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Abstract. Several neurological disorders are associated with hippocampal path‐
ology. As changes may be localized to specific subfields or spanning across
different subfields, accurate subfield segmentation may improve non-invasive
diagnostics. We propose an automated subfield segmentation procedure, which
combines surface-based processing with a patch-based template library and
feature matching. Validation experiments in 25 healthy individuals showed high
segmentation accuracy (Dice >82 % across all subfields) and robustness to varia‐
tions in the template library size. Applying the algorithm to a cohort of patients
with temporal lobe epilepsy and hippocampal sclerosis, we correctly lateralized
the seizure focus in >90 %. This advantageously compares to classifiers relying
on volumes retrieved from other state-of-the-art algorithms.
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1 Introduction

The hippocampus plays a key role in cognition and its compromise is a hallmark of
several prevalent brain disorders, such as temporal lobe epilepsy (TLE) [1]. With the
advent of large-scale neuroimaging data basing and analysis in health and disease, the
development of accurate automated segmentation approaches becomes increasingly
important.

The majority of automated hippocampal segmentation approaches have operated on
a global scale. Recent methods rely on a multi-template framework to account for inter‐
individual anatomical variability. While the majority of previous algorithms employed
a purely voxel-based strategy, adopting a surface-based library has shown benefits by
improving flexibility to model shape deformations often seen in disease, but also in 10–
15 % of healthy subjects [2]. To improve label fusion and image matching, recent studies
have adopted patch-based methods that compactly represent shape, anatomy, texture,
and intensity [3]. Notably, these approaches have also been successful in non-segmen‐
tation tasks, such as image denoising [4] and supersampling [5].
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Developments in MRI hardware have begun to generate images of brain anatomy
with unprecedented details [6], fostering guidelines to manually delineate hippocampal
subfields. Few automated methods have been proposed, each relying on multiple
templates together with: (i) Bayesian inference and fusion of ex-vivo/in-vivo landmarks
[7, 8], (ii) label propagation to intermediate templates [9], (iii) combinations of label
fusion (taking inter-template similarity into account) and post-hoc segmentation correc‐
tion [10]. These methods operate either on anisotropic T2-weighted images [10], or T1-
weighted images with standard millimetric [8, 9], or submillimetric resolution [7]. Only
one study so far [9] calculated Dice overlaps of manual and automated labels in milli‐
metric T1-weighted images, with modest performance (Dice: 0.56–0.65).

We propose a novel approach for hippocampal subfield segmentation SurfPatch,
which combines multi-template feature matching with deformable parametric surfaces
and vertex-wise patch sampling, relying on point-wise correspondence across the
template library. Validation was performed using a publically available 3T dataset of
manual segmentations together with high- and standard-resolution MRI data of healthy
controls [11]. We also applied SurfPatch to 17 TLE patients with hippocampal atrophy,
testing its ability to lateralize the seizure focus and compared its performance to two
ASHS (Automatic Segmentation of Hippocampal Subfields) [10] and FreeSurfer 5.3 [7].

2 Methodology

Figure 1 below summarizes the segmentation steps.

Fig. 1. Flowchart of the proposed algorithm SurfPatch.

For training, SurfPatch builds the mean patch surface S𝜇 and standard deviation (SD)
patch surface S𝜎 across the template library (Fig. 1A). For segmentation, it nonlinearly
warps each template surface to the test case, re-computes patch features across the
warped surface, and normalizes features using surface-based z-scoring (relative to S𝜇

and S𝜎). Based on vertex-wise z-score, it selects a subset of templates, builds an average
surface, and performs a deformation for final segmentation (Fig. 1B).
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2.1 Training Step (Fig. 1A)

Subfield labels are converted to surface meshes and parameterized using spherical
harmonics and a point distribution model (SPHARM-PDM) [12] that guarantees corre‐
spondence of surface points (henceforth, vertices) across subjects (Fig. 1A-1). For a
given template t, its reconstructed surface St is mapped to its corresponding T1-MRI
It. Let xv

k
 with k ∈ {1,… , 8} be the eight closest voxels of a given vertex v, and let Pt

x,k
be the corresponding local cubical neighborhoods (i.e., patches) centered around these
voxels. We build a vertex patch Pt

v
 by computing a trilinear interpolation of these 8

patches (which is an extension of the trilinear interpolation of the 8 closest voxels).
Patches are considered as vectors. By pooling corresponding vertex patches from each
template surface, we derive the mean P𝜇

v
 and SD patch P𝜎
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where N is the number of templates (Fig. 1A-2).

