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Abstract. We introduce a deep learning image segmentation frame-
work that is extremely robust to missing imaging modalities. Instead of
attempting to impute or synthesize missing data, the proposed approach
learns, for each modality, an embedding of the input image into a single
latent vector space for which arithmetic operations (such as taking the
mean) are well defined. Points in that space, which are averaged over
modalities available at inference time, can then be further processed to
yield the desired segmentation. As such, any combinatorial subset of
available modalities can be provided as input, without having to learn
a combinatorial number of imputation models. Evaluated on two neuro-
logical MRI datasets (brain tumors and MS lesions), the approach yields
state-of-the-art segmentation results when provided with all modalities;
moreover, its performance degrades remarkably gracefully when modal-
ities are removed, significantly more so than alternative mean-filling or
other synthesis approaches.

Keywords: Segmentation · Multi-modal · Deep learning ·
Convolutional neural networks · Data abstraction · Data imputation

1 Introduction

In medical image analysis, image segmentation is an important task and is pri-
mordial to visualize and quantify the severity of the pathology in clinical practice.
Multi-modality imaging provides complementary information to discriminate
specific tissues, anatomies and pathologies. Numerous automatic approaches
have been developed to speed up medical image segmentation such as Multi-
atlas based approaches [4] and model-based approaches [12].

Both strategies are typically optimized for a specific set of multi-modal
images and usually require these modalities to be available. In clinical settings,
image acquisition and patient artifacts, among other hurdles, make it difficult
to fully exploit all the modalities; as such, it is common to have one or more
modalities to be missing for a given instance. This problem is not new, and the
subject of missing data analysis has spawned an immense literature in statistics
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(e.g. [13]). In medical imaging, a number of approaches have been proposed,
some of which require to re-train a specific model with the missing modalities
or to synthesize them [6]. Synthesis can improve multi-modal classification by
adding information of the missing modalities in the context of a simple classifier
such as random forests [11]. Approaches to imitate with fewer features a classifier
trained with a complete set of features have also been proposed [7]. Neverthe-
less, it should stand to reason that a more complex model should be capable of
extracting relevant features from just the available modalities without relying
on artificial intermediate steps such as imputation or synthesis.

This paper proposes a deep learning framework (HeMIS) that can segment
medical images from incomplete multi-modal datasets. Deep learning [3] has
shown an increasing popularity in medical image processing for segmenting but
also to synthesize missing modalities [11]. Here, the proposed approach learns,
separately for each modality, an embedding of the input image into a latent
space. In this space, arithmetic operations (such as computing first and second
moments of a collection of vectors) are well defined and can be taken over the
different modalities available at inference time. These computed moments can
then be further processed to estimate the final segmentation. This approach
presents the advantage of being robust to any combinatorial subset of available
modalities provided as input, without the need to learn a combinatorial number
of imputation models.

2 Method

2.1 Hetero-Modal Image Segmentation

Typical convolutional neural network (CNN) architectures take a multiplane
image as input and process it through a sequence of convolutional layers (followed
by nonlinearities such as ReLU(·) ≡ max(0, ·)), alternating with optional pooling
layers, to yield a per-pixel or per-image output [3]. In such networks every input
plane is assumed to be present within a given instance: since the very first
convolutional layer mixes input values coming from all planes, any missing plane
introduces a bias in the computation that the network is not equipped to deal
with.

We propose an approach wherein each modality is initially processed by its
own convolutional pipeline, independently of all others. After a few independent
stages, feature maps from all available modalities are merged by computing map-
wise statistics such as the mean and the variance, quantities whose expectation
does not depend on the number of terms (i.e. modalities) that are provided. After
merging, the mean and variance feature maps are concatenated and fed into a
final set of convolutional stages to obtain network output. This is illustrated in
Fig. 1. In this procedure, each modality contributes a separate term to the mean
and variance; in contrast to a vanilla CNN architecture, a missing modality does
not throw this computation off: the mean and variance terms simply become esti-
mated with larger uncertainty. In seeking to be robust to any subset of missing
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modalities, we call this approach hetero-modal rather than multi-modal, recog-
nizing that in addition to taking advantage of several modalities, it can take
advantage of a diverse, instance-varying, set of modalities. In particular, it does
not require that a “least common denominator” modality be present for every
instance, as sometimes needed by common imputation methods.

Fig. 1. Illustration of the Hetero-Modal Image Segmentation architecture. Modalities
available at inference time, Mk, are provided to independent modality-specific convo-
lutional layers in the back end. Feature maps statistics (first &second moments) are
computed in the abstraction layer, which after concatenation are processed by fur-
ther convolutional layers in the front end, yielding pixelwise classifications outputs.

