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Abstract. Neural foramina stenosis (NFS), as a common spine disease,
affects 80 % of people. Clinical diagnosis by physicians’ manual segmenta-
tion is inefficient and laborious. Automated diagnosis is highly desirable
but faces the class overlapping problem derived from the diverse shape
and size. In this paper, a fully automated diagnosis approach is proposed
for NFS. It is based on a newly proposed synchronized superpixels rep-
resentation (SSR) model where a highly discriminative feature space is
obtained for accurately and easily classifying neural foramina into nor-
mal and stenosed classes. To achieve it, class labels (0:normal,1:stenosed)
are integrated to guide manifold alignment which correlates images from
the same class, so that intra-class difference is reduced and the inter-
class margin are maximized. The overall result reaches a high accuracy
(98.52 %) in 110 mid-sagittal MR spine images collected from 110 sub-
jects. Hence, with our approach, an efficient and accurate clinical tool
is provided to greatly reduce the burden of physicians and ensure the
timely treatment of NFS.

1 Introduction

Neural foramina stenosis (NFS) is known as a common result of disc degeneration
due to age. For example, about 80% of people suffer lower back pain caused
by NFS [1,2]. Existing clinical diagnosis by physicians’ manual segmentation
is very inefficient and tedious. Automated diagnosis, which predicts class label
(0:normal,1:stenosed) for a given neural foramina image, is highly desirable.

However, automated diagnosis is still challenging due to the difficulty in
extracting very discriminative feature representation from extremely diverse
neural foramina images [1]. This diversity leads to severe inter-class overlap-
ping problem when classifying neural foramina images into normal or stenosed
class(see Fig. 1(a)). Class overlapping problem is regarded as one of the toughest
pervasive problems in classification [3–6], and severely affects the diagnosis accu-
racy of neural foramina. To solve it, a discriminant feature space maximizing the
inter-class margin between normal and stenosed class is needed.
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Fig. 1. SSR model, implemented by integrating class label (0:normal,1:stenosed) into
manifold alignment, provides a discriminative feature space (called SSR space) for
reliable classification. (a) the class overlapping problem in original image space; (b)
stenosed SSR; (c) normal SSR; (d) SSR space.

In this paper, a fully automated and reliable diagnosis framework is proposed
for NFS. For reliable classification, it construct a new discriminative feature
space (as shown in Fig. 1(d)) using a new synchronized superpixels representa-
tion (SSR) model (as shown in Fig. 1(b) and (c)). SSR model integrates class
label into manifold approximation and alignment to obtain the joint decompos-
ing, synchronizing, and clustering the spectral representation for neural foram-
ina images from the same class. The obtained normal SSR and stenosed SSR
are new superpixel representation synchronized for image from the same class.
As the synchronization of SSR is merely performed for images from the same
class so that images from different classes have unsynchronized superpixel repre-
sentations which enlarge the inter-class difference. Hence, the constructed SSR
space is highly discriminative due to the enlarged inter-class margin and reduced
intra-class margin (as shown in Fig. 1(d)). With this discriminative space, any
classifier, even the simple knn, could achieve superior performance in automated
diagnosis of NFS. With our diagnosis framework, an automated and accurate
clinical diagnosis tool is provided for NFS.

2 Spectral Graph, Spectral Bases, and Superpixels

There are three key concepts used in our framework:
Spectral graph G = (V, E) is a graph structure for the pairwise similarities

among all pixels within an image [7,8]. For an image I with total N pixels, we
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construct G = (V, E) where V(N = |V|) is the pixel set and each edge e ∈ E
connects two arbitrary pixels i, j in the image. Each e for i, j is weighted by
W (i, j) determined by intensity, spatial location, and the contour interventions
between two pixels:

W (i, j) = exp(−||xi − xj ||2/δx − ||Ii − Ij ||2/δI − max
x∈line(i,j)

||Edge(x)||2/δE) (1)

where xi, xj are the location of the pixels i, j and the Ii, Ij are their intensi-
ties respectively. Edge(x) represents an edge detector (i.e., Canny detector) in
location x. δx, δI , δE are constants that will be assigned empirically. In practice,
spectral matrix W will only be computed in k-nearest neighbors, thus W is a
sparse matrix.

Spectral bases U = [ξ1(G), ..., ξN (G)] are the eigenvectors of spectral matrix
W [8,9]. In practice, they are decomposed from the graph Laplacian L instead
of W :

L = Id − D− 1
2 WD− 1

2 (2)

where Id = diag(1, 1, ..., 1) is the identify matrix, D is the diagonal matrix whose
elements are the row summations of W .

