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Abstract. Robust cell detection in histopathological images is a cru-
cial step in the computer-assisted diagnosis methods. In addition, recent
studies show that subtypes play an significant role in better characteriza-
tion of tumor growth and outcome prediction. In this paper, we propose
a novel subtype cell detection method with an accelerated deep convo-
lution neural network. The proposed method not only detects cells but
also gives subtype cell classification for the detected cells. Based on the
subtype cell detection results, we extract subtype cell related features
and use them in survival prediction. We demonstrate that our proposed
method has excellent subtype cell detection performance and our pro-
posed subtype cell features can achieve more accurate survival prediction.

1 Introduction

Analysis of microscopy images is very popular in modern cell biology and medi-
cine. In microscopic image analysis for computer-assisted diagnosis methods,
automatic cell detection is the basis. However, this task is challenging due to (1)
cell clumping and background clutter, (2) large variation in the shape and size of
cells, (3) time consuming because of the high resolution in the histopathological
images.

To solve these problems, Arteta proposes a general non-overlapping extremal
regions selection (NERS) method [1], which achieves the state-of-the-art cell
detection performance. Recently, to fully exploit the hierarchical discriminative
features learned from deep neural networks, especially deep convolution neural
networks (DCNN), many DCNN-based cell detection methods [7,8,11] are pro-
posed. These methods regard DCNN as a two-class classifier to detect cells in a
pixel-wise way.

Recent studies show that different cell types (tumor cells, stromal cells, lym-
phocytes) play different roles in tumor growth and metastasis, and accurately
classifying cell types is a critical step to better characterization of tumor growth
and outcome predictions [2,9,13]. However, to the best of our knowledge, there
is no existing automatic microscopic subtype cell analysis method with DCNN.
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In this paper, we propose a subtype cell detection method with accelerated
deep convolution neural network. Our contributions are summarized as three
parts: (1) Our work proposes a subtype cell detection method, which can detect
cells in the histopathological images and give subtype cell information of the
detected cells at the same time. To the best of our knowledge, this is the first
study to report subtype cell detection using DCNN. (2) We introduce the d-
regularly sparse kernels [6] to our method to elimination all the redundant com-
putation and to speed up the detection process. (3) A new set of features based
on the subtype cell detection results are extracted and used to give more accurate
survival prediction.

2 Methodology

Our approach for subtype cell detection is to detect cells in histopathological
images and give the subtype information of detected cells at the same time.
To accomplish this, cell patches extracted according to their annotations are
used to train two partially shared-weighted DCNN models for classification: one
for cell/non-cell classification, the other for subtype cell classification. Then we
apply sparse kernels in the two DCNN models to eliminate all the redundant
computations so that detection of cells and subtypes for a tile can be done in one
round. Then we integrate the two DCNN models into one subtype cell detection
model for subtype cell detection. After that, we extract subtype cell features
from the subtype cell detection results.

2.1 Training Two DCNNs for Classification

Given two sets of training data: the cell and non-cell patches{
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where L is the loss function, Hc and Hs are the outputs for cell/non-cell DCNN
and subtype DCNN, θc1 . . . θcL, and θs1 . . . θsL are the weights of layers indexed
from 1 to L in these two DCNN models.

Since the training dataset (Xs,Ys) are for subtype cell patches and in real
world application, it is harder to manually annotate the subtypes of cells, it is
common that we have less subtype cell patches for training than cell/noncell
patches, i.e. Xs ⊂ Xc. In DCNN, the convolution layer and pooling layer operate
together to extract hierarchical features from training images and the fully-
connected layers and loss function layer mainly work for solving the classification



642 S. Wang et al.

task. To avoid the insufficiency and imbalance of subtype cell patches, meanwhile
use the better convolution features learned from more cell/non-cell patch images,
we use all convolution layer feature learned from Eq. (1) and keep them from
changing when training the subtype DCNN model via optimization in equation
Eq. (2). Suppose that all the convolution related layers are indexed from 1 to
j − 1, then Eq. (2) becomes

argmin
θsj ,...,θsL

1
Ns

ΣNs
i=1L(Hs(xi; θsj , . . . , θsL), yi). (3)

We keep the weights in convolution layers unchanged in the whole DCNN train-
ing process. Thus, by Eqs. (1) and (3), we train our two DCNNs for cell/non-cell
classification and subtype cell classification.

2.2 Accelerated Detection with d-Regularly Sparse Kernel

The traditional pixel-wise detection method requires the patch-by-patch sliding
window scanning for every pixel in the image. It sequentially and independently
takes cell patches as the inputs of DCNN model and the forward propagation is
repeated for all the local pixel patches. However, this strategy is time consuming
due to the fact that there exists a lot of redundant convolution operations among
adjacent patches.

