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Abstract. Multi-atlas label fusion methods have gained popularity in a
variety of segmentation tasks given their attractive performance. Graph-
based segmentation methods are widely used given their global optimal-
ity guarantee. We propose a novel approach, GOLF, that combines the
strengths of these two approaches. GOLF incorporates shape priors to
the label-fusion problem and provides a globally optimal solution even
for the multi-label scenario, while also leveraging the highly accurate
posterior maps from a multi-atlas label fusion approach. We demon-
strate GOLF for the joint segmentation of the left and right pairs of
caudate, putamen, globus pallidus and nucleus accumbens. Compared
to the FreeSurfer and FIRST approaches, GOLF is significantly more
accurate on all reported indices for all 8 structures. We also present
comparisons to a multi-atlas approach, which reveals further insights on
the contributions of the different components of the proposed framework.

1 Introduction

Automated quantification of basal ganglia from MRI scans is of great impor-
tance for many neuroimaging studies. For example, striatal atrophy, assessed via
volume measurements of the caudate and the putamen, is the single most promi-
nent imaging-based measure of Huntington’s Disease [8]. Despite their impor-
tance, some subcortical structures, such as the nucleus accumbens (NA) and the
globus pallidus (GP), are notoriously difficult to segment robustly because the
MRI signal often lacks enough contrast to distinguish them from neighboring
structures. This leads to substantial measurement noise and has been a barrier
to the robust discovery of potential abnormalities in these structures.

Existing subcortical segmentation methods include probabilistic approaches
[4] and deformable shape models [7]. These methods typically do not con-
sider interactions between these neighboring structures. Multi-atlas label fusion
(MALF) approaches [5] have recently gained popularity as they have been con-
sistently the best performers for many challenging segmentation tasks, including
subcortical segmentation. The general MALF idea is to register multiple anno-
tated atlases to the subject image, and to combine these alternative solutions
into a coherent segmentation. However, these methods typically do not provide
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a way to incorporate prior knowledge of shape, with the notable exception of
[9] where a contour-driven prior distribution is used along with image features.
Another challenge is the difficult-to-register features present in the subcortical
structures, such as the thin tail of the caudate.

Graph-cuts have been recently proposed [6] as a novel way for optimization in
the MALF framework, but the proposed method again did not allow shape pri-
ors. Furthermore, obtaining the globally optimal solution was only guaranteed for
binary labeling, and approximate solutions are needed for multi-label segmenta-
tion. This is in general true of image-grid based graph cuts [2], where approxima-
tions such as α-expansions and α-β swaps [3] were proposed for the multi-label
case. In contrast, the surface-based LOGISMOS [11] framework sustains the
optimality guarantee even in the multi-label scenario, but has limitations on the
types of inter-object relations that can be represented (Sect. 2.4). LOGISMOS
object-to-object mapping is also problematic for many applications including
high-curvature objects and overlapping initial segmentations (Sect. 2.3).

We propose a new graph-based MALF approach that overcomes the chal-
lenges of the LOGISMOS framework, incorporates shape priors to the label-
fusion problem and provides a solution that is globally optimal with respect to
the provided cost functions and constraints, even for the multi-label scenario.
We apply this new approach named GOLF (Globally Optimal Label Fusion) to
the joint segmentation of the caudate nucleus, putamen, GP and NA.

Our main contributions are: (1) Discrete optimization framework for MALF
segmentation. (2) Introducing shape priors to the MALF problem, which enforces
more appropriate regularization than currently possible. (3) Globally optimal
solution guarantee even for multi-label problems. (4) Generalization of LOGIS-
MOS to arbitrary inter-object relationships. (5) Novel object-to-object mapping
method for graph construction. (6) Application to subcortical segmentation.

