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Abstract. Cardiac segmentation is commonly a prerequisite for func-
tional analysis of the heart, such as to identify and quantify the infarcts
and edema from the normal myocardium using the late-enhanced (LE)
and T2-weighted MRI. The automatic delineation of myocardium is how-
ever challenging due to the heterogeneous intensity distributions and
indistinct boundaries in the images. In this work, we present a multi-
variate mixture model (MvMM) for text classification, which combines
the complementary information from multi-sequence (MS) cardiac MRI
and perform the segmentation of them simultaneously. The expecta-
tion maximization (EM) method is adopted to estimate the segmenta-
tion and model parameters from the log-likelihood (LL) of the mixture
model, where a probabilistic atlas is used for initialization. Furthermore,
to correct the intra- and inter-image misalignments, we formulate the
MvMM with transformations, which are embedded into the LL frame-
work and thus can be optimized by the iterative conditional mode app-
roach. We applied MvMM for segmentation of eighteen subjects with
three sequences and obtained promising results. We compared with two
conventional methods, and the improvements of segmentation perfor-
mance on LE and T2 MRI were evident and statistically significant by
MvMM.

1 Introduction

Assessing variability of the myocardium is essential in diagnosis and treatment
management of patients who suffer from myocardial infarction [1]. Cardiac MRI
sequences are widely used in clinics, in particular the LE sequence which visual-
izes the infarcts, the T2-weighted MRI which provides imaging of the acute injury
and ischemic regions, and the balanced-Steady State Free Precession (bSSFP)
cine sequence which captures cardiac motions and presents clear boundaries.
Cardiac segmentation, mainly on the endocardium and epicardium of the left
ventricle (LV), is a common prerequisite in quantifying and analyzing patholog-
ical conditions of the heart.

However, while manual segmentation is time-consuming and subject to inter-
observer variations, developing a fully automatic method is still arduous, espe-
cially for the LE sequence. Besides the great variations of the heart shape across
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different subjects, there are three issues related to the intensity distributions of
the images, which challenge the conventional Gaussian mixture model (GMM)-
based classification methods. Firstly, the intensity of the myocardium in LE or
T2 MRI is heterogeneous due to the existence of the enhanced infarcts (in LE) or
injuries (in T2). Similarly, the background of cardiac images generally includes
the lung, chest skin, liver and stomach. These regions however have different
intensity distributions and cannot be described by one simple intensity distrib-
ution model. Secondly, the patterns of intensity heterogeneity are complex. For
example, the location and size of scars can differ greatly across different patients.
Hence, it is difficult to predict or make assumption of the location and geometry
of them. Finally, the intensity range of one tissue can fully overlap that of its
surroundings. For example, in LE images, the myocardial infarcts have similar
intensity range to that of the blood pool, leading to indistinguishable boundaries
between the infarcts and blood pools. Figure 1 provides the images of the three
sequences superimposed on with myocardial contours.

Previous works are mainly manual or semi-automatic to achieve myocardium
segmentation from LE MRI [2], or to propagate the segmented myocardium from
the bSSFP sequence as a hard constraint for the segmentation of scars [3,4].
In this work, we propose to combine the complementary information from MS
cardiac images and perform the segmentation of them simultaneously within a
unified framework. We develop the MvMM for text classification, which considers
the MS MRI as a segmentation problem of multivariate images.

Furthermore, the slices from the same or different MRI sequences of a patient
can be misaligned due to body motions, referred to as motion shifts. An atlas
is used to provide prior knowledge for segmentation and the atlas can also be
misregistered to the MRI images. To correct them, we formulate the MvMM
with transformations, assigned to each slice of the MRI images as well as to the
atlas, for accurate registration to a common 3D space. All the transformations
are embedded into the LL maximization framework of the MvMM, and the two
groups of parameters can be optimized by the iterative conditional modes (ICM)
method.

In this framework, the indistinct boundaries such as these between scars and
blood pools in LE can be delineated under the guidance of the T2 and bSSFP,
and vice versa. Also, the misalignments can be corrected by the combination of
the multivariate images.

2 Method

The goal of the method is to segment the endocardium and epicardium of the
LV from the MS MRI images, particularly the LE MRI.

Let Î = {Ii|i=1...NI
} be the set of NI MS MRI images which are acquired from

the same subject. We denote the spatial domain of the region of interest (ROI) of
the subject as Ω, referred to the common space which is defined to the coordinate
of the patient and thus defined by the combination of the MS images in this
formulation. For a location x ∈ Ω, the tissue class of x, i.e. LV, right ventricle
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Fig. 1. Segmentation results of the three cardiac MRI sequences, (a) bSSFP, (b) T2-
weight, (c) LE, by the proposed MvMM method; the LE segmentation results by atlas
propagation (d), conventional GMM (e) and the Mvmm� without registration correc-
tion. Note that the original MRI images have motion shifts and the corrected images
are presented in the green boxes of (a)-(c).

