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Abstract. Accurate knowledge of organ location and tissue attenua-
tion properties are the two essential components to perform radiotherapy
treatment planning (RTP). Computed tomography (CT) has been the
modality of choice for RTP as it easily provides electron density infor-
mation. However, its low soft tissue contrast limits the accuracy of organ
delineation. On the contrary, magnetic resonance (MR) provides images
with excellent soft tissue contrast but its use for RTP is limited by the
fact that it does not readily provide tissue attenuation information.

In this work we propose a multi-atlas information propagation scheme
that jointly segments the organs at risk and generates pseudo CT data
from MR images. We demonstrate that the proposed framework is able
to automatically generate accurate pseudo CT images and segmentations
in the pelvic region, bypassing the need for CT scan for accurate RTP.

1 Introduction

The aim of radiotherapy treatment planning (RTP) is to deliver an optimal
dose of radiation over the target area while sparing the normal tissues. RTP
first requires contouring the target and organs at risk (OARs). Once these vol-
umes have been defined, the optimal dose distribution for treating the tumour is
determined according to the attenuation properties of the different tissues. Most
radiotherapy treatments are planned using an X-ray computed tomography (CT)
scan of the patient. The acquisition of a CT is fast and the tissue attenuation
coefficients can easily be derived from the CT intensity values in Hounsfield
unit (HU). However, CT images have low soft tissue contrast, which can lead
to large variations when delineating the organs, particularly when located in
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the brain, head & neck, or pelvic regions. Magnetic resonance (MR) imaging is
often preferred over CT as a structural imaging modality, mainly for its excel-
lent soft tissue contrast. Although increasingly used in clinical practice, the role
of MR in RTP is currently limited by the fact that it does not readily provide
electron density information, hampering the calculation of dose distributions. In
this work, we propose to tackle the problem of RTP from MR images by devel-
oping a multi-atlas propagation framework to jointly delineate the OARs and
estimate the tissue attenuation properties.

Multi-atlas propagation was first introduced for segmentation purposes [1,2].
The technique relies on a database of atlases composed of an intensity image and
a segmented image. To segment the target image, a first step consists of register-
ing the atlas intensity images to the target intensity image and to apply the same
transformations to the associated segmented images. A second step consists of
fusing the propagated segmented images to generate the target segmentation.
The technique was later extended to the synthesis of images by propagating
intensity images instead of segmented images, for example CT images [3]. Multi-
atlas CT synthesis methods have been developed for RTP [4–6] but only a few
have been applied outside of the brain [7,8].

Even though atlas-based segmentation and CT synthesis methods have been
successfully applied to RTP independently, a key to expand MR-based planning
is to guarantee that the segmentations and pseudo CT generated from the MR
images match each other, i.e. a voxel labelled as bone should have a bone density
value in the pseudo CT image. This is not guaranteed if the segmentation and
CT synthesis tasks are handled separately. Dowling et al. [8] proposed to combine
CT synthesis and segmentation using a database of atlases each composed of an
MR, a CT and a segmented image. The atlas MR images were first registered
to the target MR image and the same transformations were applied to both the
atlas CT and segmented images. A local weighted voting method was then used
to generate the target CT and segmented images. In this paper, we develop an
iterative multi-atlas propagation framework that combines in a single pipeline
segmentation and CT synthesis, with the aim to improve both the segmentation
and synthesis accuracy, and guarantee consistent results.

2 Methods

2.1 Database Building

A multi-atlas database consisting of a T2-weighted and a T1-weighted MR image,
a CT image, and a segmented image for each atlas was created by non-rigidly
registering each subject’s CT and T1 images to their T2 image, after resampling
the MR images to isotropic resolution and intensity non-uniformity correction.
The segmentations were obtained by manually contouring the T2 image. The
number of atlases was artificially increased by left-right flipping the images.
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Fig. 1. Joint segmentation and CT synthesis at iteration t. All the atlases are non-
rigidly registered to the target. A local similarity measure between the mapped atlases
and the target is used to jointly generate a pseudo CT and a segmented image.

