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Abstract. A novel hand-held speed-of-sound (SoS) imaging method is
proposed, which requires only minor hardware extensions to conventional
ultrasound (US) B-mode systems. A hand-held reflector is used as a tim-
ing reference for US signals. A robust reflector-detection algorithm, based
on dynamic programming (DP), achieves unambiguous timing even with
10 dB signal-to-noise ratio in real tissues, successfully detecting delays
<100 ns introduced by SoS heterogeneities. An Anisotropically-Weighted
Total-Variation (AWTV) regularization based on L1-norm smoothness
reconstruction is shown to achieve significant improvements in the delin-
eation of focal lesions. The Contrast-to-noise-ratio (CNR) is improved
from 15 dB to 37 dB, and the axial resolution loss from >300 % to <15 %.
Experiments with breast-mimicking phantoms and ex-vivo liver samples
showed, for hard hypoechogenic inclusions not visible in B-mode US, a
high SoS contrast (2.6 %) with respect to cystic inclusions (0.9 %) and the
background SoS noise (0.6 %). We also tested our method on a healthy
volunteer in a preliminary in-vivo test. The proposed technique demon-
strates potential for low-cost and non-ionizing screening, as well as for
diagnostics in daily clinical routine.

1 Introduction

Breast cancer is a high-prevalence disease affecting 1/8 women in the USA. Cur-
rent routine screening consists of X-ray mammography, which, however, shows
low sensitivity to malign tumors in dense breasts, for which a large number of
false positives leads to an unnecessary number of breast biopsies. Also, the use of
ionizing radiation advises against a frequent utilization, for instance, to monitor
the progress of a tumor. Finally, the compression of the breast down to a few
centimeter may cause patient discomfort. For these reasons, latest recommenda-
tions restrict the general use of X-ray mammography to biennial examinations
in women over 50 year old [13].

Ultrasound (US) is a safe, pain-free, and widely available medical imaging
modality, which can complement routine mammographies. Conventional screen-
ing breast US (B-mode), which measures reflectivity and scattering from tissue
structures, showed significantly higher sensitivity combined with mammography
(97 %) than the latter alone (74 %) [8]. However, B-mode US shows poor speci-
ficity. A novel US modality, Ultrasound Computed-tomography (USCT), aims at
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mapping other tissue parameters, such as the speed-of-sound (SoS), which shows
a high potential for tumor differentiation (e.g., fibroadenoma, carcinoma, cysts)
[2]. However, this method requires dedicated and complex systems consisting of
a large number of transducer elements located around the breast in order to
measure US wave propagation paths along multiple trajectories, from which the
SoS-USCT image is reconstructed [3,5,10,11]. Low-cost extensions of conven-
tional B-mode systems that only require a single multi-element array transducer
are desirable for SoS-USCT for the daily clinical routine. There have been some
early attempts to combine B-mode systems with X-ray mammography, using
the back compression plate as a timing reference. Yet, the reconstruction suffers
from strong limited-angle artifacts, which provide unsatisfactory image quality,
unless detailed prior information of the screened inclusion geometry is available
[6,9].

TransducerReflector

Tissue
Ultrasound waves

Fig. 1. SoS imaging setup.

In this work we propose a novel SoS-USCT
method, hand-held sound-speed imaging, which
overcomes the above listed limitations. By trans-
mitting US waves through tissue between a B-
mode transducer and a hand-held reflector, a
SoS-USCT image of sufficient quality for tumor
screening is obtained (Fig. 1). A specific reflector
design combined with dedicated image process-
ing provides unambiguous measurement of US
time-of-flight (ToF) between different trans-
mitter/receiver elements of a transducer, from
which local tissue SoS is derived as an image.
Total-variation regularization overcomes the previously reported limited-angle
artifacts and enables prior-less SoS imaging and precise delineation of piece-wise
homogeneous inclusions. The proposed method only requires a small and local-
ized breast compression, while allowing for flexible access to arbitrary imaging
planes within the breast.

2 Methods

A 128-element 5 MHz linear ultrasound array (L14/5-38) was operated in mul-
tistatic mode (a), each element sequentially firing (Tx) and the rest receiving
(Rx). For this purpose, a custom acquisition sequence was implemented on a
research ultrasound machine (SonixTouch, Ultrasonix, Richmond, Canada). In
a first implementation, a conventional ultrasound beamformer is adapted to the
application by beamforming only a single element pair in Tx and Rx at a time,
which requires the acquisition of 128 × 128 RF lines for 40 mm depth in about 8
s. To keep the measurement scene stable during acquisition, a positioning frame
was introduced to keep the orientation of transducer and reflector fixed with
respect to each other (Fig. 5b). For each line, the raw (unmodulated) ultrasound
data (RF lines) are recorded. Computations are then performed in Matlab R©.
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Fig. 2. Reflector identification for ex-vivo liver test (Fig. 5c). a) Setup details; b) RF
lines acquired with overlapped DP delineation for the case of same Tx and Rx; c) the
measured ToF matrix ti,o ; and d) the relative path delays Δti,o after compensating for
geometric effects. The proposed DP method outperforms independent RF line analysis
and adaptive amplitude-tracking [12].