2 Methods

The GOLF approach transforms the optimal image segmentation task to a max-
flow problem on a geometric graph. The node costs are given by the posterior
maps from a multi-atlas labeling approach (Sect. 2.1). Each object (label) is rep-
resented by a geometric sub-graph that incorporates a shape prior and smooth-
ness constraints (Sect. 2.2). Multi-object segmentation is achieved by combining
these sub-graphs into a larger graph, which requires object-to-object mapping
(Sect. 2.3). The inter-object arcs allow the representation of constraints between
neighboring objects and can represent arbitrary relationships, unlike the original
LOGISMOS (Sect. 2.4). After graph construction, an s-t cut algorithm is used
to jointly optimize the segmentation of all the objects in the graph [11].

2.1 Joint Label Fusion

We begin by performing multi-atlas segmentation using the joint label fusion
(JLF) approach described in [10]. Briefly, each atlas is first deformably regis-
tered to the testing image. For each voxel, the warped labels from each atlas
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constitutes a “vote”. A popular strategy is to weight these votes based on the
appearance similarity of a small neighborhood, which provides an estimate of the
local segmentation quality for a particular atlas. However, this strategy estimates
voting weights for each atlas independently, which fails to take into account bias
from similar atlases. Instead, the JLF approach estimates a matrix of pairwise
atlas dependencies, which alleviates this bias. Given a testing image, JLF pro-
duces a labeling of the image and posterior maps for each label.

2.2 Graph Construction for Binary Segmentation

A mean shape model is constructed from the training set for each object (i.e.,
for the left/right caudate, putamen, GP, NA) following rigid registration. The
model is obtained by averaging the registered binary models and thresholding
voxels with 25% or more agreement. A mesh model is obtained using march-
ing cubes and smoothing. Each testing image was initially segmented with the
JLF method (Sect. 2.1). The voxels segmented as one of the objects of interest
were extracted, and the mean shape model was fitted to these initial segmenta-
tions using an iterative closest points approach. While the JLF approach pro-
vides excellent localization of each structure, the segmentation accuracy may be
inadequate, especially in difficult-to-register areas such as the thin tail of the
caudate, and may contain holes or handles. Fitting the shape model provides a
more appropriate representation of the entire structure including its fine-level
features, and ensures accurate topology.

After model fitting, at each vertex of this initial surface, a “column” con-
sisting of a set of graph nodes placed at increasing distances from the surface
is built. The column represents the set of candidate locations for the final sur-
face, i.e., the local search space, as in the original LOGISMOS approach [11].
Each node has an associated cost given by the JLF posterior at that location.
The LOGISMOS approach transforms the surface segmentation problem into
the minimum closed set problem. A closed set C in a graph X is a subgraph
such that all successors in X of nodes in C are also in C. The cost of a closed set
is the total cost of the nodes in the set. The minimum closed set of a graph X
can be identified in polynomial time by computing a minimum s-t cut in a graph
derived by introducing intra-column arcs between successive nodes in each col-
umn. Inter-column arcs enforce smoothness constraints. The equivalence to the
minimum closed set is accomplished by transforming the node weights (Fig. 1).
The shape prior is encoded by the initial shape, which limits the search space.

An important concern is that the paths of the columns should not cross
each other, since crossing columns can lead to topological defects such as self-
intersections in the final surfaces. We use the non-intersecting electric lines of
force (ELF) [11] concept for this purpose. We simulate placing a positive charge
at each vertex of the mesh surface and compute the electric field these particles
form, using Coulomb’s law; the graph columns follow the electric lines of force.
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Fig. 1. (a) LOGISMOS graph structure. Nodes are organized into columns. The graph
is transformed by subtracting each node’s cost from the node above it. Intra-column
arcs (black) ensure the cost of the optimal surface (orange) is equal to the cost of the
min closed set (red). Inter-column arcs (blue) add smoothness constraints. (b) The
entire graph for a representative subject.

2.3 Multi-Label Segmentation: Object-to-object Mapping

The multi-object segmentation is accomplished in the LOGISMOS framework
by linking the graphs representing the interacting objects via inter-object arcs
between columns of the two objects. These infinite-weight arcs enforce separation
constraints between the objects. However, finding a suitable one-to-one mapping
between the two objects is not a trivial task. Intersecting paths in this mapping
can result in topological defects on the final segmentation.

