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Abstract. Estrogren and progesterone hormone receptor status play a
role in the treatment planning and prognosis of breast cancer. These
are typically found after Immuno-Histo-Chemistry (IHC) analysis of the
tumor tissues after surgery. Since breast cancer and hormone receptor
status affect thermographic images, we attempt to estimate the hormone
receptor status before surgery through non-invasive thermographic imag-
ing. We automatically extract novel features from the thermographic
images that would differentiate hormone receptor positive tumors from
hormone receptor negative tumors, and classify them though machine
learning. We obtained a good accuracy of 82 % and 79 % in classification
of HR+ and HR− tumors, respectively, on a dataset consisting of 56
subjects with breast cancer. This shows a novel application of automatic
thermographic classification in breast cancer prognosis.

Keywords: Thermography · Breast cancer prognosis · Hormone recep-
tor status

1 Introduction

Breast cancer has the highest incidence among cancers in women [1]. Breast can-
cer also has wide variations in the clinical and pathological features [2], which
are taken into account for treatment planning [3], and to predict survival rates or
treatment outcomes [2,4]. Thermography offers a radiation free and non-contact
approach to breast imaging and is being re-investigated in recent times [5–8]
with the availability of high resolution thermal cameras. Thermography detects
the temperature increase in malignancy due to the increased metabolism of can-
cer [9] and due to the additional blood flow generated for feeding the malignant
tumors [6]. Thermography may also be sensitive to hormone receptor status as
these hormones release Nitric Oxide, which causes vasodilation and temperature
increase [6,10]. Both these effects could potentially lead to evaluation of hormone
receptor status of malignant tumors using thermography. If this is possible, it
provides a non-invasive way of predicting the hormone receptor status of malig-
nancies through imaging, before going through Immuno-Histo-Chemistry (IHC)
analysis on the tumor samples after surgery. This paper investigates this possibil-
ity and the prediction accuracy. Most other breast imaging techniques including
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mammography are not able to detect hormone receptor status changes. Though
the paper by Chaudhuri et al. [11] claims that Dynamic Contrast Enhanced
(DCE) MRI can be used for prediction of Estrogen status, it is invasive, and
has been tested only on a small dataset of 20 subjects with leave-one-out cross-
validation.

There has been a study to analyze the effect of hormone receptor status of
malignant tumors on thermography [12] though quantitative analysis of average
or maximum temperatures of the tumor, the mirror tumor site and the breasts.
[12] reports a significant difference in these temperature measurements for hor-
mone receptor positive and negative status using thermography. In this paper,
we automatically extract features from the thermographic images in the region
of interest (ROI), i.e. the breast tissue, using image processing and attempt to
classify the hormone receptor status of malignant tumors using machine learn-
ing techniques. The determination of whether or not a subject has breast cancer
using thermography, i.e. screening for cancer, is out of scope for this paper. There
are other algorithms for breast cancer screening using thermography [8,13],
which the reader may refer to based on interest.

The paper is organized as follows. Section 2 provides details on the effect of
hormone receptor positive and negative breast cancers on thermography from
the existing literature. Section 3 describes our approach to automatic feature
extraction from the ROI for HR+ and HR− malignant tumor classification.
Section 4 describes the dataset used for our experiments and our classification
results are provided in Sect. 5. Conclusions and future work are given in Sect. 6.

