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Abstract. Tracking of curvilinear structures (CS), such as vessels and
catheters, in X-ray images has become increasingly important in recent
interventional applications. However, CS is often barely visible in low-
dose X-ray due to overlay of multiple 3D objects in a 2D projection,
making robust and accurate tracking of CS very difficult. To address
this challenge, we propose a new tracking method that encodes the
structure prior of CS in the rank-1 tensor approximation tracking frame-
work, and it also uses the learned hierarchical features via a convolu-
tional neural network (CNN). The three components, i.e., curvilinear
prior modeling, high-order information encoding and automatic feature
learning, together enable our algorithm to reduce the ambiguity rising
from the complex background, and consequently improve the tracking
robustness. Our proposed approach is tested on two sets of X-ray fluo-
roscopic sequences including vascular structures and catheters, respec-
tively. In the tests our approach achieves a mean tracking error of 1.1
pixels for vascular structure and 0.8 pixels for catheter tracking, signifi-
cantly outperforming state-of-the-art solutions on both datasets.

1 Introduction

Reliable tracking of vascular structures or intravascular devices in dynamic X-ray
images is essential for guidance during interventional procedures and postpro-
cedural analysis [1–3,8,13,14]. However, bad tissue contrast due to low radi-
ation dose and lack of depth information always bring challenges on detect-
ing and tracking those curvilinear structures (CS). Traditional registration and
alignment-based trackers depend on local image intensity or gradient. With-
out high-level context information, they cannot efficiently discriminate low-
contrasted target structure from complex background. On the other hand, the
confounding irrelevant structures bring challenges to detection-based tracking.
Recently, a new solution is proposed that exploits the progress in multi-target
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tracking [2]. After initially detecting candidate points on a CS, the idea is to
model CS tracking as a multi-dimensional assignment (MDA) problem, then a
tensor approximation is applied to search for a solution. The idea encodes high-
order temporal information and hence gains robustness against local ambiguity.
However, it suffers from the lack of mechanism to encode the structure prior in
CS, and the features used in [2] via random forests lack discrimination power.
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Fig. 1. Overview of the proposed method.

In this paper, we present a new method (refer to Fig. 1 for the flowchart) to
detect and track CS in dynamic X-ray sequences. First, a convolutional neural
network (CNN) is used to detect candidate landmarks on CS. CNN automati-
cally learns the hierarchical representations of input images [6,7] and has been
recently used in medical image analysis (e.g. [9,10]). With the detected CS can-
didates, CS tracking is converted to a multiple target tracking problem and then
a multi-dimensional assignment (MDA) one. In MDA, candidates are associ-
ated along motion trajectories cross time, while the association is constructed
according to the trajectory affinity. It has been shown in [11] that MDA can be
efficiently solved via rank-1 tensor approximation (R1TA), in which the goal is
to seek vectors to maximize the “joint projection” of an affinity tensor. Shar-
ing the similar procedure, our solution adopts R1TA to estimate the CS motion.
Specifically, a high-order tensor is first constructed from all trajectory candidates
over a time span. Then, the model prior of CS is integrated into R1TA encoding
the spatial interaction between adjacent candidates in the model. Finally, CS
tracking results are inferred from model likelihood.

The main contribution of our work lies in two-fold. (1) We propose a
structure-aware tensor approximation framework for CS tracking by considering
the spatial interaction between CS components. The combination of such spatial
interaction and higher order temporal information effectively reduces association
ambiguity and hence improves the tracking robustness. (2) We design a discrim-
inative CNN detector for CS candidate detection. Compared with traditional
hand-crafted features, the learned CNN features show very high detection qual-
ity in identifying CS from low-visibility dynamic X-ray images. As a result, it
greatly reduces the number of hypothesis trajectories and improves the tracking
efficiency.
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For evaluation, our method is tested on two sets of X-ray fluoroscopic
sequences including vascular structures and catheters, respectively. Our app-
roach achieves a mean tracking error of 1.1 pixels on the vascular dataset and
0.8 pixels on the catheter dataset. Both results are clearly better than other
state-of-the-art solutions in comparison.