(RV) or background, is determined regardless the appearance of the MRI images.
We denote this tissue type using a label, namely s(x)=k, k ∈ K. Provided the
MS images are all aligned to the common space, the label information for each
image is the same, but the intensity appearance and classification of subtypes
can be different. For example, the myocardial scars have different intensity values
to the normal myocardial tissue in the LE sequence, while their intensity values
are similar in the bSSFP sequence. We denote this subtype of a tissue k in image
Ii as zi(x) = c, c ∈ Cik.

2.1 MvMM and LL for Multivariate Image Segmentation

For a single image, one can use the mixture of Gaussian to model the intensity
distributions, namely the GMM method, where the intensity probability den-
sity function (PDF) of one tissue is given by a Gaussian function. For a tissue
with multiple subtypes, the multi-component GMM can be used [5]. To segment
the MS images, referred to as multivariate image segmentation, we formulate a
MvMM, which can also assign multiple components to a tissue for specific MRI
images.

The likelihood (LH) of the model parameters θ in multivariate image segmen-
tation is given by LH(θ; Î) = p(Î|θ), similar to the GMM for tissue classification,
where Î = {I1, . . . INI

} is the multivariate image vector. Assuming independence
of each location (pixel), one gets LH(θ; Î) =

∏
x∈Ω p(Î(x)|θ). In the EM frame-

work, the label and component information are considered as hidden data. Let Θ
denotes the set of both hidden data and model parameters. Hence, the likelihood
of the complete data is given by,

p(Î(x)|Θ) =
∑

k∈K

πkxp(Î(x)|s(x)=k,Θ) , (1)
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where, πkx = p(s(x)=k|Θ) = pA(s(x)=k)πk/NF , pA(s(x)=k) is the atlas prior
probability, πk is the label proportion, and NF is the normalization factor.

When the tissue type of a position is known, the intensity values from dif-
ferent images then become independent,

p(Î(x)|s(x)=k,Θ) =
∏

i=1,...NI

p(Ii(x)|s(x)=k,Θ) . (2)

The intensity PDF of an image, p(Ii(x)|s(x)=k,Θ), is given by the conventional
multi-component GMM, as follows,

p(Ii(x)|s(x)=k,Θ) =
∑

c∈Cik

τikcΦikc(μikc, σikc, Ii(x)) , (3)

where, τikc = p(zi(x)=c, s(x)=k|Θ), s.t.
∑

c τikc = 1, is the component propor-
tion, and Φikc(·) = p(Ii(x)|zi(x) = c,Θ) is the Gaussian function to model the
intensity PDF of a tissue subtype c belonging to a tissue k in the image Ii.

To estimate the Gaussian model parameters and then segmentation varaibles,
we employ the EM to solve the LL and rewrite it as follows,

LL =
∑

x

∑

k

δs(x),k

⎛

⎝log πkx +
∑

i

∑

cik

δzi(x),cik
(log τikc + log Φikc(Ii(x)))

⎞

⎠ , (4)

where δa,b is the Kronecker delta function.

E-Step: We obtain the expectation of LL by computing the expectation of δs(x),k

and δs(x),kδzi(x),cik
, as follows,

P
[m+1]
kx = E(Î,Θ[m])

(
δs(x),k

)
= p(s(x)=k|Î , Θ[m])

=
p(Î(x)|s(x)=k,Θ[m])πm

kx∑
l∈1...K p(Î(x)|l, Θ[m])πm

lx

P
[m+1]
ikcx = E(Ii,Θ[m])

(
δs(x),kδzi(x),cik

)
= p

(
zi(x) = cik|Î , Θ[m]

)

=
Φ(μikc, σikc, Ii(x))τikcP

[m+1]
kx

p(Ii(x)|k,Θ[m])

(5)

M-Step: We compute the model parameters by analytically solving the maxi-
mization problem of LL given the posteriors from the E-step,

τ
[m+1]
ikc =

∑
x∈Ω P

[m+1]
ikcx

∑
d∈Cik

∑
x∈Ω P

[m+1]
ikdx

μ
[m+1]
ikc =

∑
x∈Ω Ii(x)P

[m+1]
ikcx

∑
x∈Ω P

[m+1]
ikcx

(σ[m+1]
ikc )2 =

∑
x∈Ω(Ii(x)−μ

[m+1]
ikc )2P

[m+1]
ikcx

∑
x∈Ω P

[m+1]
ikcx

.