2.2 Joint Iterative Segmentation and Image Synthesis

In the proposed iterative framework, a set of probabilistic segmentations and
pseudo CT (pCT) images is jointly generated from the target’s MR images by
registering the atlases to the target, and fusing the atlas segmentations and
CT images according to the similarity between the target and atlases. Similarly
to [9], this set is then combined with the target MR images and used to improve
the subsequent multi-atlas registration and fusion. A diagram illustrating the
proposed method is shown in Fig. 1.

Joint Iterative Label and Intensity Fusion. Let the target subject’s dataset
at iteration t be denoted by It = {IT2, IT1, IpCT

t−1 , IS
t−1} with IT2 and IT1 the T2-

and T1-weighted MR images, and IpCT
t−1 and IS

t−1 the pCT and segmented images
obtained at iteration t − 1. Let the dataset of the nth atlas in the database be
denoted by In =

{
IT2
n , IT1

n , ICT
n , IS

n

}
where ICT

n corresponds to the real CT and
IS
n to the manual segmentation.

The first step of the method consisted of registering each atlas to the target
subject. This inter-subject coordinate mapping was obtained using a symmetric
global registration followed by a cubic B-spline parametrised non-rigid multi-
channel registration as implemented in NiftyReg [10]. The local normalised cross-
correlation was used as a similarity measure for the MR channels while the
sum of squared differences was computed for the CT channel, exploiting the
quantitative property of the CT intensities, and the Kullback-Leibler divergence
for the segmentation channels. At each iteration t, a new transformation Tn,t

that maps atlas n to the target was defined, generating a set of images aligned
to the target: Jn,t =

{
JT2

n,t , J
T1
n,t , J

CT
n,t , JS

n,t

}
where JX

n,t = IX
n (Tn,t(x)).
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The pCT and probabilistic segmentations were then obtained by fusing the
N atlases mapped to the target subject as follows:

IpCT
t (x) =

∑N
n=1 wn,t(x) · JCT

n,t (x)
∑N

n=1 wn,t(x)
, (1)

ISl
t (x) =

∑N
n=1 wn,t(x) · V l

n,t(x)
∑N

n=1 wn,t(x)
with V l

n,t(x) =

{
1 if JSl

n,t(x) = l, l ∈ {1..L}
0 otherwise

.

l indexes through the labels and L is the number of all possible labels. V l
n is

the vote for label l produced by the nth atlas. If required, the categorical label
result L at location x can thus be obtained by estimating L(x) = maxl(ISl(x)).

The weighting factor wn,t(x) was obtained by applying an exponential decay
function to the rank rn,t(x) of the measure used to assess the similarity between
atlas n and the target: wn,t(x) = e−βtrn,t(x). After each iteration, the registration
for all the atlases improves and more atlases can contribute to the fusion. As a
smaller β means that more atlases contribute to the average, we set β to decrease
with the number of iterations (by 0.125 starting from β1 = 0.75).

Note that at the first iteration both the inter-subject mapping and fusion
steps were based on the MR images only.

Convolution-Based Local Similarity Measures. To locally select the
atlases used in the fusion, a combination of two similarity measures computed
between the target and atlases was used. The structural similarity [11] extended
to irregular regions-of-interest (ROI) was computed on the MR and CT channels.
The ROI-SSIM between images I and J at voxel x is given by

ROI-SSIM(I(x), J(x)) =
2μI(x)μJ(x) + C1

μ2
I(x) + μ2

J(x) + C1

2σI,J (x) + C2

σ2
I (x) + σ2

J(x) + C2
. (2)

C1 and C2 are two constants used to improve the stability of the structural
similarity [11]. Let Ω be a density function equal to 1 where the fields of view
(FOV) overlap, and 0 otherwise. The means and standard deviations at voxel x
were calculated using a Gaussian kernel GσG

with standard deviation σG through
density normalised convolution

μI(x) = [GσG
∗I](x)

[GσG
∗Ω](x) , σ2

I (x) = μI2(x) − μ2
I(x), σI,J(x) = μI·J (x) − μI(x) · μJ(x),

where ∗ denotes the convolution operator and GσG
∗ Ω represents a density

normalisation term that compensates for areas with missing information. As the
values of ROI-SSIM are only valid within the bounds of the FOV, values outside
the FOV were set to −∞.