Let k ∈ K ⊆ {1, . . . , N} denote a modality within the set of available modal-
ities for a given instance, and Mk represent the image of the k-th modality. For
simplicity, in this work we assume 2D data (e.g. a single slice of a tomographic
image), but it can be extended in an obvious way to full 3D sections. As shown
on Fig. 1, HeMIS proceeds in three stages:
1. Back End: In our implementation, this consists of two convolutional layers
with ReLU, the second followed with a (2, 2) max-pooling layer, denoted respec-
tively C

(1)
k and C

(2)
k . To ensure that the output layer consists of the same number

of pixels as the input image, the convolutions are zero-padded and the stride for
all operations (including max-pooling) is 1. In particular, pooling with a stride
of 1 does not downsample, but simply “thickens” the feature maps; this is found
to add some robustness to the results. The number of feature maps in each layer
is given in Fig. 1. Let C

(j)
k,� be the the �-th feature map of C

(j)
k .
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2. Abstraction Layer: Modality fusion is computed here, as first and second
moments across available modalities in C(2), separately for each feature map �,
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with ̂Var�[C(2)] defined to be zero if |K| = 1 (a single available modality).
3. Front End: Finally the front end combines the merged modalities to produce
the final model output. In our implementation, we concatenate all ̂E

[

C(2)
]

and
̂Var

[

C(2)
]

feature maps, pass them through a convolutional layer C(3) with
ReLU activation, to finish with a final layer C(4) that has as many feature
maps as there are target segmentation classes. The pixelwise posterior class
probabilities are given by applying a softmax function across the C(4) feature
maps, and a full image segmentation is obtained by taking the pixelwise most
likely posterior class. No further postprocessing on the resulting segment classes
(such as smoothing) is done.

3 Data and Implementation Details

We studied the HeMIS framework on two neurological pathologies: Multiple
Sclerosis (MS) with the MS Grand Challenge (MSGC) and a large Relapsing
Remitting MS (RRMS) cohort, as well as glioma with the Brain Tumor Segmen-
tation (BRATS) dataset [8].

MS MSGC: The MSGC dataset [10] provides 20 training MR cases with manual
ground truth lesion segmentation and 23 testing cases from the Boston Children’s
Hospital (CHB) and the University of North Carolina (UNC). We downloaded1

the co-registered T1W, T2W, FLAIR images for all 43 cases as well as the ground
truth lesion mask images for the 20 training cases. While lesions masks for the
23 testing cases are not available for download, an automated system is available
to evaluate the output of a given segmentation algorithm.

RRMS: This dataset is obtained from a multi-site clinical study with 300 RRMS
patients (mean age 37.5 yrs, SD 10.0 yrs). Each patient underwent an MRI that
included FLAIR, T1W, T2W and T1 post-contrast (T1C) images.

BRATS. The BRATS-2015 dataset contains 220 subjects with high grade and
54 subjects with low grade tumors. Each subject contains four MR modalities
(FLAIR, T1W, T1C and T2) and comes with a voxel level segmentation ground
truth of 5 labels: healthy, necrosis, edema, non-enhancing tumor and enhancing
tumor. As done in [8], we transform each segmentation map into 3 binary maps
which correspond to 3 tumor categories, namely; Complete (which contains all
tumor classes), Core (which contains all tumor subclasses except “edema”) and
Enhancing (which includes the “enhanced tumor” subclass). For each binary
map, the Dice Similarity Coefficient (DSC) is calculated [8].
1 http://www.nitrc.org/projects/msseg/.

http://www.nitrc.org/projects/msseg/
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BRATS-2013 contains two test datasets; Challenge and Leaderboard. The
Challenge dataset contains 10 subjects with high grade tumors while the Leader-
board dataset contains 15 subjects with high grade tumors and 10 subject with
low grade tumors. There are no ground truth provided for these datasets and
thus quantitative evaluation can be achieved via an online evaluation system [8].
In our experiments we used Challenge and Leaderboard datasets to compare
the HeMIS segmentation performance to the state-of-the-art, when trained on
all modalities. To deal with class imbalance, we adopt the patch-wise training
procedure mentioned in [5]. We make the HeMIS architecture robust to missing
modalities by randomly dropping any number for a given training example. We
refer to this training scheme as pseudo-curriculum training.

4 Experiments and Results

We first validate HeMIS performance against state-of-the-art segmentation
methods on the two challenge datasets: MSGC and BRATS. Since the test data
and the ranking table for BRATS 2015 are not available, we submitted results to
BRATS 2013 challenge and leaderboard. These results are presented in Table 1.2

As we observe, HeMIS outperforms Tustison et al. [12], the winner of the BRATS
2013 challenge, on most tumor region categories.