2.1 Reflector Delineation

The reflector consists of a thin Plexiglas stripe (50 mm × 7 mm × 5 mm), which
limits the reflected echoes to the desired imaging plane, and allows for flexible
access to different breast locations. The material choice ensures a coherent wave
reflection along the tested angular range. The flat reflector geometry is simple for
manufacture, and easy to identify in US data. Secondary echoes corresponding to
wave reflections between reflector boundaries are well-separated from the main
echo and filtered out (Fig. 2a, b).

In a real tissue scenario, a modulated ultrasound waveform with an oscil-
latory pressure pattern is recorded. The recorded signal shows multiple local
maxima, with varying amplitudes depending on the wave path. Simply picking
the peak response in each RF line yields incorrect ToF values, since different
peaks may be selected for different transmit-receive (Tx-Rx) pairs. An adaptive
amplitude-tracking measurement, which uses the current timing measurement as
prior information for the adjacent Tx-Rx pairs, was shown for non-destructive
testing of heterogeneous materials [12]. However, it requires manual initializa-
tion, which is not affordable for in-vivo scenarios and fails when, due to wave
interference and scattering effects, the reflected wave-front falls below the system
noise level (fading), as frequently observed in real tissue samples (Fig. 2c, d).

In this work a global optimization is introduced, which simultaneously con-
siders the full Tx-Rx dataset. Based on Dynamic Programming (DP), which has
been applied in US for the segmentation of bones [4] and vessel walls [1], an
algorithm for detecting oscillatory patterns in RF lines is proposed. It consists
of a global cost matrix C(l, tl), which is cumulatively built along successive RF
lines l (adjacent Tx-Rx pairs) for a list of N timing candidates tl = t0l , t

1
l . . . tNl ,

i.e., a list of possible time samples in the current RF line l, among which the
optimum reflector timing can be found. Also, a memory matrix M(l, tl) records
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discrete timing decisions for each line and candidate. The optimum reflector tim-
ing is then found, which minimizes the cumulative cost, and following M(l, tl)
backwards the optimum reflector delineation T (l) is drawn:
(

C(l, tl)
M(l, tl)

)
=

(
mintl−1 {C(l − 1, tl−1) + f1(tl, tl−1)} + f0(tl)

argmintl−1
{C(l − 1, tl−1) + f1(tl, tl−1)}

)
(1)

T (l) =
{

argmin
tl

C(l, tl), l = L; M(l + 1, T (l + 1)), l = 1 . . . L − 1;

with f0 and f1 non-linear functions that incorporate ToF for current t1 and
neighbouring tl−1 RF lines. The general formulation of Eq. 1 introduces regu-
larization into the reflector timing problem, enabling the natural incorporation
of available prior information (oscillatory pattern, smoothness, multiple echoes,
path geometry) into the optimization. Moreover, the delineation does not require
manual initialization and is parallelizable linewise. The currently not optimized
Matlab code runs on a single-core of an Intel Core i7-4770K CPU in <100 s, but
several future speed improvements are envisioned.

2.2 Total-Variation Sound-Speed Image Reconstruction

Once the time delay matrix for all transmit-receiver elements ti,o has been
obtained (Fig. 2c), a SoS image is reconstructed. First, the baseline geometri-
cal delays ti,o due to different path lengths between different transmit-receiver
elements are subtracted from ti,o to isolate the relative delays induced by SoS
inhomogeneities Δti,o (Fig. 2d):

Δti,o = ti,o − ti,o ti,o = (c)−1
√

4d2 + p(io − ii)2 ∀i, o (2)

where c is the average tissue speed of sound (with a nominal value of 1540 ms −1),
d is the distance between transducer and reflector, p is array pitch (0.3 mm for our
probe), and ii, io are the indices of the Tx i and Rx o elements considered (1..128).
Note that d and c are estimated with linear regression based on Eq. 2. In practice,
a non-linear fit is performed to estimate both the reflector inclination and in-plane
orientation.

