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Abstract. Automated pancreas segmentation in medical images is a
prerequisite for many clinical applications, such as diabetes inspection,
pancreatic cancer diagnosis, and surgical planing. In this paper, we for-
mulate pancreas segmentation in magnetic resonance imaging (MRI)
scans as a graph based decision fusion process combined with deep con-
volutional neural networks (CNN). Our approach conducts pancreatic
detection and boundary segmentation with two types of CNN mod-
els respectively: (1) the tissue detection step to differentiate pancreas
and non-pancreas tissue with spatial intensity context; (2) the bound-
ary detection step to allocate the semantic boundaries of pancreas. Both
detection results of the two networks are fused together as the initial-
ization of a conditional random field (CRF) framework to obtain the
final segmentation output. Our approach achieves the mean dice simi-
larity coefficient (DSC) 76.1 % with the standard deviation of 8.7 % in
a dataset containing 78 abdominal MRI scans. The proposed algorithm
achieves the best results compared with other state of the arts.

1 Introduction

Automated organ localization and segmentation in medical images, e.g., com-
puted tomography (CT) and magnetic resonance imaging (MRI), is a prereq-
uisite step for many clinical applications. Although good performance in heart,
liver, kidney and spleen segmentation has been reported in the literature, auto-
mated segmentation of pancreas remains a challenging problem due to the fol-
lowing: (1) there exist large appearance variations in both shape and size of
pancreas; (2) the pancreas is a highly deformable because it is relatively soft
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and can be pushed by its surrounding organs; and (3) the boundaries of pan-
creas often collapse with intestine, vessels, abdomen fat and other neighboring
soft tissues, which causes a significant amount of ambiguities along the bound-
aries of pancreatic and non-pancreatic tissues. Given all the difficulties listed
the accurate measurement of pancreatic volume is still an urgent need in clinical
practice.

One of the most popular organ segmentation frameworks is multi-atlas and
label fusion (MALF) that segments the target image by transferring combined
labels from atlas images. Wolz et al. [8] propose an atlas selection process to
improve MALF. They apply a weighted combination of atlas labels as the ini-
tial segmentation and refine the segmentation results with markov random field
(MRF). Wang et al. [7] utilize image patches instead of pixels for context sim-
ilar matching and adopt geodesic distance metric for searching the K-nearest
atlas patches of the target image patch. Finally the target patch is labeled by
the majority voting of the K-nearest atlas. All these methods achieve ∼ 90%
dice coefficients on liver, kidney and spleen, but only ∼ 70% on pancreas, using
the leave-one-patient-out (LOO) protocol. For MALF, pancreas shape and posi-
tion in the target image are often not completely covered by the atlas images,
which might lead to the low performance of its following intensity context based
pixel/patch matching.

Recent work have used convolutional neural networks (CNN) for pixel-wise
predictions [1] that gain superior performance in computer vision tasks because
of the highly representative learned deep image features using CNN. Roth et al.

Fig. 1. The framework of our approach. CNN Training: CNN models are trained
for pancreatic tissue allocation (the FCN model) and boundary detection (the HED
model); CRF Training: A CRF model is learned based on the candidate regions
that detected by CNN models. Testing: The segmentation begins with CNN models,
and then will be further refined by the CRF model. The result of testing and the
corresponding human annotation are displayed with the green and red dashed curves,
respectively.



444 J. Cai et al.

[4] apply multi-level deep CNN models for dense image pixel labeling, conducting
pancreas segmentation gradually from coarse to fine representation. However,
pixel or superpixel-wise prediction of deep networks is very inefficient since it
requires thousands of inferences for a testing image.

In this paper, we propose to segment pancreas by performing decision fusion
within a conditional random field (CRF) framework where we assign the CNN
predicted semantic object and boundary probabilistic outputs as its energy
terms. Due to the complex nature of pancreas MRI images, we would argue
that conducting pancreas segmentation by integrating and fusing separate tis-
sue allocation and boundary detection CNN models is a promising approach. An
overview of our segmentation framework is illustrated in Fig. 1.