2 Candidate Detection with Hierarchical Features

Detecting CS in the low-visibility dynamic X-ray images is challenging. Without
color and depth information, CS shares great similarity with other anatomical
structures or imaging noise. Attacking these problems, a four-layer CNN (Fig. 2)
is designed to automatically learn hierarchical features for CS candidate detec-
tion. We employ 32 filters of size 5 × 5 in the first convolution stage, and 64
filters of the same size in the second stage. Max-pooling layers with a receptive
window of 2 × 2 pixels are employed to down-sample the feature maps. Finally,
two fully-connected layers are used as the classifier. Dropout is employed to
reduce overfitting. The CNN framework used in our experiments is based on
MatConvNet [12].

Convolutional Max-pooling ConvolutionalMax-pooling

Stage 1 Stage 2
Feature extraction Classifier

Image patches
@ 

Probability map

Fully connected

Input image

Fig. 2. The CNN architecture for CS candidate detection.

For each image in the sequence except the first one which has groundtruth
annotated manually, a CS probability map is computed by the learned classi-
fier. A threshold is set to eliminate most of the false alarms in the image. Result
images are further processed by filtering and thinning. Typically, binarized prob-
ability map is filtered by a distance mask in which locations too far from the
model are excluded. Instead of using a groundtruth bounding box, we take the
tracking results from previous image batches. Based on the previously tracked
model, we calculate the speed and acceleration of the target to predict its posi-
tion in next image batch. Finally, after removing isolated pixels, CS candidates
are generated from the thinning results. Examples of detection results are shown
in Fig. 3. For comparison, probability maps obtained by a random forests classi-
fier with hand-crafted features [2] are also listed. Our probability maps contain
less false alarm, which guarantees more accurate candidate locations after post-
processing.
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Fig. 3. Probability maps and detected candidates of a vessel (left) and catheter (right).
For each example, from left to right are groundtruth, random forests result, and CNN
result, respectively. Red indicates region with high possibility, while green dots show
resulting candidates.

3 Tracking with Model Prior

To encode the structure prior in a CS model, we use an energy maximiza-
tion scheme that combines temporal energy of individual candidate and spatial
interaction energy of multiple candidates into a united optimization framework.
Here, we consider the pairwise interactions of two candidates on neighboring
frames. The assignment matrix between two consecutive sets O(k−1) and O(k)

(i.e. detected candidate CS landmarks) can be written as X(k) = (xik−1ik)(k),
where k = 1, 2, . . . ,K, and o(k)

ik
∈ O(k) is the ik-th landmark candidate of CS.

For notation convenience, we use a single subscript jk to represent the entry
index (ik−1, ik), such as x

(k)
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.= x
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jk

) for vectorized
X(k). Then our objective function can be written as
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where cj1j2...jK is the affinity measuring trajectory confidence; w
(k)
lkjk

the likeli-

hood that candidates x
(k)
jk

and x
(k)
lk

are neighboring on the model; and e
(k)
lkjk

the
spatial interaction of two candidates on two consecutive frames. The affinity has
two parts as

ci0i1,...iK = appi0i1,...iK × kini0i1,...iK , (2)

where appi0i1,...iK describes the appearance consistency of the trajectory, and
kini0i1,...iK the kinetic affinity modeling the higher order temporal affinity as
detailed in [2].

Model Prior. CS candidates share two kinds of spatial constrains. First, trajec-
tories of two neighboring elements should have similar direction. Second, relative
order of two neighboring elements should not change so that re-composition of
CS is prohibited. Thus inspired, we formulate the spatial interaction of two can-
didates as

elkjk
.= emk−1mkik−1ik = Epara + Eorder, (3)
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where
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such that Epara models the angle between two neighbor trajectories, which also
penalizes large distance change between them; and Eorder models the relative
order of two adjacent candidates by the inner product of vectors between two
neighbor candidates.

