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Abstract. In many clinical procedures involving needle insertion, such as
cryoablation, accurate navigation of the needle to the desired target is of para-
mount importance to optimize the treatment and minimize the damage to the
neighboring anatomy. However, the force interaction between the needle and
tissue may lead to needle deflection, resulting in considerable error in the
intraoperative tracking of the needle tip. In this paper, we have proposed a
Kalman filter-based formulation to fuse two sensor data — optical sensor at the
base and magnetic resonance (MR) gradient-field driven electromagnetic
(EM) sensor placed 10 cm from the needle tip — to estimate the needle
deflection online. Angular springs model based tip estimations and EM based
estimation without model are used to form the measurement vector in the
Kalman filter. Static tip bending experiments show that the fusion method can
reduce the error of the tip estimation by from 29.23 mm to 3.15 mm and from
39.96 mm to 6.90 mm at the MRI isocenter and 650 mm from the isocenter
respectively.
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1 Introduction

Minimally invasive therapies such as biopsy, brachytherapy, radiofrequency ablation
and cryoablation involve the insertion of multiple needles into the patient [1–3].
Accurate placement of the needle tip can result in reliable acquisition of diagnostic
samples [4], effective drug delivery [5] or target ablation [2]. When the clinicians
maneuver the needle to the target location, the needle is likely to bend due to the
tissue-needle or hand-needle interaction, resulting in suboptimal placement of the
needle. Mala et al. [3] have reported that in nearly 28 % of the cases, cryoablation of
liver metastases was inadequate due to improper placement of the needles among other

© Springer International Publishing AG 2016
S. Ourselin et al. (Eds.): MICCAI 2016, Part I, LNCS 9900, pp. 457–464, 2016.
DOI: 10.1007/978-3-319-46720-7_53



reasons. We propose to develop a real-time navigation system for better guidance while
accounting for the needle bending caused by the needle-tissue interactions.

Many methods have been proposed to estimate the needle deflection. The most
popular class of methods is the model-based estimation [6–8]. Roesthuis et al. proposed
the virtual springs model considering the needle as a cantilever beam supported by a
series of springs and utilized Rayleigh-Ritz method to solve for needle deflection [8].
The work of Dorileo et al. merged needle-tissue properties, tip asymmetry and needle
tip position updates from images to estimate the needle deflection as a function of
insertion depth [7]. However, since the model-based estimation is sensitive to model
parameters and the needle-tissue interaction is stochastic in nature, needle deflection
and insertion trajectory are not completely repeatable. The second type of estimation is
achieved using an optical fiber based sensor. Park et al. designed an MRI-compatible
biopsy needle instrumented with optical fiber Bragg gratings to track needle deviation
[4]. However, the design and functionality of certain needles, such as cryoablation and
radiofrequency ablation needles, do not allow for instrumentation of the optical fiber
based sensor in the lumen of the needle. The third kind of estimation strategy was
proposed in [9], where Kalman filter was employed to combine a needle bending model
with the needle base and tip position measurements from two electromagnetic
(EM) trackers to estimate the true tip position. This approach can effectively com-
pensate for the quantification uncertainties of the needle model and therefore be more
reliable. However, this method is not feasible in the MRI environment due to the use of
MRI-unsafe sensors. In this work, we present a new fusion method using an optical
tracker at the needle’s base and an MRI gradient field driven EM tracker attached to the
shaft of the needle. By integrating the sensor data with the angular springs model
presented in [10], the Kalman filter-based fusion model can significantly reduce the
estimation error in presence of needle bending.

2 Methodology

2.1 Sensor Fusion

Needle Configuration. In this study, we have used a cone-tip IceRod® 1.5 mm MRI
Cryoablation Needle (Galil Medical, Inc.), as shown in Fig. 1. A frame with four
passive spheres (Northern Digital Inc. and a tracking system from Symbow Medical
Inc.) is mounted on the base of the needle, and an MRI-safe EndoScout® EM sensor
(Robin Medical, Inc.) is attached to the needle’s shaft with 10 cm offset from the tip set
by a depth stopper.

Through pivot calibration, the optical tracking system can provide the needle base
position POpt and the orientation of the straight needle OOpt. The EM sensor obtains the
sensor’s location PEM and its orientation with respect to the magnetic field of the MR
scanner OEM .

Kalman Filter Formulation. The state vector is set as xk ¼ ½Ptip kð Þ; _Ptip kð Þ�T . The
insertion speed during cryoablation procedure is slow enough to be considered as a

458 B. Jiang et al.



constant. Therefore, the process model can be formulated in the form of xk ¼ Axk�1 þ
wk�1 as follows:
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_PtipðkÞ

� �
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where TS, I3, 03 stand for the time step, 3-order identity matrix and 3-order null matrix.
PtipðkÞ, _PtipðkÞ, €PtipðkÞ represent the tip position, velocity, acceleration, respectively. The

acceleration element ½T2
s
2 I3; TsI3�T €PtipðkÞ is taken as the process noise, denoted by

wk�1 �Nð0;QÞ, where Q is the process noise covariance matrix.
When considering the needle as straight, the tip position was estimated using the

three sets of data as follows: TIPOpt (using POpt, OOpt and needle length offset), TIPEM

(using PEM , OEM and EM offset), and TIPOptEM (drawing a straight line using POpt and
PEM , and needle length offset). When taking the needle bending into account, we can
estimate the needle tip position using the angular springs model with either the com-
bination of PEM , POpt, and Oopt (TIPEMOptOptÞ or the combination of POpt, PEM and OEM

(TIPOptEMEMÞ, which are formulated in (2) and (3).