(6)

For π
[m+1]
k , we compute

∂LL

∂πk
=

∑

x

P
[m+1]
kx

πk
−

∑

x

∑

j∈K

P
[m+1]
jx pA(s(x)=k)

∑
l∈K pA(s(x)=l)πl

= 0. (7)
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Since there is no close form for the solution, for simplicity we regard C[m]
x =

∑
l∈K pA(s(x)= l)πl as a constant using πl = π

[m]
l in the [m+1]th iteration,

which results in

π
[m+1]
k =

∑
x P

[m+1]
kx

∑
x

(
pA(s(x)=k)/C[m]

x

) . (8)

This also guarantees to improve the LL [6].
Initialization of π

[0]
k , τ

[0]
ikc, μ

[0]
ikc and σ

[0]
ikc are computed based on the propa-

gated probabilities from an atlas to each image of the MS MRI [5].

2.2 Multivariate Image Segmentation with Registration Correction

There are two kinds of misalignments in the MS MRI segmentation framework.
Firstly, the motion shift of each slice is commonly seen in the multi-slice cardiac
MRI, besides the misalignment of the whole image volume to the common space
of the subject. Secondly, the atlas, providing the prior probabilities, can be mis-
registered to the common space.

The motion shift of a slice can be modeled by an affine transformation {Gi,s},
leading to reformulation of the intensity likelihood of a subtype tissue as follows,

p(Ii(x)|cik, Θ, {Gi,s}) = Φikc(Ii(Gi,s(x))). (9)

The atlas deformation, D, can be embedded into the prior probabilities,

pA(s(x)=k|D) = pA(s(D(x)) = k) = Ak(D(x)), k = 1 . . . K , (10)

which are the probabilistic atlas images. The original LL then becomes,

LL(Θ, D, {Gi,s}) =
∑

x∈Ω

log
∑

k

p(s(x)=k|D)
∏

i

∑

cik

τikcΦikc(Ii(Gi,s(x)))

=
∑

x∈Ω

log LH(x).
(11)

Here, we define the prior to p(s(x)=k|D) = Ak(D(x))πkx/N , where N is the
normalization factor [7].

2.3 Optimization

There is no close form solution for minimization of (11). Since the Gaussian
parameters are dependent on the values of the transformation parameters, and
vice versa, one can use the ICM approach to solve this optimization problem,
which is eventual a coordinate ascent method in this formulation [8]. The ICM
scheme optimizes one group of parameters while keeping the others static at each
iteration. The different groups of parameters are alternately optimized and this
alternation process iterates until a local optimum is found. In this work, the mix-
ture model parameters are updated using the EM algorithm (Sect. 2.1) and the
transformation parameters are optimized using the gradient ascent method. The



586 X. Zhuang

derivatives of LL with respect to the shift transformation and atlas deformation
are respectively given by,

∂LL

∂Gi,s
=

∑

x

1
LH(x)

∑

k

p(s(x) = k|D)
∏

j �=i

{p(Ij(x)|s(x)=k)|

·∑c(τikcΦ
′
ikc∇Ii(y)∇Gi,s(x))}

where y = Gi,s(x), and

∂LL

∂D
=

∑

x

1
LH(x)

∑

k

∂p(s(x) = k|D)
∂D

p(Î(x)|s(x)=k), (12)

where the computation of ∂p(s(x)=k|D)
∂D is related to ∂Ak(D(x))

∂D ,

∂Ak(D(x))
∂D

= ∇Ak|y=[y1,y2,y3] ×
[
∂y1
φd

,
∂y2
φd

,
∂y3
φd

]T

. (13)

Here, y = D(x) and {φd} are the free-form deformation parameters [9].

3 Results

We applied the proposed method to cardiac segmentation of the three MRI
sequences, namely LE, bSSFP and T2 MRI, from 18 patients who underwent
cardiomyopathy. The images were acquired and reconstructed into resolution
about 0.75 × 0.75 mm in-plane and 5 mm slice thickness for LE, 1.25 × 1.25 mm
in-plane and 8 to 12 mm thickness for bSSFP, and 1.35 × 1.35 mm in-plane and
12 to 20 mm thickness for T2. The bSSFP images fully covered the ventricles
from the apex to the basal plane of the mitral valve, with a number of cases
having one to three more slices beyond the apex and the base. The coverage of
the LE and T2 images was only limited to the main middle body of the ventricle.
Figure 1 provides an example.