The MSGC dataset illustrates a direct application of HeMIS flexibility as only
three modalities (T1W, T2W and FLAIR) are provided for a small training set.
Therefore, given the small number of subjects, we first trained HeMIS on RRMS
dataset with four modalities and fine-tuned on MSGC. Our results were submit-
ted to the MSGC website3, with a resuts summary appearing in Table 2. The
MSGC segmentation results include three other supervised approaches; when
compared to them, HeMIS obtains highly competitive results with a combined
score of 83.2 %, where 90.0 % would represent human performance given inter-
rater variability.

The main advantage of HeMIS lies in its ability to deal with missing modal-
ities, specifically when different subjects are missing different modalities. To
illustrate the model’s flexibility in such circumstances, we compare HeMIS per-
formance to two common approaches to deal with random missing modalities.
The first, mean-filling, is to replace a missing modality by the modality’s mean
value. In our case since all means are zero by construction, replacing a missing
modality by zeros can be viewed as imputing with the mean. The second app-
roach is to train a multi-layer perceptron (MLP) to predict the expected value
of specific missing modality given the available ones. Since neural networks are
generally trained for a unique task, we need to train 28 different MLPs (one
for each ◦ in Table 3 for a given dataset) to account for different possibilities
of missing modalities. We used the same MLP architecture for all these models,
2 Note that the results mentioned in Table 1 are from methods competing in the

BRATS 2013 challenge for which a static table is provided at https://www.
virtualskeleton.ch/BraTS/StaticResults2013..

3 http://www.ia.unc.edu/MSseg.

https://www.virtualskeleton.ch/BraTS/StaticResults2013.
https://www.virtualskeleton.ch/BraTS/StaticResults2013.
http://www.ia.unc.edu/MSseg


474 M. Havaei et al.

Table 1. Comparison of HeMIS when trained on all modalities against BRATS-2013
Leaderboard and Challenge winners, in terms of Dice Similarity (scores from [8]).

Leaderboard Challenge

Method Complete Core Enhancing Complete Core Enhancing

Tustison [12] 79 65 53 87 78 74

Zhao [14] 79 59 47 84 70 65

Meier [8] 72 60 53 82 73 69

HeMIS 83 67 57 88 75 74

Table 2. Results of the full dataset training on the MSGC. For each rater (CHB and
UNC), we provide the volume difference (VD), surface distance (SD), true positive rate
(TPR), false positive rate (FPR) and the method’s score as in [10].

Method Rater VD (%) SD (mm) TPR (%) FPR (%) Score

Souplet et al. [9] CHB 86.4 8.4 58.2 70.6 80.0

UNC 57.9 7.5 49.1 76.3

Geremia et al. [2] CHB 52.4 5.4 59.0 71.5 82.1

UNC 45.0 5.7 51.2 76.7

Brosch et al. [1] CHB 63.5 7.4 47.1 52.7 84.0

UNC 52.0 6.4 56.0 49.8

HeMIS CHB 127.4 7.5 66.1 55.3 83.2

UNC 68.2 6.6 52.3 61.3

which consists of 2 hidden layers with 100 hidden units each, trained to minimize
the mean squared error.

Table 3 shows the DSC for this experiment on the test set. On the BRATS
dataset, for the Core category, HeMIS achieves the best segmentation in almost
all cases (14 out of 15) and for the Complete and Enhancing categories it leads
in most cases (10 and 9 cases out of 15 respectively). Also, the mean-filling app-
roach hardly outperforms HeMIS or MLP-imputation. These results are con-
sistent with the MS lesion segmentation dataset, where HeMIS outperforms
other imputation approaches in 9 out of 15 cases. In scenarios where only one
or two modalities are missing, while both HeMIS and MLP-imputation obtain
good results, HeMIS outperforms the latter in most cases on both datasets. On
BRATS, when missing 3 out of 4 modalities, HeMIS outperforms the MLP in
a majority of cases. Moreover, whereas the HeMIS performance only gradually
drops as additional modalities become missing, the performance drop for MLP-
imputation and mean-filling is much more severe. On the RRMS cohort, the
MLP-imputation appears to obtain slightly better segmentations when only one
modality is available.

Although it is expected that tumor sub-label segmentations should be less
accurate with fewer modalities, we should still hope for the model to report a
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Table 3. Dice similarity coefficient (DSC) results on the RRMS and BRATS test sets
(%). The table shows the DSC for different MRI modalities being either absent (◦)
or present (•), in order of FLAIR (F ), T1W (T1), T1C (T1c), T2W (T2). Results are
reported for HeMIS, Mean (mean-filling) and the imputation MLP.