A local fuzzy dice score coefficient (DSC) defined per label l and summed
over all labels was used to asses the local overlap between the segmented images
IS and JS

LDSC(IS(x), JS(x)) =
∑

l∈{1..L}

2min (μISl (x), μJSl (x))
μISl (x) + μJSl (x)

. (3)
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Fig. 2. The categorical segmentations of the prostate (red), bladder (orange), rectum
(green) and femur heads (blue), and the pCTs were obtained from the T1-weighted and
T2-weighted MR images of the patient. Note the increased smoothness of the segmenta-
tions and sharpness of the pCTs between global fusion and local fusion iter 4.

μSl

I was obtained by convolving the segmentation density ISl with the Gaussian
kernel GσG

: μISl (x) =
[
GσG

∗ ISl
]
(x).

The final local similarity measure (LSIM) computed at iteration t between
the target and the nth atlas was obtained by summing the ROI-SSIM com-
puted on the MR and CT channels and the LDSC computed on the segmenta-
tion channel: LSIM(It−1, Jn,t) = ROI-SSIM(IT2, JT2

n,t) + ROI-SSIM(IT1, JT1
n,t) +

ROI-SSIM(IpCT
t−1 , JCT

n,t ) + LDSC(IS
t−1, J

S
n,t).

3 Validation and Results

Data. The proposed framework was evaluated on 15 prostate cancer patients.
Each subject had a T2-(2D spin echo; TE/TR: 80/2500 ms; 1.46×1.46×5 mm3)
and a T1-weighted (2D spin echo; TE/TR: 10/400 ms; 1.64×1.64×5 mm3) MR
image, and a CT image (140 kVp, voxel size 0.98×0.98×1.5 mm3) acquired the
same day. The delineation of the OARs was performed by a qualified clinician.

The performance of the proposed methodology was compared with reference
data for the 15 subjects following a leave-one-out cross-validation strategy. Four
iterations of the pipeline were computed. They are referred to as local fusion iter
t with t = 1, 2, 3, 4. An additional method (global fusion) equivalent to the first
iteration but with a global atlas selection instead of per voxel, i.e. the weights
wn,t in Eq. (1) are not a function of x, was also implemented for comparison
with state-of-the-art [2]. An example of reference data and results obtained with
the global fusion and local fusion iter 1 and 4 are displayed in Fig. 2.

3.1 Segmentation Accuracy

The segmentation accuracy was assessed by computing the fuzzy DSC between
the manual and atlas-based segmentations for the different OARs considered
(bladder, prostate, rectum, and left (L) and right (R) femur heads). Results
displayed in Fig. 3 show a statistically significant improvement for most OARs
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Fig. 3. Boxplots displaying the median, lower and upper quartiles, and minimum and
maximum of the DSC calculated between the manual and atlas-based segmentations
(left); and the MAE computed between the reference and pseudo CTs (right). The stars
indicate a significant improvement between the current and previous measurements.

Fig. 4. 3D representation of the prostate manually delineated and of the probabilistic
segmentations (thresholded at 0.5) obtained with the proposed method. Note how the
smoothness of the segmentations increases with the number of iterations.

between the global and local fusion methods, and between the first and sec-
ond iterations. Statistical significance was assessed using the paired one-tailed
Wilcoxon signed-rank test, with a 5 % significance level. On average for the 4th
iteration of the proposed method, the DSC was 0.90 for the bladder, 0.74 for the
prostate, 0.76 for the rectum and 0.90 for both femur heads. Although the DSC
does not significantly improve after the 2nd iteration, we observed an increase
in the segmentation smoothness when we kept iterating, as illustrated in Fig. 4.