Superpixels are the clusters obtained from grouping images pixels based
on spectral bases which approximate manifold of an image. They correspond
to high level representation of an image, such as smooth and non-overlapping
regions in the image.

3 Methodology

The overview of our diagnosis framework includes two phases (as shown in
Fig. 2): (1) in training (Sect. 3.1), SSR space is constructed by label-supervised
synchronization of spectral bases’ decomposition and clustering; (2) in testing
(Sect. 3.2), the class label of an unlabeled localized neural foramina is predicted
by searching its nearest neighbors in SSR space.

3.1 Training Phase

Given training set {I, C} include M1 normal neural foramina images Inor =
{Im|Cm = 0, Im ∈ I, Cm ∈ C,m = 1, ...,M1}, M2 stenosed neural foramina
images Iste = {Im|Cm = 1, Im ∈ I, Cm ∈ C,m = 1, ...,M2}, and the corre-
sponding Laplacians set L = {Lm,m = 1, ...,M}, where M = M1 + M2, the
construction of SSR space includes the following two steps:

Spectral Bases Synchronization: Synchronized spectral bases for normal and
stenosed images are simultaneously obtained by the integration of class labels
{Cm = Cl} into Joint Laplacian Diagonalization with Fourier coupling [7]. For
looking a set of synchronized bases {Yi : Y T

mYm = Id}Mm=1, Y T
mLmYm are approx-

imately diagonal for m = 1, ...,M . To ensure that the bases from the same class
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Fig. 2. The overview of our automated diagnosis framework.

behave consistently, the label-supervised coupling constraints [7] are introduced:
given a vector fm on manifold of image Im, and a corresponding vector f l on
manifold of image Il, if Cm = Cl, we require that their Fourier coefficients in
the respective bases coincide, Ymfm = Ylf

l. So, the label-supervised coupled
diagonalization problem can be rewritten as

min
Y1,...,YM

∑

m∈I

||Y T
mLmYm − Λm||2F + μ

∑

m,l∈I,Cm=Cl

||FT
mYm − FT

l Yl||2F (3)

where Λm = diag(λ1, ..., λK) denotes the diagonal matrix containing the first
smallest eigenvalues of Lm. F is an arbitrary feature mapping that maps a
spectral map to a fixed dimension feature vector. The optimal results Y ∗

1 , ..., Y ∗
M

can be classified as normal and stenosed synchronized spectral bases according
to their class labels.

In practice, to resolve the ambiguity of Ym and simplify the optimization,
the first K vectors of the synchronized spectral bases are approximated as a
linear combination of the first smallest K ′ ≥ K eigenvectors of Lm, denoted
by Um = [ξ1(Gm), ..., ξK(Gm)]. We parameterize the synchronized spectral base
Ym as Ym = UmAm, where Am is the K ′ × K matrix of linear combination
coefficients. From the orthogonality of Ym, it follows that AT

mAm = Id. Plugging
this subspace parametrization into Eq. (3), where Λ̃m is the diagonal matrix
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containing the first K ′ eigenvalues of Lm:

min
A1,...,AM

∑

m∈I
||AT

mΛmAm − Λ̃m||2F + μ
∑

m,l∈I,Cm=Cl

||FT
mUmAm − FT

l UlAl||2F

s.t AT
mAm = Id, (m = 1, ...,M)

(4)
The solution of problem Eq. (4) can be carried out using standard constrained

optimization techniques. As the label-supervised Coupled Diagonalization of
Laplacians enables the approximation and alignment of manifolds for images
from the same class, the obtained synchronized spectral bases approximate man-
ifold of each image and align them for images from the same class.

Superpixels Synchronization: Normal SSR and stenosed SSR are respectively
achieved by grouping all images pixels with the corresponding synchronized spec-
tral bases. As the obtained spectral bases are automatically synchronized for
images from the same class, so the obtained normal SSR and stenosed SSR
simultaneously minimize the intra-class difference. Correspondingly, the unsyn-
chronized spectral bases for images from different classes enables the obviously
different superpixel representations to maximize the inter-class margin. Hence,
the obtained SSR space provides a new discriminate ability for reliable diagnosis
even using a simple classifier.

3.2 Testing Phase

In testing, unlabeled neural foramina Iw is first localized by a trained SVM
subwindow localization classifier implemented by method introduced in [10],
then its class label is predicted by finding the nearest neighbors in SSR space.