RRMS BRATS

Modalities Lesion Complete Core Enhancing

F T1 T1c T2 HeMIS Mean MLP HeMIS Mean MLP HeMIS Mean MLP HeMIS Mean MLP

◦ ◦ ◦ • 1.74 2.66 12.77 58.48 2.70 61.50 40.18 4.00 37.32 20.31 6.25 18.62

◦ ◦ • ◦ 2.67 0.00 3.51 33.46 23.11 2.04 44.55 23.90 17.70 49.93 30.02 32.92

◦ • ◦ ◦ 3.89 0.00 6.64 33.22 0.00 2.07 17.42 0.00 10.52 4.67 6.25 10.78

• ◦ ◦ ◦ 34.48 9.77 38.46 71.26 72.30 63.81 37.45 0.00 34.26 5.57 6.25 15.90

◦ ◦ • • 27.52 4.31 25.83 67.59 35.01 64.97 63.39 30.92 49.38 65.38 39.00 60.30

◦ • • ◦ 8.21 0.00 8.26 45.93 23.63 1.99 55.06 41.89 26.55 62.40 43.80 40.93

• • ◦ ◦ 38.81 11.62 39.15 80.28 75.58 78.13 49.52 0.00 48.97 22.26 6.25 25.18

◦ • ◦ • 31.25 8.31 29.39 69.56 1.77 66.88 47.26 2.63 43.66 23.56 6.25 26.37

• ◦ ◦ • 39.64 33.31 38.55 82.1 81.01 81.35 53.42 25.94 52.41 23.19 6.25 25.01

• ◦ • ◦ 41.38 6.42 39.33 79.8 45.97 81.13 66.12 29.85 65.51 67.12 35.14 66.19

• • • ◦ 41.97 9.00 40.63 80.88 81.57 82.19 69.26 62.13 69.34 71.30 67.13 70.93

• • ◦ • 46.6 41.12 41.83 83.87 77.84 80.40 57.76 20.66 53.46 28.46 6.25 28.34

• ◦ • • 41.90 38.95 41.47 82.78 64.19 83.37 70.62 42.36 70.45 70.52 49.62 70.56

◦ • • • 34.98 5.78 29.46 70.98 30.86 67.85 66.60 45.79 55.40 67.84 50.21 64.81

• • • • 48.66 43.48 43.48 83.15 82.43 82.43 72.5 71.46 71.46 75.37 72.08 72.08

# Wins / 15 9 0 6 10 1 4 14 0 1 9 0 6

Fig. 2. HeMIS segmentation results on BRATS and MS subjects. For BRATS (first
row) the segmentation colors describe necrosis (blue), non-enhancing (yellow), active
core (orange) and edema (green). For the MS case, the lesions are highlighted in red.
The columns present the results overlaid on top of a FLAIR image for different com-
binations of input modalities, with ground truth in the last column.

sensible characterization of the tumor “footprint”. While MLP and mean-filling
fail in this respect, HeMIS quite well achieves this goal by outperforming in
almost all cases of the Complete and Core tumor categories. This can also be
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seen in Fig. 2 where we show how adding modalities to HeMIS improves its ability
to achieve a more accurate segmentation. From Table 3, we can also infer that the
FLAIR modality is the most relevant for identifying the Complete tumor while
T1C is the most relevant for identifying Core and Enhancing tumor categories.
On the RRMS dataset, HeMIS results are also seen to degrade slower than the
other imputation approaches, preserving good segmentation when modalities go
missing. Indeed, as seen in Fig. 2, even though with FLAIR alone HeMIS already
produces good segmentations, it is capable of further refining its results when
adding modalities, by removing false positives and improving outlines of the
correctly identified lesions or tumor.

5 Conclusion

We have proposed a new fully automatic segmentation framework for heteroge-
nous multi-modal MRI using a specialized convolutional deep neural network.
The embedding of the multi-modal CNN back-end allows to train and segment
datasets with missing modalities. We carried out an extensive validation on MS
and glioma and achieved state-of-the art segmentation results on two challeng-
ing neurological pathology image processing tasks. Importantly, we contrasted
the graceful performance degradation of the proposed approach as modalities go
missing, compared with other popular imputation approaches, which it achieves
without requiring training specific models for every potential missing modal-
ity combination. Future work should concentrate on extending the approach to
broader modalities outside of MRI, such as CT, PET and ultrasound.
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