3.2 CT Synthesis Accuracy

The mean absolute error (MAE = 1
V

∑
x |IpCT (x) − RCT (x)|) and the mean

error (ME = 1
V

∑
x IpCT (x) − RCT (x)) were calculated for every subject

between the reference CT non-rigidly aligned to the MR (RCT ) and each of
the pseudo CTs (IpCT ) in an ROI comprising V voxels. In both the full image
and the bone region (delineated by thresholding the reference CT), the MAE
showed a significant decrease in synthesis error between the global and local
approaches, and between each iteration (Fig. 3). The low ME obtained for all
the methods (−3 ± 10 HU on average in the full image and −2 ± 32 HU in the
bone region) demonstrates an absence of bias in the methodology.
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Fig. 5. Left: DVHs obtained for the reference CT (solid lines) and pseudo CT (dash-
dot lines) in the PTV and OARs for a representative subject. Right: Boxplots of the
percentage differences evaluated for several DVH points obtained for 15 subjects.

3.3 Dosimetry Calculations

Dose calculations were performed using the RayStation treatment planning sys-
tem to assess the applicability of the proposed framework for RTP. We com-
pared the cumulative dose volume histogram (DVH) obtained for the pseudo
CT obtained after the 4th iteration (IpCT

4 ) to the DVH obtained for the refer-
ence CT image in the planning target volume (PTV) located in the prostate,
and in the OARs. The same contours were used for the pseudo and reference
CT images. The DVHs displayed in Fig. 5 for a representative subject shows a
close agreement between the doses calculated from the reference and pseudo CT
images. For all the subjects, percentage differences were evaluated for several
DVH points: D98%, Dmean and D2% for the PTV, and Dmean and D2% for the
OARs (bladder, rectum and femur heads). Dx is the dose given to x% of the
structure volume and Dmean is the mean dose given to the evaluated volume.
Results are displayed in Fig. 5. On average for all the DVH points considered,
the percentage difference was less than ± 0.15 % for the PTV and all the OARs.

4 Discussion and Conclusion

This paper presents a joint segmentation and CT synthesis framework for MRI-
only RTP able to automatically generate accurate pseudo CT images and OAR
contours in the pelvic region. Solving the segmentation and synthesis tasks simul-
taneously results in not only having the solutions in agreement, but the joint
estimation aids in improving the accuracy of each aspect, as seen in Fig. 3, where
we observe that an increase in segmentation overlap corresponds to a decrease
in CT synthesis error.

When evaluating the segmentation accuracy obtained with their method,
Dowling et al. [8] reported mean DSCs of 0.80, 0.86 and 0.84 for the prostate,
bladder and rectum, respectively. Wong et al. [12] assessed the performance of
several multi-atlas segmentation methods. With their recommended setting, the
median DSC for the prostate, bladder, rectum and femurs was 0.84, 0.90, 0.77
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and 0.95, respectively. Taking into account the lower resolution of the images
used in this work (5 mm slice thickness versus 2 mm in [8] and 2.5 mm in [12]),
we obtained comparable results with mean DSCs of 0.74, 0.89, 0.76 and 0.90.

Regarding the CT synthesis, the proposed method generates pseudo CTs
as accurate as previously reported for the pelvic region, even though they were
obtained from lower resolution MR images. Dowling et al. [8] reported an average
MAE of 40.5 ± 8.2 HU while we obtained an average MAE of 42.9 ± 4.0 HU.

As future work, the probabilistic property of the segmentations obtained
with the proposed framework could be used to automatically define margins
when contouring organs and improve MR-based RTP.
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