2 Methods

Different from CT, MRI imaging modality presents more details in soft tis-
sues, while preventing patients from exposing to harmful radiations. However,
slow imaging speed and low resolution of MRI often introduce more boundary
artifacts than CT for pancreas. As we show in Fig. 2, some parts of the pan-
creas collapse with abdomen fat exhibit weak boundaries, which bring a lot of
difficulties for automated segmentation. Within the weak boundary area, tex-
ture context features would perform better and complement the edge gradient
information. On the other hand, other regions of the pancreas present strong
boundaries that can be accurately delineated by semantic edge detection meth-
ods. Since both weak and strong pancreas boundaries are generally co-existing
in MRI, results of the tissue classification and the boundary detection would be
complementary to each other. The intrinsic idea of our method is to combine
pancreas tissue classification and boundary detection to lead to a better overall
segmentation performance. Two separate CNN models are trained for the two
tasks, respectively. The CNN results are then combined with a graph based data
fustion model to obtain the refined segmentation outputs.

2.1 The Design of Convolutional Neural Networks

Instead of designing and training a new CNN architecture from scratch [1,4],
we prefer to fine-tune two currently existing CNN models due to the follow-
ing reasons: (1) a very deep CNN architecture needs a large amount of labeled

Fig. 2. Sub-regions with weak and strong boundaries displayed in the first and third
column, respectively. The corresponding manual annotations are displayed with red
dashed curves.
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training data to converge, which is often unavailable or difficult to obtain; (2)
many CNN architectures have been proved to be highly discriminative with a
stable training convergence; (3) a recent work [2] indicates the learned kernels
in the bottom layers of the CNN can be successfully transferred from one appli-
cation domain to the others. Therefore we propose to fine-tune our CNNs from
the VGG-16 network [5], which is already pre-trained using a huge amount of
natural images.

In traditional CNN, the pixel or superpixel-wise classification strategy [2,4]
significantly slows its inference procedure. To address this problem, fully convo-
lutional network (FCN) [3] replaces the pixel-wise prediction with an end-to-end
scheme, which is implemented by adding upsampling layers to a regular CNN
architecture. The upsampling layers increase the output activation map resolu-
tion to the same level of the input image. Since the end-to-end training process
calculates loss and updates the network in an image-wise manner, FCN is very
computationally efficient. When running on GPU, FCN with VGG-16 network
operates at the speed of 5 frames (256 × 256) per second.

The within-class variations of the pancreas shape and size require robust
object-level boundary detection. Instead of detecting generic image edges, the
boundary detection method should aim at precisely delineating the pancreatic
boundaries. Holistically-nested edge detection (HED) [9] improves a regular FCN
by adding deep supervision at all convolutional layers against down-sampled
maps of the final desirable labeling output. In this way, the training losses are
calculated and propagated back per layer. HED is also an end-to-end CNN and
it can process 2.5 frames per second.

2.2 Data Fusion

FCN [3] localizes the pancreas position robustly, but it is not effective on pre-
cisely delineating pancreatic boundaries due to its upsampling convolutional
operations. Nevertheless HED [9] can be fine-tuned to detect strong semantic
pancreatic boundaries accurately, but it might fail to capture all weak bound-
aries. We treat both FCN and HED outputs as priors and conduct decision
fusion using a principled CRF model. By minimizing the CRF energy function,
our decision fusion method can remove most false positive segments from the
original pancreas segmentation areas (initialized by the FCN and HED maps).

Graphical Model: we propose an undirected graphical model with weighted
edges for decision fusion. The graphical model node represents its corresponding
candidate image region. There are two groups of candidate regions, which are
delineated inside the FCN and HED maps in Fig. 3. The first group is generated
from watershed transformation of the semantic pancreas gradient maps through
HED outputs. These regions align well to the HED detected pancreas bound-
aries. The second group is produced by superpixel segmentation on the detected
FCN regions. As shown in Fig. 3, the node feature extraction will begin with
the HED map so as to preserve as many the detected boundaries as possible.
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Fig. 3. The overview of our graphical model for decision fusion. The feature vector
of each node is extracted from its corresponding candidate region of the HED map,
the FCN map, and the MRI image. The null feature is defined to refer to the non-
detected region in the FCN/HED maps. The graph nodes are then partitioned by
graph inference. The result of decision fusion is displayed with the same color notation
in Fig. 1.

