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Abstract. In this paper, we study the correlation of tissue (i.e. prostate)
elasticity with the spread and aggression of prostate cancers. We describe
an improved, in-vivo method that estimates the individualized, relative
tissue elasticity parameters directly from medical images. Although elas-
ticity reconstruction, or elastograph, can be used to estimate tissue elas-
ticity, it is less suited for in-vivo measurements or deeply-seated organs
like prostate. We develop a non-invasive method to estimate tissue elas-
ticity values based on pairs of medical images, using a finite-element
based biomechanical model derived from an initial set of images, local
displacements, and an optimization-based framework. We demonstrate
the feasibility of a statistically-based multi-class learning method that
classifies a clinical T-stage and Gleason score using the patient’s age and
relative prostate elasticity values reconstructed from computed tomog-
raphy (CT) images.

1 Introduction

Currently screening of prostate cancers is usually performed through routine
prostate-specific antigen (PSA) blood tests and/or a rectal examination. Based
on positive PSA indication, a biopsy of randomly sampled areas of the prostate
can then be considered to diagnose the cancer and assess its aggressiveness.
Biopsy may miss sampling cancerous tissues, resulting in missed or delayed diag-
nosis, and miss areas with aggressive cancers, thus under-staging the cancer and
leading to under-treatment.

Studies have shown that the tissue stiffness described by the tissue properties
may indicate abnormal pathological process. Ex-vivo, measurement-based meth-
ods, such as [1,11] using magnetic resonance imaging (MRI) and/or ultrasound,
were proposed for study of prostate cancer tissue. However, previous works in
material property reconstruction often have limitations with respect to their
genericity, applicability, efficiency and accuracy [22]. More recent techniques,
such as inverse finite-element methods [6,13,17,21,22], stochastic finite-element
methods [18], and image-based ultrasound [20] have been developed for in-vivo
soft tissue analysis.
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In this paper, we study the possible use of tissue (i.e. prostate) elasticity to
help evaluate the prognosis of prostate cancer patients given at least two set of
CT images. The clinical T-stage of a prostate cancer is a measure of how much
the tumor has grown and spread; while a Gleason score based on the biopsy of
cancer cells indicates aggressiveness of the cancer. They are commonly used for
cancer staging and grading. We present an improved method that uses geomet-
ric and physical constraints to deduce the relative tissue elasticity parameters.
Although elasticity reconstruction, or elastography, can be used to estimate tis-
sue elasticity, it is less suited for in-vivo measurements or deeply seated organs
like prostate. We describe a non-invasive method to estimate tissue elasticity
values based on pairs of CT images, using a finite-element based biomechan-
ical model derived from an initial set of images, local displacements, and an
optimization-based framework.

Given the recovered tissue properties reconstructed from analysis of med-
ical images and patient’s ages, we develop a multiclass classification system for
classifying clinical T-stage and Gleason scores for prostate cancer patients. We
demonstrate the feasibility of a statistically-based multiclass classifier that clas-
sifies a supplementary assessment on cancer T-stages and cancer grades using
the computed elasticity values from medical images, as an additional clinical
aids for the physicians and patients to make more informed decision (e.g. more
strategic biopsy locations, less/more aggressive treatment, etc.). Concurrently,
extracted image features [8–10] using dynamic contrast enhanced (DCE) MRI
have also been suggested for prostate cancer detection. These methods are com-
plementary to ours and can be used in conjunction with ours as a multimodal
classification method to further improve the overall classification accuracy.

2 Method

Our iterative simulation-optimization-identification framework consists of two
alternating phases: the forward simulation to estimate the tissue deformation
and inverse process that refines the tissue elasticity parameters to minimize the
error in a given objective function. The input to our framework are two sets of 3D
images. After iterations of the forward and inverse processes, we obtain the best
set of elasticity parameters. Below we provide a brief overview of the key steps
in this framework and we refer the interested readers to the supplementary doc-
ument at http://gamma.cs.unc.edu/CancerClass/ for the detailed mathematical
formulations and algorithmic process to extract the tissue elasticity parameters
from medical images.