The next step is the reconstruction of SoS distribution, which is expressed
in slowness units σ [s/m], with c(x, y) = c (1 + σ(x, y))−1. The tissue region
is discretized into cells c traversed by a finite set of ray paths p correspond-
ing to different Tx-Rx pairs (Fig. 3a). With the known differential path lengths
lp,c, the path delays Δtp are calculated in function of the slowness increments
σc, i.e.,Δtp =

∑C
c=1 lp,cσc, in matrix form Δt=Lσ. Since reconstruction can

be ill-posed, regularization becomes necessary. A conventional solution in X-ray
Computed Tomography (CT) [7], is Filtered Backprojection (FBP), which aver-
ages the delays of all rays p propagating through cell c. Previous reflector-based
US works [9] have used Algebraic Reconstruction (ART), in which Δt=Lσ is
approximated via singular value decomposition, preserving only the largest sin-
gular values of L (typically 5 % of the total). Both FBP and ART provide a stable
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Fig. 3. Formulation of the sound-speed reconstruction problem. (a) Ray tracing dis-
cretization. (b) Smoothness regularization with L2 and L1 norms. While the L2 norm
favors the smooth sound-speed profile, the L1 norm (TV) equally weights smooth and
sharp gradients.

SoS-image reconstruction, which however suffers from strong streak artifacts and
a coarse resolution in the vertical direction (Fig. 4c). The reason is that, similarly
as in limited-angle CBCT, reflector-based SoS-USCT is an ill-posed problem [7],
every cell being traversed by only a limited set of path orientations; i.e., paths
parallel to the reflector are missing. This is a main geometric limitation with
respect to dedicated USCT systems, which incorporate complete angular path
sets [3,5,10].

To overcome the limited-angle artifacts, we introduce additional regularizing
assumptions for the smoothness of the SoS-image:

σ̂TV = argmin
σ

{‖Δt − Lσ‖2 + λ‖Dσ‖n} ‖ (3)

where ‖Dσ‖n =
∑

i,j |σi+1,j − σi,j |n + |σi,j+1 − σi,j |n minimizes the sum of
horizontal i and vertical j gradients of the reconstructed image, and λ is a
constant. The norm of the smoothness term n critically influences the recon-
struction results (Fig. 3b). For L2-norm, i.e., ‖x‖2 =

∑ |x|2, a closed linear
solution (Tikhonov regularization) of Eq. 3 is found, but smooth gradients are
favored with respect to sharp gradients. As a result, the reconstruction does not
significantly improve with respect to ART. However, if the L1-norm n = 1 is

-1mµsSetup Conventional ART AWTV -1mµs-1mµs

a)                        b)                       c)                        d)

-1mµsSetup Conventional ART AWTV -1mµs-1mµs

Total variation TV

Total variation TV

-1mµs

-1mµs

Fig. 4. Simulation of sound-speed image reconstruction with (top) single and (bottom)
multiple inclusions: (a) in-silico phantom, (b-c) reconstruction with prior-art, and (d)
our TV approach.
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used ‖x‖1 =
∑ |x| (Total Variation (TV) Regularization), sharp and smooth

gradients are equally weighted, which leads to the reconstruction of a minimum
number of piecewise homogeneous inclusions. This concept has been previously
applied to regularize sparse array apertures in full-angle 3D USCT [11]. We apply
this here for the first time to the limited-angle ultrasound reflection tomography
case. With n = 1, Eq. 3 becomes a convex problem, which is iteratively solved
with off-the-shelf optimization packages.

The resulting SoS images (Fig. 4c) successfully filter out limited-angle arti-
facts and delineate closed inclusion geometries. However, they still show reduced
axial resolution, due to the extremely reduced path orientation set (according
to Fig. 3a, for a SoS image aspect ratio of 1:1, the largest available ray angle is
25◦). In order to compensate for this resolution loss we introduce Anisotropically-
Weighted Total Variation (AWTV), which balances horizontal and vertical gra-
dients with a constant κ according to the available ray information in each
direction:

σ̂AWTV =argmin
σ

{
‖Δt − Lσ‖2 + λ

∑
i,j

κ|σi+1,j − σi,j | + (1 − κ)|σi,j+1 − σi,j |
}

(4)

With a reconstructed pixel size equal to the array pitch (p =0.3 mm), an optimum
reconstruction performance was achieved with λ = 0.0008 and κ = 0.9 .