To eliminate the redundant convolution computation, we introduce the d-
regularly sparse kernel technique [6] for convolution, pooling and fully-connected
layers in our DCNN models. The d-sparse kernels are created by inserting all-zero
rows and columns into the original kernels to make every two original neighboring
entries d-pixel away. We apply the d-sparse kernel for all the original convolution,
pooling and fully-connected layers.

After applying d-regularly sparse kernel into our model, our model can take a
tile as input for subtype cell detection in one run instead of computing one patch
at each time. In our subtype cell detection model and experiments, we have three
subtype cells: lymphocyte, stromal cell and tumor cell, so the subtype cell DCNN
model is a three-class classification model. The network structure used for our
model is the same as basic LeNet [5] (Two convolution-pooling combinations and
then two fully-connected layers) with input patch size as 40×40 for training and
551 × 551 for testing after padding.

2.3 Subtype Cell Detection

Our subtype cell detection model is shown in Fig. 1. Since we apply the d-
regularly sparse kernel into our model, the tile image can be taken as the input
of our model for processing at each time. After the shared convolution and pool-
ing operations, we have two branches according to each DCNN that have been
trained. The above branch is for cell detection. After the softmax layer, we have
the cell probability of the tile image. The next operation can be any method
which maps the probability map into the final detection result. In our model, we
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Fig. 1. Subtype Cell Detection. C stands for the multiple shared convolution and pool-
ing layers between the two models. F stands for fully-connected layer and S stands for
softmax layer.

use the moment centroid based method to get our final cell detection result. The
other branch is the DCNN for subtype cell classification. It gives the probability
of all the subtypes for each pixel in the tile. In the end, the results of the two
branches are merged by simply multiplying as the final subtype cell detection
results.

2.4 Subtype Cell Features for Survival Prediction

According to recent studies, accurately classifying cell types is a critical step
to better characterization of survival prediction. Thus, three groups of cellular
features are extracted from our subtype cell detection result for survival pre-
diction. These features, motivated by [12,14], cover cell-level information (e.g.,
appearance and shapes) of individual subtype cells and also texture properties
of background tissue regions.

Holistic Statistics: The four holistic statistics include overall information like
the total area, perimeter, number and the corresponding ratio of each subtype
cells. Geometry Features: Geometry properties including area, perimeter and
so on are calculated from each detected subtype cell with its detection region
in the prediction map. Zernike moments are also applied on each type of cells.
When combine with different tiles, we calculate mean, median and std. of each
feature. There are 564 features. Texture Features: This group of features con-
tains Gabor “wavelet” features, Haralick, and granularity to measure texture
properties of objects (e.g., cells and tissues), resulting in 1685 texture features.

3 Experiments

We evaluated our subtype cell detection model via two experiments: subtype cell
detection and survival prediction with subtype cell features. All experiments are
conduced on a workstation with Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz
CPU, 32 gigabyte RAM and two NVIDIA Tesla K40c GPUs.
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3.1 Subtype Cell Detection

The subtype cell detection performance of the proposed method is evaluated
on the part of TCGA (The Cancer Genome Atlas) data portal. We use 300
512 × 512 lung cancer tiles with subtype cell annotations as datasets, 270 for
training and 30 for evaluation. All the tiles are annotated by a pathologist.
For cell/noncell classification, we have 48562 patches for training and 5158 for
testing. We have three subtypes cell in our dataset: lymphocytes, stromal cells
and tumor cells. For subtype cell classification, we use 24281 patches (11671
lymphocytes, 10225 tumor cells and 2385 stromal cells) for training and 2579
patches (1218 lymphocytes, 1122 tumor cells and 239 stromal cells) for testing.

For cell/noncell detection, we compare our proposed method with NERS [1]
and the robust lung cancer cell detection (RLCCD) method based on pixel-
wise DCNN [8]. A detected cell centroid is considered to be a true positive
(TP ) sample if the circular area of radius 8 centered at the detected nuclei
contains the ground-truth annotation; otherwise, it is considered as false positive
(FP ). Missed ground-truth dots are counted as false negatives (FN). The results
are reported in terms of F1 score F1 = 2PR/(P + R), where precision P =
TP/(TP + FP ) and recall R = TP/(TP + FN).