2 Effect of Hormone Receptor Status on Thermography

There is usage of readily available tumor markers such as Estrogen Receptor
(ER), Progesterone Receptor (PR), Human Epidermal growth factor Receptor
2 (HER2) and tumor cell growth protein marker Ki67, for treatment planning
[3,14], and survival rate prediction [2,4], especially in resource constrained devel-
oping countries like India. [2] uses ER, PR and HER2 for estimating breast cancer
mortality risk from a large dataset of more than 100, 000 patients with invasive
breast cancer. They find that there is variability in the 8 different ER/PR/HER2
subtypes, and the ER status has the largest importance. ER+ tumors have a
lower risk than ER− tumors. PR status has a lesser importance than ER status
and PR+ tumors have lower risk than PR− tumors. HER2 status has variations
in risk across the different hormone receptor subtypes, depending on the stage
of the cancer, with the lowest risk for the ER+/PR+/HER2− tumors, and the
highest risk for ER−/PR−/HER2− tumors. The effect of the Ki-67 marker indi-
cates the rate of tumor cell growth [14]. More aggressive tumors may have higher
temperatures due to their increased metabolism [9] and so the Ki-67 marker sta-
tus may play a role in thermography, but it has not been formally investigated
in any study yet.

Estrogen leads to increase in vasodilation due to the production of Nitric
Oxide with a resultant temperature increase [6,15]. Progesterone is also
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associated with locally high concentrations of Nitric Oxide generation [10] for
prolonged periods of time. [12] find there is a significant difference in average
and maximum temperature of the tumor site between PR+ and PR− tumors,
with the PR− tumors being hotter. The same pattern holds for ER status
although in a non-significant manner. Their study showed that the more aggres-
sive ER−/PR− tumors were hotter than the less aggressive ER+/PR+ tumors.
Their study also indicates that the difference in average temperatures of the
tumor and its mirror sites in contra-lateral breasts is higher in ER− tumors
than in ER+ tumors, although in a non-significant manner. The same pattern
holds for the PR status too. Since the hormone sensitivity of both breast tis-
sues are similar, it is probable that there is a thermal increase on both breasts
for estrogen or progesterone positive cases. [12] don’t specifically analyze the
four different subtypes of ER/PR status, probably because the difference in
temperatures are small for just one hormone receptor status. Using these med-
ical reasons and empirical observations, in the next section, we design a set of
novel features along with a few existing features that would either extract these
observations automatically or would correlate with these findings for classifying
hormone receptor positive and negative tumors.

3 Automatic Feature Extraction for Hormone Receptor
Status

We attempt to classify all combinations of Hormone Receptor (HR) pos-
itive (ER+/PR+, ER+/PR−, ER−/PR+) tumors from the HR negative
(ER−/PR−) tumors. We extracted features from elevated temperature regions
in the ROI, and the overall ROI. The elevated temperature regions, i.e., the
hot-spots are extracted as below.

3.1 Abnormal Region Extraction

The entire ROI is divided into abnormal regions and normal regions based on
their regional temperatures. The malignant tumor region is typically an abnor-
mal region with an elevated temperature. The abnormal regions have the highest
regional temperature in the Region of Interest (ROI). To segment an abnormal
region, we used an algorithm proposed in [16], where segmentation areas are
combined from multiple features defined by Eqs. 1 and 2 using a decision rule.

T1 = Mode(ROI) + ρ ∗ (Tmax − Mode(ROI)) (1)

T2 = Tmax − τ (2)

In the above equations, Tmax represents the overall maximum temperature in
all views and Mode(ROI) represents the mode of the temperature histogram
obtained using temperature values of pixels from the ROIs of all views. The
parameters ρ, τ and the decision fusion rule are selected based on the accuracy



Automatic Determination of Hormone Receptor Status in Breast Cancer 639

of classification on a training/cross-validation subset and diversity in the seg-
mentation decisions. Decision fusion results in better hot-spot detection than
simple thresholding techniques [16]. Heat transmission from deep tumors results
in diffused lower temperatures on the surface and these parameters play a large
role in the deep tumor detection. Research on determining the combined depth
and size of tumors that can be detected needs to be done.

As discussed in [12], HR− tumors are hotter compared to HR+ tumors while
temperature increase on both sides is observed for HR+ tumors due to the
presence of similar hormone sensitive tissues. To capture these properties, we
extract the following features from these detected abnormal regions.