PEMOptOpt ¼ g1 PEM ;POpt;OOpt
� � ð2Þ

POptEMEM ¼ g2 POpt;PEM ;OEM
� � ð3Þ

In our measurement equation zk ¼ Hxk þ vk, as zk is of crucial importance for the
stability and accuracy, zk ¼ ½g1 Popt;PEM ;Oopt

� �
; g2 Popt;PEM ;OEM

� �
; TIPEM �T is sug-

gested by later experiments. Accordingly, H is defined as in (4):
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I3 O3

I3 O3
I3 O3

2
4

3
5 ð4Þ

Fig. 1. Cryoablation needle mounted with Optical and EM sensor and a depth stopper.
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The measurement noise is denoted as vk �Nð0;RÞ, where R is the measurement
noise covariance matrix. For finding the optimal noise estimation, we used the
Nelder-Mead simplex method [11].

2.2 Bending Model

In order to estimate the flexible needle deflection from the sensor data, an efficient and
robust bendingmodel is needed. In [10], three different models are presented, including two
models based on finite element method (FEM) and one angular springs model. Further
in [8] and [12], a virtual springs model was proposed, which took the needle-tissue force
interaction into consideration. In [5] and [9], a kinematic quadratic polynomial model is
implemented to estimate the needle tip deflection. Since we assume that the deflection is
planar and caused by the orthogonal force acting on the needle tip, we have investigated
multiple models and here we present the angular springs formulation to model the needle.

Angular Springs Model. In this method, the needle is modeled into n rigid rods
connected by angular springs with the same spring constant k, which can be identified
through experiment. Due to the orthogonal force acting on the needle tip, the needle
deflects causing the springs to extend. The insertion process is slow enough to be
considered as quasi-static, therefore the rods and springs are in equilibrium at each time
step. Additionally, for the elastic range of deformations, the springs behave linearly,
i.e., si ¼ k � qi, where si is the spring torque at each joint. The implementation of this
method is demonstrated in Fig. 2, and the mechanical relations are expressed as in (5).

kq5 ¼ Ftipl

kq4 ¼ Ftiplð1þ cos q5Þ
kq3 ¼ Ftipl 1þ cos q5 þ cosðq5 þ q4Þ½ �

kq2 ¼ Ftipl 1þ cos q5 þ cosðq5 þ q4Þþ cosðq5 þ q4 þ q3Þ½ �
kq1 ¼ Ftipl½1þ cos q5 þ cosðq5 þ q4Þþ cosðq5 þ q4 þ q3Þ

þ cosðq5 þ q4 þ q3 þ q2Þ�

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

The Eq. (5) can be written in the form of k � U ¼ Ftip � JðUÞ, where U ¼ q1; q2; . . .;½
qn�, and J is the parameter function calculating the force-deflection relationship vector.
In order to implement this model into the tip estimation method in (2) and (3), one more
equation is needed for relating sensor input data with (5). As the data of PEM ;POpt;Oopt

and Popt;PEM ;OEM are received during insertion, the deflection of the needle can be
estimated as:

dEM ¼ l � ½sin q1 þ sin q1 þ q2ð Þ� ð6Þ

dbase ¼ l � sin q3 þ sin q3 þ q2ð Þ½ � ð7Þ

where dEM represents the deviation of the EM sensor from the optical-measured straight
needle orientation and dbase stands for the relative deviation of the needle base from the
EM measured direction.
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To estimate the needle deflection from PEM ;POpt;Oopt or Popt;PEM ;OEM , a set of
nonlinear equations consisting of either (5) (6) or (5) (7) needs to be solved. However,
as proposed in [10], the nonlinear system of (6) can be solved iteratively using Picard’s
method, which is expressed in (8). Given the needle configuration Ut, we can use the
function J to estimate the needle posture at the next iteration.

Utþ 1 ¼ k�1J Utð ÞFtip ð8Þ
For minor deflections, it only takes less than 10 iterations to solve this nonlinear

equations, which is efficient enough to achieve real-time estimation.
However, the implementation of Picard’s method requires the Ftip to be known. In

order to find the Ftip using the sensor inputs, a series of simulation experiments are
conducted and linearly-increasing simulated tip force Ftip with the corresponding dEM ,
dbase are collected. The simulation results are shown in Fig. 3. Left.