2.2 Segmentation Step (Fig. 1B)

Registration and Subset Restriction. Each template MRI is nonlinearly registered to
the test MRI to increase shape similarity (Fig. 1B-1). We used ANIMAL non-linear
registration tool [13], enhanced with a boundary-based similarity measure [14]. Regis‐
tration was based on a volume-of-interest that includes the labels of all hippocampi in
the template library, plus a margin of 10 voxels in each direction to account for additional
shape variability. Applying the registration to the library surface Ŝt, it is placed on the
test MRI. We then re-compute patch features across vertices and compare these patch
features P̂t

v
 with the template library patch distribution, using vertex-wise z-scoring:
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This is an element-wise operation. The absolute deviation from the library can be
quantified by summing the squared norm of each patch over all vertices through:

F
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∑K
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∥2

2 (3)

where K is the number of vertices. Figure 1B-2 shows vertex-wise deviation maps.
Surfaces in the template library are ranked according to this measure, with smaller scores
indicating better fit. To obtain an initial estimation, we a performed successive surface
averaging (Fig. 1B-3) defined as:
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where l corresponds to the ranking index. To sum up, S1 corresponds the best template,
S2 to the weighted surface average of the two best templates and Sk to the weighted
surface average of the k best templates. Corresponding deviation scores Fk were
computed as in (2) and (3), and the one resulting in the minimal measure is chosen as
initialization for a deformable model. This selection of templates has the advantage to
automatically adapt to the template library size.

Deformable Model. To further increase segmentation accuracy and to account for
potential errors in the preceding steps, we applied parametric deformable model of the
surface average S [15]. The use of an explicit parameterization of the surface ensures
vertex-wise correspondence across the library that would be otherwise lost (e.g. when
using level-sets [16]). The objective function to minimize is composed of a regulariza‐
tion term, based on mechanical properties of the surface (stretching and bending), and
a data term, which is represented by the deviation score F. Surface deformation is
performed using gradient descent search:
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where ⃖⃖⃗x
v
 represents the spatial coordinates of voxel v, γ is the step size controlling the

magnitude of the surface’s deformation; α and β are parameters controlling for surface
stretching and bending. Sv

(2) and Sv
(4) are surface’s second and fourth order spatial deriv‐

ative respectively at voxel v. ΔFv represents the gradient of the surface’s deviation score
at vertex v. Figure 2B-4 illustrates a final segmentation.

Fig. 2. Overall Dice with respect to patch (A) and library size (B). CA1-3 (red), CA4-DG (green),
SUB (blue).
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3 Experiments and Results

3.1 Material

The training set includes 25 subjects from a public repository1 (31 ± 7 yrs, 13 females)
of MRI and manually-drawn labels (CA1-3, DG-CA4, SUB; average intra-/inter-rater
Dice >90/87 %.) [11]. MRI data consist of isotropic T1-weighted millimetric (1 mm3)
and submillimetric (0.6 mm3) 3D-MPRAGE and anisotropic 2D T2-weighted TSE
(0.4 × 0.4 × 2 mm3). Images underwent automated correction for intensity non-
uniformity [17] and intensity standardization. Submillimetric data was resampled to
0.4 mm3 resolution in MNI152 space. The patient cohort consists of 17 TLE patients.
MRI post-processing followed the same steps as in [11]. TLE diagnosis and lateraliza‐
tion of the seizure focus was based on a multi-disciplinary evaluation. Hippocampal
atrophy was determined as hippocampal volumes beyond 2SD of the corresponding
mean of healthy controls [18].

3.2 Experiments

Parameter optimization and robustness to library size were performed on submillimetric
T1-weighted images.

Parameter Optimization. Parameters for the active contour are empirically set to
α = 100 and β = 100. The step size parameter γ is set to 10−5. Performance with regards
to patch sizes was evaluated using a leave-one-out (LOO) strategy, based on Dice
overlap index between automated/manual segmentations.

Robustness to Template Library Variations and Image Resolution. For each
subject, we randomly decreased the library from the full size (n = 24 in LOO validation)
to 1/2 (12), 1/3 (8) and 1/5 (5) of its original size. We repeated this process 5 times. We
evaluated performance with smaller template libraries, based on Dice overlaps. We
tested whether SurfPatch achieved adequate performance by operating solely on
standard 1 mm3 MPRAGE data. In this evaluation, we first linearly upsampled images
to 0.4 mm3, followed by the segmentation outlined above. This permitted the use of
equivalent patch sizes. In addition to Dice, we computed correlation coefficients between
automated as well as manual volumes, and generated Bland-Altman plots.

TLE Lateralization. Direct dice overlap comparisons between SurfPatch and both
ASHS and FreeSurfer are challenged by the absence of a unified subfield segmentation
protocol and by the optimization of different algorithms to different MRI sequences. We
thus assessed the clinical utility of the different approaches using a “TLE lateralization
challenge” that assessed the accuracy of linear discriminant analysis (LDA) classifiers
to lateralize the seizure focus in individual patients based on subfields volumes obtained
with SurfPatch compared to those using volumes generated by FreeSurfer 5.32 [7] and

1 Data available at: http://www.nitrc.org/projects/mni-hisub25.
2 FreeSurfer freely available at: http://freesurfer.net/fswiki/DownloadAndInstall.
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ASHS3 [10]. We ran both algorithms with their required modalities (FreeSurfer:
1 mm3 T1-weighted; ASHS: 0.4 × 0.4 × 2 mm3 T2-weighted) and default parameters.
As both algorithms operate in native space, subfields volumes were corrected for intra‐
cranial volume by multiplying them by the Jacobian determinant of the corresponding
linear transform to MNI152 space. Cross-validation was performed using a 5-Fold
scheme, repeated 200 times.