2.1 Forward Simulation: BioTissue Modeling

In our system, we apply Finite Element Method (FEM) and adopt Mooney
Rivlin material for bio-tissue modeling [3]. After discretization using FEM, we
arrive at a linear system,

http://gamma.cs.unc.edu/CancerClass/
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Ku = f (1)

with K as the stiffness matrix, u as the displacement field and f as the external
forces. The stiffness matrix K is not always symmetric possitive definite due
to complicated boundary condition. The boundary condition we applied is the
traction forces (shown in Fig. 7(a) of the supplementary document) computed
based on the displacement of the surrounding tissue (overlapping surfaces shown
in Fig. 7(b) of the supplementary document). We choose to use the Generalized
Minimal Residual (GMRES) [16] solver to solve the linear system instead of the
Generalized Conjugate Gradient (GCG) [14], as GMRES can better cope with
non-symmetric, positive-definite linear system.

The computation of the siffness matrix K in Eq. 1 depends on the energy
function Ψ of the Mooney Rivlin material model [15,19].

Ψ =
1
2
μ1((I21 − I2)/I

2
3
3 − 6) + μ2(I1/I

1
3
3 − 3) + v1(I

1
2
3 − 1)2, (2)

where μ1, μ2 and v1 are the material parameters. In this paper, we recover
parameters μ1 and μ2. Since prostate soft tissue (without tumors) tend to be
homogenous, we use the average μ̄ of μ1 and μ2 as our recovered elasticity
parameter. To model incompressibility, we set v1 to be a very large value (1+ e7
was used in our implementation). v1 is linearly related to the bulk modulus. The
larger the bulk modulus, the more incompressible the object.

Relative Elasticity Value: In addition, we divide the recovered absolute elas-
ticity parameter μ̄ by the that of the surrounding tissue to compute the relative
elasticity parameter μ̂. This individualized relativity value helps to remove the
variation in mechanical properties of tissues between patients, normalizing the
per-patient fluctuation in absolute elasticity values due to varying degrees of
hydration and other temporary factors. We refer readers to our supplementary
document for details regarding non-linear material models.

2.2 Inverse Process: Optimization for Parameter Identification

To estimate the patient-specific relative elasticity, our framework minimizes the
error due to approximated parameters in an objective function. Our objective
function as defined in Eq. 3 consists of the two components. The first part is
the difference between the two surfaces – one reconstructed from the reference
(initial) set of images, deformed using FEM simulation with the estimated para-
meters toward the target surface, and one target surface reconstructed from the
second set of images. This difference is measured by the Hausdorff distance [4].
In addition we add a Tikhonov regularization [5,7] term, which improves the
conditioning of a possibly ill-posed problem.

With regularization, our objective function is given as:

μ = argmin
µ

∑
‖d(Sl,St)‖2 + λΓSl, (3)

with d(Sl,St) as the distance between deformed surface and the reference sur-
face, λ as the regularization weight, and Γ as the second-order differentiatial
operator.
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The second-order differential operator Γ on a continuous surface (2-
manifolds) S is the curvatures of a point on the surface. The curvature is defined
through the tangent plane passing that point. We denote the normal vector of
the tangent plane as n and the unit direction in the tangent plane as eθ. The
curvature related to the unit direction eθ is κ(θ). The mean curvature κmean

for a continuous surface is defined as the average curvature of all the direc-
tions, κmean = 1

2π

∫ 2π

0
κ(θ)dθ. In our implementation, we use triangle mesh to

approximate a continuous surface. We use the 1-ring neighbor as the region for
computing the mean curvature normal on our discrete surface Sl. We treat each
triangle of the mesh as a local surface with two conformal space parameters u
and v. With these two parameters u and v the second-order differential operator
Γ on vertex x is, Δu,vx = xuu + xvv.

2.3 Classification Methods

For classification of cancer prognostic scores, we develop a learning method to
classify patient cancer T-Stage and Gleason score based on the relative elasticity
parameters recovered from CT images. Both the prostate cancer T-stage and the
Gleason score are generally considered as ordinal responses. We study the effec-
tiveness of ordianl logistic regression [2] and multinomial logistic regression [12]
in the context of prostate cancer staging and grading. For both cases we use
RBF kernel to project our feature to higher dimentional space. We refer readers
to supplementary document for method details and the comparison with the
Random Forests method.