For comparisons, we included the results using single atlas-based segmen-
tation [10], the conventional GMM segmentation [5], and the MvMM without
registration correction (referred to as Mvmm�). For the atlas-to-image regis-
tration, we used the algorithm specifically designed for cardiac images, which
consists of a three-level hierarchical scheme (affine, locally affine, and free-form
deformation) [10]. For the atlas-to-multivariate image registration, we registered
the atlas to the bSSFP image of each subject using the hierarchical registra-
tion scheme, and aligned the corresponding LE and T2 images to the bSSFP
using the global affine registration. The resulting transformations were used for
initialization of the MvMM registration correction. In both GMM and MvMM
segmentation, we assigned two components to the myocardium of LE and T2-
weight images. Furthermore, since T2 and bSSFP have distinct intensity distri-
bution of myocardium we applied a GMM step to them after the simultaneous
multi-sequence segmentation in MvMM.
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Table 1. This table provides the Dice scores of the atlas-based segmentation (Atlas),
conventional GMM segmentation, the Mvmm� without registration correction, and
the proposed MvMM. Endo: endocardium, Epi: epicardium, Myo: myocardium. The
asterisk (∗) indicates the best result for the sequence.

Dice
bSSFP T2 LE

Endo Epi Myo Endo Epi Myo Endo Epi Myo

Atlas
.902 ±
.031

.922 ±
.016

.711 ±
.056

.699 ±
.180

.851 ±
.116

.521 ±
.201

.815 ±
.137

.856 ±
.095

.587 ±
.168

GMM
.935 ±
.014∗

.933 ±
.013∗

.797 ±
.039∗

.722 ±
.197

.863 ±
.124

.593 ±
.250

.829 ±
.134

.861 ±
.096

.639 ±
.169

Mvmm� .884 ±
.042

.921 ±
.019

.754 ±
.058

.815 ±
.125

.912 ±
.039

.740 ±
.130

.861 ±
.041

.900 ±
.026

.719 ±
.063

MvMM
.910 ±
.024

.922 ±
.019

.770 ±
.057

.830 ±
.124∗

.919 ±
.023∗

.769 ±
.107∗

.878 ±
.039∗

.903 ±
.027∗

.740 ±
.051∗

Figure 1 provides an example for illustration. The proposed MvMM can accu-
rately segment the myocardium of the images even though the motion shifts are
presented among certain slices, as the red arrows points in (a)-(c). The MvMM
can also generate the shift corrected MS images, which are presented in the green
boxes. Figure 1(d)-(f) are the segmentation results of the LE image by the atlas-
based method, the GMM method, and the Mvmm�. The atlas-based method
does not perform well at certain areas. GMM can improve the segmentation,
but still misclassifies parts of the myocardium due to the poor initialization and
enhancement. With the guidance and constraints from the other two sequences,
Mvmm� performs much better, but it still has erroneous delineation due to the
motion shifts, including one slice (the red arrow in (f)) which corresponds to the
shifted slice in bSSFP (red arrow in (a)).

Table 1 presents the Dice scores of the three sequences from the four compared
methods. For the segmentation of LE and T2, MvMM methods performed sig-
nificantly better than the two conventional methods (p < 0.01) and the improve-
ments were evident. For bSSFP, GMM achieved better results. This was probably
due to the fact that the three sequences were not perfectly registered even after
the correction and the segmentation of bSSFP was affected by the constraints
from T2 and LE sequences, which contributes more errors than improvement to
the segmentation of bSSFP in MvMM.

4 Discussion and Conclusion

We have presented a new method, i.e. MvMM, for cardiac segmentation com-
bining the complementary information of MS MRI. The MS images of the same
subject are aligned to a common space and the segmentation of them is per-
formed simultaneously. To correct the misalignments of slices due to motion
shift and the mis-registered atlases, we formulate the LL with transformations
and propose to use ICM to update the different groups of parameters, where the
classification parameters are optimized using the EM algorithm and the transfor-
mations are updated by the gradient ascent method. We evaluated the proposed
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techniques using eighteen pathological datasets. The MvMM myocardium seg-
mentation yielded significantly higher Dice scores, p < 0.01, on the LE and T2
MRI sequences, compared either to the atlas-based segmentation or the con-
ventional GMM method. On the bSSFP sequence, GMM achieved the best Dice
scores. This is because intensity distribution of the myocardium in bSSFP is gen-
erally uniform and distinct, and the registration provides a good initialization.
Finally, we demonstrated that the proposed MvMM achieved mean Dice scores
of .740 ± .051, .769 ± .107, and .770 ± .057 for the myocardium segmentation of
LE, T2 and bSSFP, respectively. In conclusion, MvMM is a generic, novel and
useful model for multivariate image analysis. It has the potential of achieving
good performance in the fully automatic myocardium segmentation from the
cardiac LE and T2 MRI sequences.
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