Distance Between Regions. The malignant tumor region is hotter than the
surrounding region, but the relative difference is higher for HR− tumors. In case
of HR+ tumors, the entire breast region is warmed up, and so this difference
is lesser. We use the normalized histogram of temperatures, or probability mass
function (PMF), to represent each region, and find the distance between regions
using a distance measure between PMFs. Here, the Jensen-Shannon Divergence
(JSD) is used a measure, as it is a symmetric measure. The JSD is defined as

JSD(P ||Q) =
1
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where M = 1
2 (P + Q). The value of JSD(P ||Q) tends to zero when P and Q

have identical distributions and has a very high value when the distributions
are very different. To include a measure of distance between multiple regions,
one or more of the PMFs of one region is modified by the mean temperature of
another region. The JSD between P − μ2 and Q − μ1, where P is the PMF of
the abnormal region on the malignant side, Q is the PMF of the normal region
on the malignant side, μ1 is the mean of the contra-lateral side abnormal region
and μ2 is the mean of the contra-lateral side normal region, is taken as a feature.
In case of absence of an abnormal region on the contralateral side, μ1 is taken
to be equal to μ2. A subtraction of the contralateral region means corresponds
to a relative increase in the heat with respect to the contralateral regions. For
HR− tumors, there may be no abnormal regions on the contra-lateral side, due
to which this JSD will be higher.

Relative Hotness to the Mirror Site. HR+ tumors have a lower temperature
difference between the tumor site and the mirror tumor site on the contra-lateral
side. To capture this, we use the mean squared distance between the temperature
of the malignant side abnormal region pixels and the mean temperature of the
contra-lateral side abnormal region, as defined in Eq. 4.

RH =
1

|A|
∑

x∈A

∑

y∈A

||T (x, y) − μ||2 (4)
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(a) (b)

(c) (d)

Fig. 1. Shows subjects with malignant tumors having a. ER+/PR+ status b. ER−
/PR− status c. ER+/PR+ status with asymmetrical thermal response d. ER−/PR−
status with some symmetrical thermal response

where T (x, y) represents temperature of the malignant side abnormal region pix-
els at location (x, y) in the image, μ represents mean temperature of the contra-
lateral side abnormal region and |A| represents the cardinality of abnormal region
A on the malignant side. This value is lower for HR+ tumors compared to HR−
tumors, as hormone sensitive tissues will be present on both sides. As shown in
Fig. 1a and b, we see thermal responses on both sides for HR+ tumors and no
thermal response on the normal breast for HR− tumors. However, there might
be outliers like Fig. 1c and d.

Thermal Distribution Ratio. In addition to the temperature change, the
areas of the abnormal regions on both sides are also considered as features.
We used the ratio of areas of abnormal regions on the contralateral side to the
malignant side. This value tends to be zero for HR− tumors, as there may be
no abnormal region on the contralateral side, and is higher for HR+ tumors.

3.2 Entire ROI Features

Textural features are used here to extract the features from the entire ROI.
However, instead of using the original temperature map of the ROI, a modified
temperature map is used. The thermal map formed by subtracting the malignant
side ROI with the contra-lateral side mean temperature, i.e. the relative temper-
ature from the contralateral side, is used to determine the textural features. The
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Run Length Matrix (RLM) is computed from the thermal map, after quantizing
the temperature into l bins. Gray level non-uniformity and Energy features from
the RLM are computed, as mentioned in [7]. The non-uniformity feature would
be higher for HR− tumors as their tumors have more focal temperatures.

4 Dataset Description

We obtained an anonymized dataset of 56 subjects with biopsy confirmed breast
cancer with age varying from 27 to 76 years through our collaboration with Mani-
pal University. The FLIR E60 camera with a spatial resolution of 320× 240 pix-
els is used to capture the initial 20 subjects and a high-resolution FLIR T650Sc
camera with an image resolution of 640 × 480 pixels is used for the remain-
ing subjects. A video is captured for each subject, and the acquisition protocol
involved asking the subject to rotate from right lateral to left lateral views. The
data for each subject included the mammography, sono-mammography, biopsy
reports, the ER/PR status values, with surgery reports and HER2 Neu status
values, where available of the tumors. From this data, there are 32 subjects with
HR+ malignant tumors and rest of them have HR− tumors.