2.3 Tissue Phantoms, Ex-vivo and In-vivo Tests

A tissue-mimicking phantom was manufactured from gelatin (9 g/100 mL water),
mixed with flour to simulate typical ultrasound reflectivity patterns (speckle).
Hard inclusions simulating tumors (Fig. 5a) were introduced by using a higher
amount of gelatin (13 g/100 mL water) in well-defined phantom regions. In order
to make these inclusions invisible to conventional B-mode US, the same amount
of scatterering was used in tissue background and hard inclusions, so that both
exhibited the same echogenicity. To test the applicability of the method to breast
mammography, a breast elastography phantom (Model 059, CIRS Inc., Norfolk,
VA, USA) was tested. The phantom is fabricated with a tissue-mimicking mate-
rial (ZerdineTM ) and shows a realistic breast geometry, incorporating both skin
layers and glandular tissue, together with cystic (water) and dense lesions (with
embedded microcalcifications) (Fig. 5b). Ex-vivo tests were performed in bovine
liver samples. Hard inclusions were simulated by ablating small pieces of liver
(submerged in 250 mL water for 6 min at 700 W microwave). These were after-
wards inserted in the liver (Fig. 5c). Finally, a preliminary in-vivo test was carried
out with a healthy volunteer with benign cysts. While the subject sat in tripod
position (Fig. 5d), the sonographer placed the US probe on the region-of-interest.
Then, the subject held the positioning frame closed with both hands, while the
reflector USCT data was acquired. For all tests, B-mode US images were also
generated from the multi-static datasets for comparison with the SoS images.
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Fig. 5. Hand-held sound-speed mammography of gelatin phantom (a), breast-mimick-
ing phantom (b), ex-vivo liver sample with hard inclusion (c), and in-vivo data for a
benign cystic mass (d).

3 Results and Discussion

The proposed DP method clearly outperforms independent RF line analysis
and adaptive amplitude-tracking, enabling the acquisition of a continuous ToF
matrix for real tissues (Fig. 2c), in which small timing variations (<100 ns)
caused by SoS inhomogeneities are successfully observed (Fig. 2d). Signal fading
(Fig. 2b) was typically observed around the inclusion boundaries, where strong
wave refraction occurs due to quasi-parallel incident ray paths. DP automati-
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cally filters out fading positions from the reconstruction. Calibration experiments
in gradually-heated water provided quantitative SoS values with a sensitivity
< 0.005 ms−1. The observed timing error of std = 15 ns results in a noise floor
of 0.8 µs m−1, corresponding to a <0.1 % sound-speed contrast.

The proposed AWTV SoS reconstruction achieves significant improvements
in the delineation of inclusion geometry (Fig. 4). Often-problematic vertical elon-
gation of inclusions is strongly reduced (14 %) compared to ART (>300 %) and
TV (95 %), which enables a quantitative reconstruction of original SoS values
(SoS error<0.3 %). Streak artifacts, which are typical in ART (CNR = 15 dB),
are not visible in AWTV (CNR = 37 dB). Moreover, our novel approach success-
fully reconstructs multiple inclusions with different SoS values and geometries
(Fig. 4). Not only are the inclusion positions correctly identified, but also are
their SoS values and diameter satisfactorily estimated.

An excellent performance is observed in both phantom and ex-vivo tests. For
the gelatin phantom, the hard inclusions were manufactured with a small SoS
contrast (−3.5 µs m−1, 0.5 % SoS increase), but nonetheless were successfully
resolved (Fig. 5a). In the more heterogeneous breast phantom (Fig. 5b) both hard
inclusions (−17 µs m−1, 2.6 % SoS increase) and cysts (−6 µs m−1, 0.9 % SoS
increase) show a higher contrast and are well-separated from the background
noise, which is around 0.6 %. These values are more representative of real breast
tumors, as reported by [2]. The background noise is related to reconstruction
artifacts (e.g., the gradient information is missing at image boundaries), and to
a minor extent, to refraction effects not accounted for in the ray tracing model.
The hard inclusion in the ex-vivo liver samples was invisible in the B-mode, but
clearly delineated in the SoS image, with contrast similar to the breast phantom;
see Fig. 5d. Despite movement artifacts, lower US signal-to-noise ratio (<10 dB),
and imperfect coupling between reflector and breast tissue, the preliminary in-
vivo test demonstrates a successful identification of cystic inclusion, with an
expected lower SoS contrast (−8 µs m−1) than the ex-vivo hard inclusions.

4 Conclusions and Outlook

A novel hand-held sound-speed imaging modality has been proposed with min-
imum hardware modifications to conventional B-mode ultrasound systems. An
accurate geometric delineation of hypoechogenic inclusions was achieved with a
high SoS-contrast for hard inclusions in both breast elastography phantoms and
ex-vivo liver samples. SoS values are known as potential quantitative imaging bio-
markers for breast mass differentiation [2]. In our preliminary in-vivo test, even
cystic inclusion, which are known to be of low SoS contrast, were successfully
identified, indicating the future potential for detecting higher contrast cancer-
ous tumors. The proposed method is radiation-free, painless, and can potentially
complement routine screening for breast cancer. Prospective applications can be
for other organs that allow reflector placement such as the testicles, limbs, skin,
the prostate, and with catheters; or during open-surgery, e.g., for liver.
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