3 Patient Data Study

3.1 Preprocessing and Patient Dataset

Given the CT images (shown in Fig. 1a) of the patient, the prostate, bladder
and rectum are first segmented in the images. Then the 3D surfaces (shown in

(a) (b)

Fig. 1. Real Patient CT Image and Reconstructed Organ Surfaces. (a) shows
one slice of the parient CT images with the bladder, prostate and rectum segmented.
(b) shows the reconstructed organ surfaces.
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Fig. 1b) of these organs are reconstructed using VTK and these surfaces would
be the input to our elasticity parameter reconstruction algorithm. Our patient
dataset contains 113 (29 as the reference and 84 as target) sets of CT images
from 29 patients, each patient having 2 to 15 sets of CT images. Every patient
in the dataset has prostate cancer with cancer T-stage ranging from T1 to T3,
Gleason score ranging from 6 to 10, and age from 50 to 85. Gleanson scores are
usually used to assess the aggressiveness of the cancer.

3.2 Cancer Grading/Staging Classification Based on Prostate
Elasticity Parameters

We further study the feasibility of using recovered elasticity parameters as a
cancer prognostic indicator using our classifier based on relative tissue elastic-
ity values and ages. Two classification methods, ordinal logistic regression and
multinomial logistic regression, were tested in our study. We test each method
with two sets of features. The first set of features contains only the relative tissue
elasticity values μ̂. The resultant feature vector is one dimension. The second set
of features contains both the relative tissue elasticity values and the age. The
feature vector for this set of features is two dimensional. Our cancer staging has
C = 3 classes, T1, T2 and T3. And the cancer grading has G = 5 classes, from
6 to 10. In our patient dataset, each patient has at least 2 sets of CT images.
The elasticity parameter reconstruction algorithm needs 2 sets of CT images as
input. We fix one set of CT images as the initial (reference) image and use the
other M number of images T , where |T | = M as the target (deformed) images.
By registering the initial image to the target images, we obtain one elasticity
parameter μ̂i, i = 1 . . . M for each image in T . We perform both per-patient and
per-image cross validation.

Per-Image Cross Validation: We treat all the target images (N = 84) of
all the patients as data points of equal importance. The elasticity feature for
each target image is the recovered elasticity parameter μ̂. In this experiment, we
train our classifier using the elasticity feature of the 83 images then cross validate
with the one left out. Then, we add the patient’s age as another feature to the
classifier and perform the validation. The results for cancer staging (T-Stage)
classification are shown in Fig. 2a and that for cancer grading (Gleason score)
classification are shown in Fig. 2b. The error metric is measured as the absolute
difference between the classified cancer T-Stage and the actual cancer T-Stage.
Zero error-distance means our classifier accurately classifies the cancer T-Stage.

The multinomial method outperforms the ordinal method for both cancer
staging (T-Stage) and cancer aggression (Gleason score) classification. The main
reason that we are observing this is due to the optimization weights or the
unknown regression coefficients β (refer to supplementary document for the def-
inition) dimension of the multinomial and ordinal logistic regression method.
The dimension of the unknown regression coefficients of the multinomial logistic
regression for cancer staging classification (with elasticity parameter and age as
features) is 6 while that of ordinal logistic regression is 4. With the ‘age’ feature,
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(a) (b)

Fig. 2. Error Distribution of Cancer Grading/Staging Classification for Per-
Image Study. (a) shows error distribution of our cancer staging classification using the
recovered prostate elasticity parameter and the patient’s age. For our patient dataset,
the multinomial classifier (shown in royal blue and sky blue) outperforms the ordi-
nal classifier (shown in crimson and coral). We achieve up to 91% accuracy using
multinomial logistic regression and 89% using ordinal logistic regression for classify-
ing cancer T-Stage based on recovered elasticity parameter and age. (b) shows the
correlation between the recovered relative elasticity parameter and the Gleason score
with/without the patient’s age. We achieve up to 88% accuracy using multinomial
logistic regression and 81% using ordinal logistic regression for classifying Gleason
score based on recovered elasticity parameter and age.

we obtain up to 91% accuracy for perdicting cancer T-Stage using multinomial
logistic regression method and 89% using ordinal logistic regression method. For
Gleason score classification we achieve up to 88% accuracy using multinomial
logistic regression method and 81% using ordinal logistic regression method.

