [8,14] instead of sparse features,
perform gradient descent-based optimisation [14], only estimate affine transfor-
mations [14], and/or only compute 2D motion vectors [8].

2 Method

Although being independent of the imaging modality used, we will describe
our method in an MRI-guided radiotherapy scenario for ease of understanding.
Modern integrated MRI linear accelerators are able to acquire (multiple) 2D
slices of the moving patient anatomy in real-time during the treatment [1].

Given a static 3D reference image IR : Ω → Ω (Ω ⊂ R
3) depicting the region

of interest at a reference time point, our goal is to determine a transformation
ϕt = Id + ut : Ω → Ω that describes the deformation of the structures in IR at
treatment time t based on the 2D or 3D moving image frame(s) IM,t : Ω → R

provided by the treatment system. Here, ut represents a dense displacement field.
For computational efficiency, we initially restrict the motion estimation

process to a sparse set of N feature points ΩN = {x1, . . . ,xN}, within the
reference image. Our method aims to find an optimal sparse displacement field
ũt defined at these feature points, which minimises a cost function E(ũt):

E(ũt) =
∑

ΩN

D(IR, IM,t, ũt) + αR(ũt). (1)
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Fig. 1. Graphical overview of the proposed model-based method for respiratory motion
estimation that combines local block matching with a global motion model.

Here, D quantifies the point-wise (dis)similarity between IR(x) and IR,t(x +
ũt(x)) around locations x and R is a regularisation term, which penalises devi-
ations of ũt from plausible solutions and is weighted by α.

In this work, D is based on the self-similarity context descriptor (SSC, cf.
Sec. 2.1) [15] and R is derived from a patient-specific motion model (cf. Sec.
2.2), which is used both for regularisation and the final reconstruction of the
dense displacement field ut given a sparse estimate ũt. Minimising the joint cost
function Eq. 1 is difficult due to its non-linear dependency on ũt. We, there-
fore, propose an efficient coupled convex discrete optimisation approach (cf. Sec.
2.3), which alternately optimises over the dissimilarity distribution of the local
sparse block-matching and the global model-based regularisation (see Fig. 1 for
a graphical overview).

2.1 Sparse Feature Point Detection and Similarity-Driven Block
Matching

The feature points ΩN are automatically selected in the reference image IR

using the Harris/Foerstner corner detector [16] (alternatively, manually defined
landmarks could also be employed). The tracking of ΩN is based on the self-
similarity context descriptor (SSC) [15], which has been chosen for its insen-
sitivity to local changes in image contrast and to image noise as these effects
regularly degrade the quality of interventional images. Furthermore, based on
quantised SSC descriptors SSCR and SSCM,t it allows the definition of a L1

metric [15]

D(xi,yi,t) =
1

|P|
∑

p∈P
Ξ{SSCR(xi + p) ⊕ SSCM,t(yi,t + p)}. (2)

D assesses the similarity of the image contents at feature point xi in IR and
its potentially corresponding location yi,t = xi + di,t in IM,t, which can be
efficiently computed in Hamming space using an XOR operator ⊕ followed by
a bit count Ξ. di,t denotes a displacement vector out of a predefined set of 3D
displacements L (chosen according to the expected motion magnitude). Here,
P is a local 3D block around each location xi or yi for which a block sum is
formed. Using an unrestricted block-matching (minimising Eq. 1 with α = 0),
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the optimal displacement d̂i,t could be directly obtained, resulting in a sparse
displacement field ũt. This outcome might, however, be highly irregular.

2.2 Patient-Specific Motion Model Building

In addition to the reference image IR, we expect a patient-specific dynamic 4D
MRI data set {Ij}j∈{1,...,M} covering a small number of breathing cycles to be
available prior to the intervention to build a statistical motion model. In practise,
this data could be acquired during a short set-up phase.

First, all M images Ij ∈ Ω → R are nonlinearly registered to the refer-
ence image IR, resulting in a set of displacement fields {uj}j∈{1,...,M}. While
being independent of the registration approach in principle, we chose the fast
deeds algorithm [17], as it has demonstrated high accuracy in respiratory motion
estimation tasks, and is able to correctly handle sliding motion.

Second, a principal components analysis (PCA) is applied to the vectorised
displacement fields uj ∈ R

3V (V denotes the number of image voxels) to obtain a
low-parametric representation of the space of plausible displacement fields. PCA
is a widely used technique for respiratory motion modelling [7,9–11] and can be
performed using an eigendecomposition of the sample covariance matrix

C =
1
M

M∑

j=1

(uj − ū)(uj − ū)T = PΛPT , with ū =
1
M

M∑

j=1

uj . (3)

The columns of the orthonormal matrix P ∈ R
3V ×3V are the eigenvectors

of C and the diagonal elements of diagonal matrix Λ = diag(λ1, . . . , λ3V ) ∈
R

3V ×3V are the corresponding eigenvalues in descending order. Aiming at a low-
parametric representation of the space of plausible displacement fields, only the
eigenvectors with the k largest eigenvalues that explain a certain percentage of
variance (here: 95 %) are retained. Displacement fields belonging to the space
spanned by a reduced Pk ∈ R