The original LOGISMOS framework attempts to solve this problem by
detecting the medial surface between the two objects in a region of interaction
(ROI). Starting from the first object, the graph column is “pushed forward”
along the first object’s ELF field until the medial surface, then is “pulled back-
ward” along the second object’s ELF field (Fig. 2-a, b). While this approach may
be adequate for low-curvature surfaces, it is inappropriate for higher-curvature
objects since the two ELF fields may not be properly aligned, which results in
sharp artificial “corners” in the graph columns. This approach is also prone to
discretization errors and has an additional computational cost for the medial
surface detection; furthermore, the need for a pre-determined ROI introduces
additional singularities in the graph structure along the border of the ROI.

GOLF adopts a novel object-to-object mapping strategy to resolve these
problems. Instead of computing disjoint ELF fields and transitioning from ELF
to ELF, we build a single, coherent ELF field. This is accomplished by putting
a positive charge on the vertices of the current object and negative charges on
the vertices of all other objects (Fig. 2-c). Simple physics rules ensure that the
lines of force (and therefore the graph columns) “flow” from the current object
to neighboring objects in an orderly fashion, without intersections. This removes
the need for the computation of either a medial surface or an arbitrary ROI, since
the effect of the charged particles naturally decline with distance. This results
in a single, seamless ELF field that allows for a better graph construction. The
joint ELF computation also allows for overlapping initial segmentations (Fig. 2-
d), which can often happen during the shape model fitting stage. While it would
be possible to mask the initial segmentations to avoid overlaps, such an approach
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Fig. 2. (a) LOGISMOS object-to-object mapping. Every object has its own, disjoint
ELF field. (b) LOGISMOS column construction. The medial surface (dashed) is com-
puted; the column is pushed forward along the ELF of the first object until the medial
surface, and then pulled back along the ELF of the second object. The transition creates
corners and singularities. (c) GOLF’s joint ELF field provides smooth search paths.
(d) GOLF graph construction seamlessly handles overlapping initial segmentations.

Fig. 3. (a) Columns must be reversed between interacting objects. Blue: A’s column;
red: B’s column; black: inter-object arcs. (b) Linking columns with same orientation
would result in trivial cuts. (c) This requirement is problematic for 3 mutually interact-
ing objects. (d) Column ordering as a 2-coloring problem. Object C can not be colored.
(e) LOGISMOS is limited to inter-object relationships represented by bipartite graphs.

is undesirable as it would have distorted the imposed shape prior. In contrast,
the proposed approach seamlessly handles overlapping initial segmentations.

2.4 Multi-Label Segmentation: Arbitrary Inter-object Relationships

To combine the subgraphs for each object into a single graph for joint optimiza-
tion, the LOGISMOS framework requires that the column direction between two
interacting objects be of opposite polarity (inside-out vs. outside-in, Fig. 3-a).
Without this requirement, every feasible cut through the graph is an empty
cut (Fig. 3-b). While this is a harmless requirement in the case of 2 objects, it
becomes problematic for larger sets of mutually interacting objects (Fig. 3-c).

Let us consider a graphic representation of the inter-object relationships such
that each object is represented by a node. The two possible graph column ori-
entations can be identified as two possible colorings (red and blue) of the cor-
responding nodes (Fig. 3-d). By the requirement above, inter-object arcs can
only be inserted between objects that have different colors, i.e., opposite column
directions. This problem is equivalent to the classical graph coloring problem
with n = 2 allowed colors. It is well known that the only graphs that can be
2-colored are bipartite graphs (Fig. 3-e).
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Fig. 4. (a, b) In GOLF, objects that have conflicting coloring requirements are
replaced with two new identical subgraphs. (c) Arcs in the new GOLF hierarchy. Red,
blue: representative columns from red and blue objects, respectively. Black: inter-object
arcs. Purple: the “purple” arcs that guarantee coherent segmentation of the pseudo-
objects C’ and C”. (d) GOLF can represent arbitrary inter-object relationships.