A least square method is implemented to fit the force-deviation data with a cubic
polynomial. Thereafter, to solve the needle configuration using PEM ;POpt;Oopt and
POpt;PEM ;OEM , the optimal cubic polynomial is used first to estimate the tip force from
the measured dEM and dbase, and then (5) is solved iteratively using (8).

Fig. 2. Angular springs model, taking 5 rods as an example

Fig. 3. Left: Tip force and deflection relation: tip force increases with 50 mN intervals. Right:
Static tip bending experiment setup at MRI entrance.
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3 Experiments

In order to validate our proposed method, we designed the static tip bending experi-
ment, which was performed at the isocenter and 650 mm offset along z-axis from the
isocenter (entrance) of MRI shown in Fig. 3. Right. The experiment is conducted in
two steps: first, the needle tip was placed at a particular point (such as inside a phantom
marker) and kept static without bending the needle. The optical and EM sensor data
were recorded for 10 s. Second, the needle’s tip remained at the same point and the
needle was bent by maneuvering the needle base, with a mean magnitude of about
40 mm tip deviation for large bending validation and 20 mm for small bending vali-
dation. Similarly, the data were recorded from both sensors for an additional 20 s.
Besides, needle was bent in three patterns: in the x-y plane of MRI, y-z plane and all
directions, to evaluate the relevance between EM sensor orientation and its accuracy.

From the data collected in the first step, the estimated needle tip mean position
without needle deflection compensation can be viewed as the gold standard reference
point TIPgold . In the second step, the proposed fusion method, together with other tip
estimation methods, was used to estimate the static tip position, which was compared
with TIPgold . The results are shown in Fig. 4. For large bending, error of TIPOpt, TIPEM

and TIPfused is 29.23 mm, 6.29 mm, 3.15 mm at isocenter, and 39.96 mm, 9.77 mm,
6.90 mm at MRI entrance, respectively. For small bending they become 21.00 mm,
3.70 mm, 2.20 mm at isocenter, and 16.54 mm, 5.41 mm, 4.20 mm at entrance,
respectively.

4 Discussion

By comparing the TIPfused with TIPOpt instead of TIPEM , it should be noted that the EM
sensor is primarily used to augment the measurements of the optical sensor and
compensate for its line-of-sight problem. Although EM sensor better estimates the
needle tip position in presence of needle bending, it is sensitive to the MR gradient field
nonlinearity and noise. Therefore, its performance is less reliable when performing the
needle insertion procedure at the MRI entrance.

Although quantifying the range of bending during therapy is difficult, our initial
insertion experiments in a homogeneous spine phantom using the same needle
demonstrated a needle bending of over 10 mm. Therefore, we attempted to simulate a
larger bending (40 mm tip deviation) that could be anticipated when needle is inserted
through heterogeneous tissue composition. However, as small bending will be more
commonly observed, validation experiments were conducted and demonstrated con-
sistently better estimation using the data fusion method.

From Fig. 4 Bottom, we find that the green dots, which represent bending in the x-y
plane, exhibit higher accuracy of the EM sensor, thus resulting in a better fusion result.
For large bending experiment in the x-y plane at the entrance, the mean error of TIPOpt,
TIPEM and TIPfused are 28.22 mm, 5.76 mm, 3.40 mm, respectively. The result sug-
gests that by maneuvering the needle in the x-y plane, the estimation accuracy can be
further improved.
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It should be noted that the magnitude of estimation errors using fusion method still
appears large due to the significant bending introduced in the needle. When the actual
bending becomes less conspicuous, the estimation error can be much smaller. In addition,
the estimation error is not equal to the overall targeting error. It only represents the
real-time tracking error in presence of needle bending. By integrating the data fusion
algorithm with the 3D Slicer-based navigation system [13], clinicians can be provided
with better real-time guidance and maneuverability of the needle.

Fig. 4. Top: Single experiment result. Each scattered point represent a single time step record.
The left-side points represent the estimated tip positions using different methods. The light blue
points in the middle and dark blue points to the right represent the raw data of EM sensor
locations and needle base positions respectively. The black sphere is centered at the gold standard
point, and encompasses 90 % of the fused estimation points (black). Lines connect the raw data
and estimated tip positions of a single time step. Bottom: From left to right: large bending
experiment at isocenter, large-entrance, small-isocenter, small-entrance. X axis, from 1 to 6, stand
for TIPfused , TIPEM , TIPOptEMEM , TIPEMOptOpt, TIPOptEM , TIPOpt, respectively. Y axis indicates the
mean estimation error (mm) and each dot represents a single experiment result.
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5 Conclusion

In this work, we proposed a Kalman filter based optical-EM sensor fusion method to
estimate the flexible needle deflection. The data fusion method exhibits consistently
smaller mean error than the methods without fusion. The EM sensor used in our
method is MR-safe, and the method requires no other force or insertion-depth sensor,
making it easy to integrate with the clinical workflow. In the future, we will improve
the robustness of the needle bending model and integrate with our navigation system.
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