Incremental Spectral Bases Synchronization: For unlabeled neural foram-
ina Iw, incremental synchronization is proposed to obtain its mapping point Yw

in SSR space:

costste = min
Yw

||Y T
w LwYw − Λw||2F + μ

∑

Cm=1

||FT
mYm − FT

w Yw||2F (5)

costnor = min
Yw

||Y T
w LwYw − Λw||2F + μ

∑

Cm=0

||FT
mYm − FT

w Yw||2F (6)

where Lw is the Laplacian matrix of Iw, {Ym|Cm = 1,m = 1, ...,M2} are the
learned stenosed synchronized spectral bases, {Ym|Cm = 0,m = 1, ...,M1} are
the learned normal synchronized spectral bases, costste and costnor denote the
mapping cost loss. Incremental spectral bases synchronization maps Iw into SSR
space.

Diagnosis: The class label of Iw is predicted by comparing the computed cost
loss costste and costnor. For example, if costnor is smaller, its approximated
manifold Yw is more similar to images from normal class and the mapping point
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of Iw in SSR space is in normal class. Hence, the class label of Iw is naturally
predicted by the minimal mapping cost loss:

f(Iw) =

{
1(stenosed), if costste < costnor,

0(normal), otherwise.
(7)

4 Experiments and Results

4.1 Experiment Setup

Following the clinical standard, our experiments are tested on 110 mid-sagittal
MR lumbar spine images collected from 110 subjects including healthy cases
and patients with NFS. These collected MR scans are scanned using a sagittal
T1 weight MRI with repetition time (TR) of 533 ms and echo time (TE) of
17 ms under a magnetic field of 1.5 T. The training sets includes two types:
(1) NF images and non-NF images used to train SVM-classifier localization;

Table 1. Performance of the proposed framework

Accuracy Sensitivity Specificity

Localization 99.27 % 99.08 % 100.00 %

Diagnosis 98.52 % 97.96 % 100.00 %

Fig. 3. Accurate diagnosis results in multiple subjects with diverse appearance, size,
and shape.
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(2) normal NF images and stenosed NF images used to train SSR model. These
training images were manually cropped and labeled by physician according to the
clinical commonly diagnosis criterion [1]. The classification accuracy, specificity,
and sensitivity are reported in the average from ten runs of leave-one-subject-out
cross-validation.

4.2 Results

The higher accuracy achieved by the proposed framework both in localization
(99.27%) and classification (98.52%) are shown in Table 1. Besides, its robust-
ness in localizing and diagnosing neural foramina with different appearance,
shape, and orientation is qualitatively displayed in Fig. 3. This high accuracy and
robustness is derived from the intrinsic class separation captured by our frame-
work. Hence, an accurate and efficient diagnosis of NFS is obtained regardless
of the disturbance from appearance, shape, and orientation.

Table 2 demonstrates that SSR achieved highest accuracy (>95 %) than other
five classical features (<82 %) in three typical classifiers: k nearest neighbors
(KNN) [5], linear discriminant analysis (LDA) [4], and support vector machine

Table 2. The highest accuracy is achieved by SSR in three typical classifier comparing
other existing five popular features.

Classifier Image feature

Our SSR Intensity Wisift Gist Hog LBP

KNN 98.52 % 78.08 % 76.60 % 75.12 % 74.88 % 80.32 %

SVM 95.57 % 80.37 % 81.53 % 81.28 % 80.57 % 62.32 %

LDA 95.81 % 69.95 % 68.72 % 80.54 % 80.30 % 57.88 %

Fig. 4. A good class separation (marked as dashed line) is provided by SSR for differ-
entiating normal neural foramina images and stenosed neural foramina images.
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(SVM) [3]. The superiority of SSR is from its constructed discriminative fea-
ture space where images from the same class are correlated by the synchronized
superpixel representation while images from different classes are separated by the
unsynchronized superpixel representation. This brings a good class separation
for solving the challenging class overlapping problem in automated diagnosis
of NFS (see Fig. 4), which leads to the low accuracy of the other five image
feature methods. In addition, such discriminative ability is so powerful that it
enables the simple classifier like KNN still achieve a higher accuracy. Hence, SSR
provides a reliable diagnosis framework for NFS, and can replace conventional
image representation methods to be fed into other state-of-the-art classifiers for
improving their accuracy and learning performance.

5 Conclusions

In this paper, we propose a novel automated diagnosis for NFS, with a new SSR
model to generate discriminative feature space for reliable diagnosis. With SSR
space, the class overlapping problem is overcome, and the high diagnosis accuracy
of the proposed framework is achieved even using a simple KNN classifier. Hence,
an efficient and reliable diagnosis tool is obtained to reduce the workload of
radiologists and provide timely treatment of NFS.
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