GOLF provides a novel graph construction method that allows non-bipartite
inter-object relationships. Let’s revisit the example in Fig. 3-d, where the object
C has conflicting coloring requirements. We remove the object C and replace it
with two identical objects, C’ and C” (Fig. 4-a, b). The subgraphs representing
C’ and C” are both identical to the original subgraph C in terms of nodes, arcs
and columns. Between each node in C’ and each corresponding node in C”, we
insert a pair of special “purple” arcs with infinite weight, which ensures the cut
through C’ and C” is coherent (Fig. 4-c). The node cost for each node in C’ and
C” are half of the cost of the corresponding node in the original subgraph C,
such that the total cost of a cut through C’ and C” is equivalent to the cost of a
cut through the original C. C’ is colored red and thus can interact with A; C” is
blue and can interact with B. This construction allows the representation of the
mutual relationships between A, B, and C, which was previously impossible. To
generalize, each object can be colored “purple” in this manner, such that any
set of inter-object relationships can be represented (Fig. 4-d).

3 Experimental Methods

We used the public MICCAI Multi-Atlas Labeling Challenge dataset1, which
contains T1w brain images and expert manual segmentations for 35 subjects
(ages 18–90). As in the Challenge, we used 15 images as atlases and 20 images for
testing. The following automated segmentation methods were compared for the
left/right pairs of caudate, putamen, GP and NA: (1) The proposed GOLF app-
roach. (2) Majority voting (MV), as implemented in the ITK library, to assess
the improvement of the proposed method over a simplistic multi-atlas labeling
approach. 3) FreeSurfer [4], version 5.1. 4) FIRST, which is part of FSL v6.0 [7].
For GOLF, each column consisted of 30 nodes at 0.15 mm intervals. Inter-column
smoothness constraints were set to 1 node interval. Object-specific settings are
listed in Fig. 5-d. For each method, we report Dice and Jaccard overlap and

1 https://masi.vuse.vanderbilt.edu/workshop2012/index.php.

https://masi.vuse.vanderbilt.edu/workshop2012/index.php
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surface-to-surface distances between the automated results and the expert trac-
ings. For all volumetric segmentations, marching cubes and smoothing were used
to generate surface representations for surface-based error computation. Paired
t-tests are used for statistical comparison with a significance threshold of 0.05.

4 Results

Figure 5 presents the quantitative comparison of the results. Compared to the
FS and FIRST methods, the proposed GOLF approach performed significantly
better (p � 0.001) on all reported measures. The FIRST software only produced
results on 11 out of the 20 test images. Compared to MV, GOLF performed
significantly better (p < 0.01) on all reported measures for the caudate. For the
NA, the improvements were significant only for the surface-based measurements
(p < 0.01) but not for Dice and Jaccard coefficients. The differences between MV
and GOLF did not reach significance for putamen and GP, with the exception
of the surface error for the left putamen and left GP.

These findings suggest that the multi-atlas approach for cost estimation, the
shape prior, and the graph-based optimization all contribute to the improve-
ments in accuracy obtained with the GOLF approach. In particular, we note
that GOLF is significantly more accurate for the caudate compared to the MV
approach. The improvement in the surface-based measurements for the caudate
are more dramatic than the volumetric measures, suggesting the thin tail of
the caudate (which doesn’t heavily contribute to the overall volume) is better
captured by leveraging the shape prior in the GOLF framework. This is also sup-
ported by the surface errors obtained by the JLF approach alone (without the
graph), 0.55 and 0.61 mm for the left and right caudate respectively, indicating
that both the multi-atlas and the graph components are substantially contribut-
ing to the observed improvements in GOLF. In contrast, for putamen and GP,
which are more blob-like in geometry, there is little to no improvement compared
to the MV approach, suggesting the multi-atlas approach is the driving factor.
Further analysis of the individual contributions of these components remains as
future work.