ASHS Evaluation. Given that it includes an atlas building tool, we also trained ASHS
using our template library. Inputs are submillimetric T1-weighted and T2-weighted
images, resampled to MNI152 space along with the corresponding labels. T1-weighted
images are used for registration and T2-weighted images for segmentation.

3.3 Results

Parameter Optimization and Robustness to Template Library Size. Maximum
accuracy was achieved with a patch size of 13 × 13 × 13 voxels for CA1-3 (% Dice:
87.43 ± 2.47), 19 × 19 × 19 for CA4-DG (82.71 ± 2.85) and 11 × 11 × 11 for SUB
(84.95 ± 2.45) (Fig. 2A). Mean Dice indices remained >80 % for all structures when
using only 8 templates (Fig. 2B).

Robustness with Respect to Standard T1-Weighted Images. Segmenting subfields
using only standard millimetric T1-weighted images, we obtained accuracy of
85.71 ± 2.48 for CA1-3 (average decrease compared to submillimetric T1-
MRI = −1.72 %), 81.10 ± 3.86 for DG (−1.61 %) and 82.21 ± 3.72 for SUB (−2.75 %).
We obtained overall higher correlations between manual and automated volumes for
submillimetric (Fig. 3A) than for standard images (Fig. 3B; submillimetric/millimetric
CA1-3: 0.73/0.64, CA4-DG: 0.44/0.28, SUB: 0.56/0.63). Bland-Altman plots suggested
lower bias in submillimetric than standard images (average shrinkage based on

3 ASHS and UPenn PMC atlas freely available at: https://www.nitrc.org/projects/ashs/.

Fig. 3. Correlations and Bland-Altman plots between automated and manual volumes (in mm3)
in submillimetric (A) and millimetric (B) T1-weighted images.
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submillimetric/millimetric images for CA1-3: 58/131 mm3 (1.6/3.6 % from average
manual volume), CA4-DG: 23/83 mm3 (3.4/8.3 %), SUB: 76/35 mm3 (4.2/1.9 %)).
Segmentation examples with SurfPatch are shown in Fig. 4.

Fig. 4. Manual delineation and SurfPatch automated segmentations relying on a submillimetric
T1-weighted image and a standard T1-weighted image.

TLE Lateralization. Lateralization of the seizure focus in TLE patients was highly
accurate when using SurfPatch, both based on submillimetric and millimetric T1-
weighted images (>93 %; Table 1). For ASHS and FreeSurfer, we performed two
experiments using: (i) single subfields as defined by the anatomical templates and (ii)
subfields grouped into CA1-3, DG-CA4 and SUB, as in [11]. Although better results
were obtained with the second option, overall performance was lower than with Surf‐
Patch (Table 1).

Table 1. Average accuracy of seizure focus lateralization in TLE.

Anatomical template SurfPatch submilli‐
metric

SurfPatch millimetric ASHS FreeSurfer

Single subfields 92.9 ± 4.7 93.8 ± 6.0 75.0 ± 7.8 78.6 ± 9.5
Subfields grouped 81.8 ± 4.1 86.7 ± 4.5

ASHS Evaluation. Trained on our library, ASHS achieved similar performance as
SurfPatch (CA1-3: 87.36 ± 1.97; CA4-DG: 82.54 ± 3.45; SUB: 85.48 ± 2.43).

4 Discussion and Conclusion

SurfPatch is a novel subfield segmentation algorithm combining surface-based
processing with patch similarity measures. Its use of a population-based patch normal‐
ization relative to a template library has desirable run-time and space complexity prop‐
erties. Moreover, it operates on T1-weighted images only, the currently preferred
anatomical contrast of many big data MRI initiatives, and thus avoids T2-weighted MRI,
a modality prone to motion and flow artifacts.

In controls, accuracy was excellent, with Dice overlap indices of >82 % when
submillimetric images were used and only marginal performance drops when using
millimetric data. Performance remained robust when reducing the size of the template
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library, an advantageous feature given high demands on expertise/time for the generation
of subfield-specific atlases. While Dice indices across studies need to be cautiously
interpreted given differences in protocols, our results compare favorably to the literature.
Indeed, FreeSurfer achieved 62 % for CA1, 74 % in CA2-3 and 68 % in DG-CA4 when
applied to high-resolution T1-MRI [7]. With respect to ASHS, slightly lower Dice
indices than for our evaluations have been previously reported [10], particularly for CA
(80 %) and SUB (75 %), whereas similarly high performance was achieved for DG
(82 %). It is possible that the reliance of ASHS on anisotropic images presents a challenge
to cover shape variability in antero-posterior direction. It has to be noted that ASHS
achieved similar performance than SurfPatch, when trained on our library and dataset.

Although ASHS, FreeSurfer and SurfPatch consistently achieved high lateralization
performance, learners based on volume measures derived from the latter lateralized the
seizure focus more accurately than the other two. Robust performance on diseased
hippocampi may stem from the combination of the patch-based framework, offering
intrinsic modeling of multi-scale intensity features with surface-based feature sampling,
which may more flexibly capture shape deformations and displacements seen in this
condition.
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