3V ×k can be generated by u = ū + PkΣkb, with
weights b ∈ R

k and diagonal matrix Σk = diag(
√

λ1, . . . ,
√

λk). We aim to find
an optimal weight vector b that reconstructs a dense displacement field vector
u based on the sparse (vectorised) displacements ũt. This can be achieved by
minimising the ridge regression-like cost function [7,12]:

E(b) = ‖P̃kΣkb − (ũt − ū)‖22 + η‖b‖22. (4)

Here, matrix P̃k ∈ R
3N×k only contains the 3N elements of the k eigenvec-

tors that correspond to the elements present in the sparse displacement field
ũt/ũt. The regularised least-squares cost (Eq. 4) balances a close estimate of
the observed sparse motion and deviations from the mean motion due to noise
and has been frequently used to reconstruct dense displacement fields (e.g. in
[7,10,11]).

2.3 Coupled Convex Optimisation of Model-Based Regularisation

The displacement vectors d̂i,t obtained independent of each other using an
unconstrained block-matching search (Eq. 1 with α = 0) will contain erroneous
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estimates for challenging data. The ridge regression (Eq. 4 with η > 0) can
dampen these errors but may reduce the overall accuracy of the densely recon-
structed field. It will therefore be advantageous to minimise the block-matching
dissimilarity and the model-penalty jointly (see Eq. 1). Due to the nonlinear
dependency on ũt, directly minimising Eq. 1 is difficult. Following [13], a good
approximation to the global optimum can be obtained in few iterations by adding
a coupling term ‖ũt − ṽt‖22 to Eq. 1 and introducing an auxiliary vector ṽt:

E(ũt, ṽt) =
∑

ΩN

D(IR, IM,t, ũt) + θ‖ũt − ṽt‖22 + αR(ṽt) (5)

The optimisation of Eq. 5 is initialised with results of the unconstrained (here:
θ=0) block-matching search ũt, which is used to estimate a first regularised
sparse field ṽt by projecting ũt to the space spanned by the model using Eq. 4.
The weighting parameter α in Eq. 5 is implicitly set through the number of
eigenvectors k used to form Pk. This alternating scheme is iterated using a series
of increasing values of θ. During this process, the two objectives are encouraged
to converge to a similar optimum, while updated estimates of ũt (including
the non-zero coupling term) make use of the full distribution of block-matching
dissimilarities D of Eq. 2 (Eq. 2 only has to be computed once). In contrast to
[13], which used an unspecific Gaussian regularisation, our approach elegantly
incorporates both local uncertainty information from sparse feature points and
a global domain-specific motion model. This enables us to estimate complex
dense motion very efficiently and avoid the negative influence of errors from an
unconstrained block-matching. Note, that this method will correctly estimate
sliding motion, if it was present in the training data. We have used 6 iterations
of the optimisation scheme in our experiments with θ = {0.5, 1.5, 2.5, 10, 50, 100}.

Furthermore, prior knowledge of temporally smooth motion can be included
by adding a second regularisation term β‖ũt − ũt−1‖22 to Eq. 5 that penalises

Table 1. Mean estimation errors with respect to the ground-truth displacement fields
obtained for the different approaches applied on the 4D MRI and US data. Results
are given as mean± standard deviation in mm over all patients and frames included in
each collection. The first row gives the error for all body voxels while the second row
lists only the errors at the feature point locations. For the MRI data, results at voxels
with large mean motion (>80th percentile of each case) are given for comparison (3rd
row).

Data Motion GT BM BM Model- Model

recon. η = 0 η > 0 based & temporal

4D MRI experiments

All voxels 1.76 ± 0.39 0.74 ± 0.26 1.76 ± 0.38 1.09 ± 0.31 0.87 ± 0.26 0.87±0.26

Feature pts. 1.70 ± 0.40 0.57 ± 0.14 1.28 ± 0.31 0.90 ± 0.34 0.69 ± 0.15 0.69±0.15

Large mot. 4.48 ± 1.21 1.31 ± 0.56 3.12 ± 0.75 2.01 ± 0.48 1.64 ± 0.66 1.66±0.67

4D US experiments

All voxels 4.22 ± 1.14 1.07 ± 0.27 7.29 ± 1.59 2.82 ± 0.89 2.20 ± 0.81 1.86±0.64

Feature pts. 3.82 ± 1.40 0.66 ± 0.28 4.19 ± 1.29 2.48 ± 1.03 1.77 ± 0.84 1.38±0.57
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deviations of motion vectors compared to the previous frame in the sequence. The
weighting parameter β should be chosen according to the expected inter-frame
differences of the motion and the image noise level (here: β = {0, 0, 0, 0, 5, 10}).