Maximizing Eq. 1 closely correlates with the rank-1 tensor approximation
(R1TA) [4], which aims to approximate a tensor by the tensor product of unit
vectors up to a scale factor. By relaxing the integer constraint on the assignment
variables, once a real valued solution of Xk is achieved, it can be binarized
using the Hungarian algorithm [5]. The key issue here is to accommodate the
row/column �1 normalization in a general assignment problem, which is different
from the commonly used �2 norm constraint in tensor factorization. We develop
an approach similar to [11], which is a tensor power iteration solution with �1
row/column normalization.

Model Likelihood. Coefficient w
(k)
lkjk

.= w
(k)
mk−1mkik−1ik

measures the likelihood

that two candidates o(k−1)
ik−1

and o(k−1)
mk−1 are neighboring on model. In order to

get the association of each candidate pair in each frame, or in other words, to
measure the likelihood a candidate o(k)

ik
matching a model element part o(0)

i0
, we

maintain a “soft assignment”. In particular, we use θ
(k)
i0ik

to indicate the likelihood

that o(k)
ik

corresponds to o(0)
i0

. It can be estimated by

Θ(k) = Θ(k−1)X(k), k = 1, 2, . . . ,K, (4)

where Θ(k) = (θ(k)i0ik
) ∈ R

I0×Ik and Θ(0) is fixed as the identity matrix.
The model likelihood is updated in each step of the power iteration. After the

update of the first term in Eq. 1, a pre-likelihood Θ′(k) is estimated for computing
w

(k)
lkjk

. Since Θ(k) associates candidates directly with the model, final tracking
result of the matching between o(0) and o(k) can be derived from Θ(k).

With Θ′(k), the approximated distance on model of o(k−1)
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and o(k−1)
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calculated as following
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Thereby, w
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then can be simply calculated as

w
(k)
lkjk

.= w
(k)
mk−1mkik−1ik

=
2d

(k−1)
ik−1mk−1

d̄

(d(k−1)
ik−1mk−1

)2 + (d̄)2
, (6)

where d̄ is the average distance between two neighboring elements on model O(0).
The proposed tracking method is summarized in Algorithm1.
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Algorithm 1. Power iteration with model prior
1: Input: Global affinity C = (cj1j2...jK ), spatial interaction elkjk , k = 1 . . . K, and

CS candidates O(k), k = 0 . . . K.
2: Output: CS Matching.

3: Initialize X(k), k = 1 . . . K, CS(0) = O(0) and Θ(0) = I.
4: repeat
5: for k = 1, . . . , K do
6: for jk = 1, . . . , J do
7: update x

(k)
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.
= x
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by x
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(f)
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(K)
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8: end for
9: row/column normalize X(k)

10: update model pre-likelihood: Θ′(k) = Θ(k−1)X(k)

11: for jk = 1, . . . , J do
12: update xjk

.
= x

(k)
ik−1ik

by x
(k)
jk

∝ x
(k)
jk

∑
lk

w
(k)
lkjk

elkjkx
(k)
lk

13: end for
14: update model likelihood: Θ(k) = Θ(k−1)X(k)

15: end for
16: until convergence
17: discretize Θ(k) to CS Matching.

4 Experiments

We evaluate the proposed CS tracking algorithm using two groups of X-ray clin-
ical data collected from liver and cardiac interventions. The first group consists
of six sequences of liver vessel images and the second 11 sequences of catheter
images, each with around 20 frames. The data is acquired with 512 × 512 pix-
els and physical resolution of 0.345 or 0.366 mm. Groundtruth of each image is
manually annotated (Fig. 4(a)).