Fig. 5. Segmentation accuracy. (a) Dice coefficient. (b) Jaccard coefficient. (c)
Surface-to-surface error. (d) Object-specific parameter settings used for GOLF.
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5 Discussion

The proposed GOLF approach combines the strengths of the graph-based opti-
mization techniques and multi-atlas label fusion techniques. While the graph-
based optimization scheme guarantees obtaining the globally optimal solution
given the objective cost function and set of constraints, the choice of the objec-
tive function itself is equally crucial. Here, we leverage the JLF approach to
obtain a suitable cost function. The presented results illustrate the superior
performance of our approach compared to both other multi-atlas methods as
well as currently popular software suites for subcortical segmentation. Valida-
tion on pathological datasets remain as future work. While the experimental
design has not included other popular label fusion methods such as STAPLE,
previous studies have shown that JLF out-performs these methods in various
datasets [10], which is why it was chosen for our graph formulation. We note
that for some applications, fuzzy segmentation approaches can be attractive
to potentially better capture the inherent uncertainty in medical images, while
others require discrete segmentations for subsequent analysis. Finally, another
related approach is the formulation of multi-atlas segmentation as a nonpara-
metric regression problem to estimate the expected error as a function of the
number of atlases [1].

The technical contributions of the paper include addressing several of the
shortcomings of the original LOGISMOS framework for multi-object segmen-
tation, including object-to-object mapping and generalization to arbitrary sets
of inter-object relationships. While the present paper focuses on the subcortical
segmentation, the framework is directly applicable to other segmentation tasks.

Acknowledgments. This work was funded by NIH grants EB004640 and EB017255.

References

1. Awate, S.P., Whitaker, R.T.: Multiatlas segmentation as nonparametric regression.
IEEE TMI 33(9), 1803–1817 (2014)

2. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int.
J. Comput. Vis. 70(2), 109–131 (2006)

3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. In: ICCV, pp. 377–384 (1999)

4. Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der
Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen,
B., Dale, A.M.: Whole brain segmentation: automated labeling of neuroanatomical
structures in the human brain. Neuron 33(3), 341–355 (2002)

5. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: A
survey. Med. Image Anal. 24(1), 205–219 (2015)

6. Koch, L.M., Rajchl, M., Tong, T., Passerat-Palmbach, J., Aljabar, P., Rueckert,
D.: Multi-atlas segmentation as a graph labelling problem: application to partially
annotated atlas data. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso,
M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 221–232. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-19992-4 17

http://dx.doi.org/10.1007/978-3-319-19992-4_17


546 I. Oguz et al.

7. Patenaude, B., Smith, S., Kennedy, D., Jenkinson, M.: A Bayesian model of shape
and appearance for subcortical brain segmentation. NeuroImage 56(3), 907–922
(2011)

8. Paulsen, J.S., Long, J.D., Johnson, H.J.: Clinical and biomarker changes in pre-
manifest HD show trial feasibility: a decade of the PREDICT-HD study. Front.
Aging 6, 78 (2014)

9. Wachinger, C., Sharp, G.C., Golland, P.: Contour-driven regression for label infer-
ence in atlas-based segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C.,
Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 211–218. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40760-4 27

10. Wang, H., Suh, J.W., Das, S.R., Pluta, J., Craige, C., Yushkevich, P.A.: Multi-
Atlas segmentation with joint label fusion. IEEE PAMI 35(3), 611–623 (2012)

11. Yin, Y., Zhang, X., Williams, R., Wu, X., Anderson, D.D., Sonka, M.: LOGISMOS.
IEEE Trans. Med. Imaging 29(12), 2023–2037 (2010)

http://dx.doi.org/10.1007/978-3-642-40760-4_27

	Globally Optimal Label Fusion with Shape Priors
	1 Introduction
	2 Methods
	2.1 Joint Label Fusion
	2.2 Graph Construction for Binary Segmentation
	2.3 Multi-Label Segmentation: Object-to-object Mapping
	2.4 Multi-Label Segmentation: Arbitrary Inter-object Relationships

	3 Experimental Methods
	4 Results
	5 Discussion
	References