Features from the FCN map and MRI image will then be extracted correspon-
dently. The adjacent nodes are linked with weighted edges, which will reflect
the likelihood that the two nodes are belonging to the same category (pancreas
or non-pancreas). In other words, edges with low similarity will encourage the
connected two nodes to take different categories, which is illustrated in Fig. 3.

Conditional Random Field: in the graphical model, nodes contain both FCN
and HED features should be assigned with higher likelihood of being the pan-
creas region than those contain only one of them. Furthermore, the intensity
context difference between any connected nodes should be taken into considera-
tion. Hence, the node feature vector contains three parts: the learned FCN and
HED features, and hand-crafted image features. Typically, for a CRF node, its
corresponding FCN (HED) features would be set to all zeros if it has no detected
regions in the FCN (HED) map. We then assign edges between adjacent nodes
with weights that reflect the similarity of the corresponding node feature vectors.
For a graph G with N nodes, we define the CRF model objective function as

E(v) =
∑

i

φu(vi) +
∑

(i,j)∈N
φp(vi, vj), (1)

where v = [v1, ..., vN ] is the vector containing the labels of all nodes in G, and
vi ∈ {0, 1} presenting the states of nodes (pancreas or non-pancreas). N contains
index of all the connected node pairs. We apply the stochastic gradient decent
algorithm [6] to conduct the CRF learning. The unary and pairwise potentials
are defined as

φu(vi) = exp(α0 +
K∑

k=1

viαkfik), (2a)

φp(vi, vj) = exp(uij(β0 +
K∑

k=1

βk

1 + ||fik − fjk||2 )), (2b)
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where uij = 1[vi = vj ], and (α0, ..., αK , β0, ..., βK) are the parameters of the
CRF model we learned. As the node vector f i can be flexibly represented by
learned and hand-crafted features, we define the feature vector of i-th node as

fi =

[
|SFCN ∩ Si|

|Si| ,
|SHED ∩ Si|

|Si| , Ii, hi

]
, (3)

where S[FCN,HED,i] denotes to the area of the FCN map, the HED map and the i-
th node, respectively. Ii and hi are the mean intensity value and the histogram (4
bins) computed from the pixels inside the region. From what our results indicate,
this simple node feature setting is sufficient to obtain satisfying performance.
Finally in the testing stage, we follow the iterated conditional modes (ICM)
algorithm to perform the graph inference [6].

3 Experimental Results and Discussion

We evaluate our approach with abdominal MRI scans captured from 78 subjects
using a 1.5T Semens Avanto scanner. These MRI scans have an in-plane resolu-
tion of [152, 232]×256 voxels with voxel size ranging [1.09, 1.68mm] and contain
between 23 to 35 slices with spacing ranging [6.90, 7.20mm] depending on the
field of view and the slice thickness. For each scan, manual annotation of the
pancreas is given by a board-certified radiologist. The dice similarity coefficient
(DSC) is used to evaluate the proposed method. We use L1 and L2 to represent
the manual annotation and the automated segmentation results, respectively,
and define DSC = 2|L1 ∩ L2|/(|L1| + |L2|).

We fine-tune CNN models from pre-trained VGG-16 [5]. For the FCN model,
the initial learning rate is set to 1.0 × 10−2 and scaled by 0.1 with every 5.0 ×
104 iterations. The maximum iteration is 1.5 × 105. The HED model is trained
similarly, with the learning rate as 1.0 × 10−6 and the weight decay equivalents
to 0.1 for every 1.0×104 iterations. The maximum iteration number is 4.0×104.
For FCN or HED, we define the output as a probability likelihood map where
each location belongs to pancreas. Figure 4(a) shows the DSC of CNN models
as a function of thresholds on the output probability. The plateau in the range
of [0.2, 0.6] reveals that segmentation performance is stable within this range.