Per-Patient Cross Validation: For patients with more than 2 sets of images,
we apply Gaussian sampling to μ̂i, i = 1 . . . M to compute the sampled elasticity
parameter as the elasticity feature of the patient. We first train our classifier
using the elasticity feature of the 28 patients then test the trained classifier on
the remaining one patient not in the training set. We repeat this process for each
of the 29 patients. Then we include the patient age as another feature in the
classifier. The error distribution for cancer staging (T-Stage) classification results
are shown in Fig. 3a and the error distribution of cancer grading (Gleason score)
classification are shown in Fig. 3b. We observe that the multinomial method in
general outperforms the ordinal method. More interestingly, the age feature helps
to increase the classification accuracy by 2% for staging classification and 7% for
Gleason scoring classification). With the age feature, our multinomial classifier
achieves up to 84% accuracy for classifying cancer T-Stage and up to 77%
accuracy for classifying Gleason scores. And our ordinal classifier achieves up to
82% for cancer T-Stage classification and 70% for Gleason score classification.
The drop in accuracy for per-patient experiments compared with per-image ones
is primary due to the decrease in data samples.
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(a) (b)

Fig. 3. Error Distribution of Cancer Aggression/Staging Classification for
Per-Patient Study. (a) shows the accuracy and error distribution of our recovered
prostate elasticity parameter and cancer T-Stage. For our patient dataset, the multino-
mial classifier (shown in royal blue and sky blue) outperforms the ordinal classifier
(shown in crimson and coral). We achieve up to 84% accuracy using multinomial logis-
tic regression and 82% using ordinal logistic regression for classifying cancer T-Stage
based on our recovered elasticity parameter and patient age information. (b) shows the
correlation between the recovered relative elasticity parameter and the Gleason score.
We achieve up to 77% accuracy using multinomial logistic regression and 70% using
ordinal logistic regression for classifying Gleason score based on our recovered elasticity
parameter and patient age information.

Among the 16% failure cases for cancer staging classification, 15% of our
multinomial classification results with age feature is only 1 stage away from the
ground truth. And for the failure cases for scoring classification, only 10% of the
classified Gleason scores is 1 away from the ground truth and 13% of them are
2 away from the ground truth.

4 Conclusion and Future Work

In this paper, we present an improved, non-invasive tissue elasticity parame-
ter reconstruction framework using CT images. We further studied the correla-
tion of the recovered relative elasticity parameters with prostate cancer T-Stage
and Gleason score for multiclass classification of cancer T-stages and grades.
The classification accuracy on our patient dataset using multinormial logistic
regression method is up to 84% accurate for cancer T-stages and up to 77%
accurate for Gleason scores. This study further demonstrates the effectiveness of
our algorithm for recovering (relative) tissue elasticity parameter in-vivo and its
promising potential for correct classification in cancer screening and diagnosis.

Future Work: This study is performed on 113 sets of images from 29 prostate
cancer patients all treated in the same hospital. More image data from more
patients across multiple institutions can provide a much richer set of training



634 S. Yang et al.

data, thus further improving the classification results and testing/validating its
classification power for cancer diagnosis. With more data, we could also apply
our learned model for cancer stage/score prediction. And other features, such
as the volume of the prostate can also be included in the larger study. Another
possible direction is to perform the same study on normal subjects and increase
the patient diversity from different locations. A large-scale study can enable
more complete analysis and lead to more insights on the impact of variability
due to demographics and hospital practice on the study results. Similar analysis
and derivation could also be performed using other image modalities, such as
MR and ultrasound, and shown to be applicable to other types of cancers.
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