5 Classification Results

From the obtained videos, we manually selected five frames that correspond
to frontal, right & left oblique and lateral views, and manually cropped the
ROIs in these. Consideration of multiple views helps in better tumor detection
since it might not be seen in a fixed view. From these multiple views, the view
corresponding to maximum abnormal region area with respect to the ROI area
is considered as the best view. This best view along with its contra-lateral side
view is used to calculate the features from the abnormal regions and the entire
ROI as mentioned in Sect. 3. The training set and testing set comprise of a
randomly chosen subset of 26 and 30 subjects, respectively, with an internal
division of 14 HR+ & 12 HR− and 18 HR+ & 12 HR− tumors, respectively.
The abnormal region is located using ρ = 0.2, τ = 3◦C using the AND decision
rule, to optimize for the accuracy in classification. All 11 deep tumors of size
0.9 cm and above have been detected in this dataset. The bin width of the PMFs
used is 0.5◦C. The step size of the temperature bins in the RLM computation
is 0.25◦C.

A two-class Random Forest ensemble classifier is trained using the features
obtained. The Random Forest (RF) randomly chooses a training sub-set & a fea-
ture sub-set for training a decision tree, and combines the decisions from multiple
such trees to get more accuracy in classification. The mode of all trees is taken
as the final classification decision. RFs with increasing number of trees have a
lower standard deviation in the accuracies over multiple iterations. The standard
deviation in (HR−, HR+) accuracies of the RFs using all features with 5, 25
and 100 trees over 20 iterations is (9.1 %, 11.1 %), (6.4 %, 4.8 %), (2.5 %, 2.0 %),
respectively, and hence a large number of 100 trees is chosen. Table 1 shows the
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max. accuracies over 20 iterations of RFs with 100 trees using individual and
combined features proposed in our approach. We tested with different textural
features obtained from both RLM and Gray Level Co-occurence Matrix, but we
found out that gray-level non-uniformity from the RLM is having better accu-
racy than others. Using an optimal combined set of region based features and
textural features, we obtained an accuracy of 82 % and 79 % in classification of
HR+ and HR− tumors respectively.

Table 1. Accuracies with different features obtained using our approach

Feature set Features HR−Accuracy HR+Accuracy

Distance between regions 74 % 56 %

Abnormal Region Relative Hotness 79 % 73 %

Features Thermal Distribution Ratio 63 % 27 %

Combination of above three
features

84 % 73 %

Entire ROI Gray-level non-uniformity 68 % 64 %

Features

Overall features Combination of features from 79 % 82 %

abnormal and entire ROI regions

From Table 1, it is clear that Abnormal Region features plays an important
role compared to textural features. Among these abnormal region features, fea-
tures corresponding to relative temperatures, i.e., Relative Hotness and Distance
Between Regions, have an important role in the classification of HR+ and HR−
tumors, thus validating the findings of [12].

6 Conclusions and Future Work

We have come up with a novel application to automatically classify breast cancer
tumors into HR+ tumors from HR− tumors using thermography with a reason-
ably good accuracy of around 80 %. This is a first approach through image
processing features and machine learning algorithms for such automatic classi-
fication. This also presents an advantage to thermography over other imaging
modalities in estimating prognosis and treatment planning of breast cancer with-
out invasive surgery. In future work, we will test our algorithm on larger datasets
with more variation in data and modify the algorithm to detect sub classes within
HR+ tumors. Additionally, we will try to determine the role of Ki-67 status in
thermography to refine the automatic classification.
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