To set up a segmentation baseline on our MRI dataset, we extract HoG
features from 64 × 64 pixel sized image patches, and conduct superpixel-wise
prediction with support vector machine (SVM). To compare with CNN model
that trained from scratch, we train a 11-layer neuronal membranes segmentation
network (NMSN) model in [1]. The NMSN makes pixel-wise prediction on 95×95
pixel sized image patches. Also to compare with very deep CNN models, we
train a FCN model (FCNM) with three classes of pancreatic tissue, pancreatic
boundary and the background. To generate the graphical model for decision
fusion, we assign graph nodes that have more than 50% overlaps with human
annotation as positive, and the rest as negative. All the 78 MRI scans have been
randomly separated to 52 for training and 26 for validation. Figure 4(b) shows the
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Fig. 4. (a) mean DSC with respect to probability threshold, which is applied to the
output of CNN models; (b) comparison of segmentation accuracy between different
approaches. The red lines and crosses are represent to the means and outliers, respec-
tively. (the thresholds are set to the optimal in (a), DF is the acronym for decision
fusion)

Table 1. Results of decision fusion on 3-fold CV: Opt. is the optimally achievable DSC
and Acc. is the actual DSC that training and testing achieve.

Validation Train Opt. Train Acc. Test Opt. Test Acc.

1st fold 92.8 % 89.6 % 83.5 % 75.0 %

2nd fold 91.7 % 87.6 % 85.2 % 75.7 %

3rd fold 92.2 % 88.6 % 86.1 % 77.4 %

results of all the segmentation methods mentioned above. Our approach achieves
the highest accuracy with respect to the mean DSC while remains to be the
method with the second minimal standard deviation. It is also worth noting that
NMSN, which has been trained from scratch, has the smallest standard variance.
However, its overall performance is largely limited by its shallow architecture.

To validate the segmentation stability, we implement three-fold cross valida-
tion (CV-3) as our evaluation protocol. Three-fold cross validation (rather than
the leave-one-out (LOO) metric [7,8]) is adopted because patient cases from a
single clinical site are hardly independent and identically distributed. In this
scenario, N-fold CV (where N is small, e.g., 2 4) is a statistically more reliable
segmentation criterion as discussed in [4]. The optimal performance of training
and testing is upper bounded by the detected FCN and HED regions. We show
those optimal values and actual training, testing segmentation accuracy results
in Table 1 where we obtain around 4% loss in training and roughly 9% loss in
testing. For the total dataset, our maximum test performance is 87.1% DSC with
10%, 30%, 50%, 70%, 80% and 90% of the cases being above 84.8%, 81.1%,
78.4%, 74.7%, 71.5%, and 66.6%, respectively. Finally, we report our overall
mean DSC in Table 2, comparing to other recent work reported in the literature.
To the best of our knowledge, our approach has reported the best quantita-
tive pancreas segmentation performance with a mean DSC 76.1% (although
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Fig. 5. From left to right and top to bottom: Segmentation results with DSC from 95%
to 51% using the same color notation in Fig. 1.

Table 2. Overall DSC shown as mean ± standard dev. [worst, best].

Method DSC(%) Data (size) Protocol

Wolz et al. [8] 69.6 ± 16.7 [6.9, 90.9] CT (150) LOO

Wang et al. [7] 65.5 ± 18.6 [2.4, 90.2] CT (100) LOO

Deep Organ [4] 71.8 ± 10.7 [25.0, 86.9] CT (82) CV-4

Our approach 76.1 ± 8.7 [47.4, 87.1] MRI (78) CV-3

the results are not strictly comparable due to the lack of common evaluation
datasets). In Fig. 5, we present some qualitative pancreas segmentation results.

4 Conclusion

In this paper, we propose to segment pancreas leveraging both appearance and
boundary detection via CNN models that are supplement with each other. A
graph based CRF model is used to fuse the deep CNN outputs in a principled
manner. With decision fusion, the overall mean DSC boosts from 73.8% to 76.1%
while lowering the standard deviation from 12.0% to 8.7%. Our decision fusion
model is straightforward to be extended to handle other segmentation tasks.
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