The average precision, recall, F1 score and time consuming on the testing
tiles for the three methods are listed in Table 1. Among these methods, the
proposed has higher precision, recall and F1 score. It demonstrates that the
proposed method can ensure excellent detection performance. Among the time
consumings, the proposed method is the fastest method. By applying d-regularly
sparse kernel, the proposed method is around 80 times faster than pixel wise
detection with DCNN. Our convolution kernel sizes in both training model and d-
regularly sparse kernel are much larger than those in RLCCD [8]. If the proposed
method uses the same kernel settings as RLCCD, it will be much faster.

Our subtype cell classification accuracy on the testing set is 88.64 %. 2286
of 2579 subtype cells in the testing dataset has been detected. If one subtype
ground truth corresponds to multiple detection results, we choose the nearest
detection and set its subtype result as the final result. Then for all the sub-
type detection results, the accuracy is 87.18 %. The accuracies for lymphocytes,
tumor cells and stromal cells are 88.05 %, 87.39 % and 81.08 % respectively. It
demonstrates that our method achieves impressive subtype cell detection per-
formance. In addition, we show one of the subtype cell detection results in Fig. 2
with red points for lymphocytes, yellow points for tumors and green ones for
stromal cells. Obviously, our detection results are close to the ground truth.

Table 1. Cell detection results

Method Precision Recall F1 score Time(s)

NERS [1] 0.7990 0.6109 0.6757 31.4773

RLCCD [8] 0.7280 0.8030 0.7759 52.8912

Proposed 0.8029 0.8683 0.8215 0.7147
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Fig. 2. Subtype cell detection results. Red dots stand for lymphocytes, yellow dots
stand for tumor cells and green dots stand for stromal cells.

To the best of our knowledge, this is the first study to report subtype cell detec-
tion using fast DCNN. Then we extract features from the subtype cell detection
results with the corresponding probability map for survival prediction in order to
further evaluate our subtype cell detection performance in the next subsection.

3.2 Survival Prediction

For survival prediction, we focused on the widely used lung cancer dataset
NLST (National Lung Screening Trial). The NLST dataset contains complete
patients’ pathology images. We collect data from 144 adenocarcinoma (ADC)
and 113 squamous cell carcinoma (SCC) patients. To examine whether the fea-
tures extracted from subtype cell detection from our proposed and trained model
can achieve better predictions than traditional imaging biomarkers, we evaluated
with the state-of-the-arts framework in lung cancer [10] which doesn’t use the
subtype cell features.

To test our proposed features, we randomly divided the whole NLST dataset
into training (97 for ADC, 76 for SCC) and testing set (47 for ADC, 37 for SCC)
and built multivariate Cox regression on the top 50 selected features for ADC
and SCC, respectively. Figure 3 presents the predictive power on a partitioning
into two groups on testing set ((a), (b) for ADC, (c), (d) for SCC). A significant
difference (Wald-Test) in survival times can be seen in Fig. 3(a),(c). It demon-
strates that our proposed features extracted from subtype cell detection results
which cover subtype cell distributions and granularity are more associated with
survival outcomes than traditional imaging biomarkers used in [10].

Then we randomly divide the whole set to 50 splits and use the concordance
index (C-index) to show the prediction performances of two methods. The C-
index is a nonparametric measurement to quantify the discriminatory power
of a predictive model: 1 indicates perfect prediction accuracy and a C-index
of 0.5 is as good as a random guess. Component-wise likelihood based boosting
(CoxBoost) [3] and random survival forest (RSF) [4] are both applied as survival
models on ADC and SCC cases. From Fig. 4, we can see the higher median C-
index of the proposed method in both cases. This illustrates the robustness of
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Fig. 3. Kaplan-Meier survival curves of two groups on testing set. The x axis is the
time in days and the y axis denotes the probability of overall survival. (a), (c) are from
proposed framework while (b), (d) are from Wang’s method [10].

CoxBoost RSF CoxBoost RSF

Fig. 4. Boxplot of C-index distributions (Left: ADC, Right: SCC)

the proposed subtype cell features since the subtype cell features are highly
associated with tumor growth and survival outcomes.

4 Conclusion

In this paper, we propose a subtype cell detection method with an accelerated
deep convolution neural network. The proposed method can detect the cells in
the histological image and give the subtype cell information at the same time.
By applying sparse kernel, the proposed method can detect subtype cells of



Subtype Cell Detection with an Accelerated Deep Convolution 647

the tile image in one round. We also present a set of features extracted from
subtype cell detection results and use them in survival prediction to improve the
prediction performance. Experimental results show that our proposed method
can give good subtype cell detection and that the corresponding subtype features
we extract are more associated with survival outcomes than traditional imaging
biomarkers.
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