3 Experiments and Results

Experiments on 5 thoracic/abdominal 4D MRI data sets and 9 liver 4D US
data sets are performed to show the benefits of our new model-based respiratory
motion estimation approach when compared to separate block matching and
dense displacement field reconstruction. The 14 4D data sets are used to mimic
the online motion estimation process in MR/US-guided treatment scenarios. A
subset of each data set is used to train a patient-specific motion model while the
remaining images serve as intra-interventional data.

Data: The 4D MRI data collection contains 3 data sets from our own fund
and 2 publicly available data sets [11]. Each sequence consists of 157 – 200 3D
images (see Fig. 1 for example slices) acquired with a temporal resolution of
200 – 500 ms, an isotropic in-plane spatial resolution of 1.2 – 3.9 mm, and an
inter-slice distance of 5 – 10 mm. The 4D US data collection used here is a
subset (data sets SMT-01 – 09) of the CLUST challenge data [4]1. Each data set
consists of 96 – 97 3D frames acquired at 8Hz with an isotropic spatial resolution
of 0.70mm.

Experimental Design: The first image in each MRI/US sequence is chosen
as the reference image for an inter-sequence registration using deeds (cf. Sec.
2.2). The first third (MRI)/half (US) of the resulting displacement fields are
used to build the patient-specific motion models. The remaining fields serve as
ground-truth data for the quantitative evaluation. Their accuracy was evaluated
on a subset of the data with a small number of manually defined landmarks.
Landmark errors were in the range of 1mm (MRI, in-plane)/1 – 2mm (US) for
landmarks with an average mean motion of 4 mm (MRI)/6 mm (US).

Our model-based algorithm is then employed to estimate the motion between
the reference image and each image not used for model formation based on 250 –
300 (MRI)/70 – 80 (US) automatically determined feature points (cf. Sec. 2.1).
For the MRI data, feature point selection and block matching are restricted to
5 – 10 equidistantly spaced 2D slices to simulate the sparse data acquired by
an MR scanner during the treatment. We quantitatively assess the estimation
accuracy by computing mean vector differences between the estimated fields and
the ground-truth fields for all inner-body voxels/feature point locations. Due to
the large inter-slice distances out-of-plane motion is ignored for MRI data sets.

Results: The results of our experiments are summarised in Table 1. In addition
to two versions of our algorithm (model-based regularisation and model-based
regularisation + temporal constraint (cf. Sec. 2.3)), Table 1 list results for an
unrestricted block matching followed by a dense field reconstruction (BM) with

1 We thank the CLUST challenge organisers for providing the US data.
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Fig. 2. Mean motion estimation errors obtained for different frames of the SMT-06 US
data set at the feature point locations. The advantage of the model-based regularisation
with additional temporal constraint is clearly seen starting from frame 20.

η = 0/optimised η > 0 (cf. Eq. 4, [7]). The η parameter controls the amount of
regularisation during least-squares fitting and was patient-specifically optimised
with respect to the mean error over all frames. For comparison, the motion to
be compensated and the error obtained by performing an optimal model-based
least-squares reconstruction of the dense ground-truth field (GT recon.) is given.

From Table 1 and Fig. 2, it can be seen that the unrestricted BM with η = 0
leads to unsatisfactory results due to large outliers present in the sparse field.
Their effect is substantially reduced by using η > 0 for dense field reconstruction.
Including our proposed coupled optimisation with model-based regularisation
outperforms both BM approaches (η = 0 & η > 0) in a statistically significant
way (paired t-test, p < 0.05) in 86 % of the cases (12 of 14). The differences in
Table 1 between BM (η = 0 & η > 0) and model-based regularisation for the US
experiments are also statistically significant, whereas the differences for the MRI
experiments and η > 0 are not. Table 1 and Fig. 2 also show the advantages of
incorporating the temporal constraint into the optimisation for the US experi-
ments due to the low image quality that leads to severe inter-frame differences.
Computationally, our approach needs 0.5–4 s to process each frame on a six-core
Xeon CPU. Most of the time is spent for the BM and the SSC descriptor calcu-
lations, which could be easily transferred to the GPU with substantial speed-up,
whereas the overhead for the coupled optimisation is minimal.

4 Conclusion

In this work, a novel model-based method for online respiratory motion esti-
mation in image-guided interventions has been presented. The approach com-
bines local similarity-based block matching for sparse feature points and a global
motion model for regularisation. The resulting cost function is efficiently min-
imised by using a coupled convex discrete optimisation scheme. Our experiments
show that this approach significantly outperforms decoupled template matching
and dense motion field reconstruction methods implemented in the same frame-
work.



96 M. Wilms et al.

The evaluation in this paper serves as a first proof-of-concept and further
experiments on additional data would strengthen our findings. However, we
expect the relative performances of the different approaches to remain the same.
Future work will also include the integration of more sophisticated feature selec-
tion approaches, which might further improve the estimation accuracy.

Acknowledgments. This work is partially funded by the German Research Founda-
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