Vascular Structure Tracking. We first evaluate the proposed algorithm on
the vascular sequences. First frame from each sequence is used to generate train-
ing samples for CNN. To be specific, 800 vascular structure patches and 1500
negative patches are generated from each image. From the six images, a total
of 2300 × 6 = 13, 800 samples are extracted and split as 75 % training and 25 %
validation. All patches have the same size of 28 × 28 pixels. Distance thresh-
old of predictive bounding box is set to 60 pixels for enough error tolerance.
Finally, there are around 200 vascular structure candidates left in each frame.
The number of points on the model is around 50 for each sequence.

In our work, K = 3 is used to allow each four consecutive frames to be
associated. During tracking, tensor kernel costs around 10s and 100 MB (peak
value) RAM to process one frame with 200 candidates in our setting running on
a single Intel Xeon@2.3GHz core. The tracking error is defined as the shortest
distance between tracked pixels and groundtruth annotation. For each perfor-
mance metric, we compute its mean and standard deviation. For comparison, the
registration-based (RG) approach [14], bipartite graph matching [2] (BM) and
pure tensor based method [2] (TB) are applied to the same sequences. For BM
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and TB, same tracking algorithms but with the CNN detector are also tested
and reported. The first block of Fig. 4 illustrates the tracking results of vascular
structures. B-spline is used to connect all tracked candidates to represent the
tracked vascular structure. The zoom-in view of a selected region (rectangle in
blue) in each tracking result is presented below, where portions with large errors
are colored red. Quantitative evaluation for each sequence is listed in Table 1.

Catheter Tracking. Similar procedures and parameters are applied to the
11 sequences of catheter images. The second block of Fig. 4 shows example of
catheter tracking results. The numerical comparisons are listed in Table 1.

The results show that our method clearly outperforms other three
approaches. Candidates in our approach are detected by a highly accurate CNN
detector, ensuring most extracted candidates to be on CS, while registration-
based method depends on the first frame as reference to identify targets. Our
approach is also better than the results of bipartite graph matching where K = 1.
The reason is that our proposed method incorporates higher-order temporal
information from multiple frames; by contrast, bipartite matching is only com-
puted from two frames. Compared with the pure tensor based algorithm, the
proposed method incorporates the model prior which provides more powerful

Table 1. Curvilinear structure tracking errors (in pixels)

Dataset Seq ID RG [14] BM [2] TB [2] BM+CNN TB+CNN Proposed

Vascular

structures

VAS1 2.77± 3.25 1.54± 1.59 1.33± 1.08 1.44± 2.37 1.15± 0.91 1.14±0.84

VAS2 2.02± 3.10 1.49± 1.14 1.49± 1.74 1.11± 0.83 1.30± 2.48 1.09±0.83

VAS3 3.25± 7.64 1.65± 2.40 1.41± 1.54 1.19± 0.91 1.17± 0.92 1.17±0.91

VAS4 2.16± 2.52 1.61± 2.25 1.99± 3.02 1.12±1.00 1.95± 5.00 1.17± 1.53

VAS5 3.04± 5.46 2.71± 4.36 1.36± 1.44 1.95± 3.94 1.14± 1.55 1.09±1.42

VAS6 2.86± 5.60 1.40± 1.94 1.32± 1.68 1.39± 2.53 1.09±1.70 1.11± 1.90

75%ile,

100%ile

- 2.00, 31.2 2.00, 26.8 1.40, 32.6 1.40, 56.9 1.40, 23.2

Overall 2.69± 5.03 1.75± 2.60 1.49± 1.86 1.37± 2.26 1.30± 2.64 1.13±1.30

Catheters CAT1 2.86± 3.83 1.47± 1.57 1.29± 1.06 1.13± 1.19 1.08± 0.85 1.00±0.77

CAT2 1.98± 2.66 2.38± 5.33 1.11± 1.58 1.77± 4.11 0.77± 1.06 0.56±0.89

CAT3 2.20± 1.56 1.55± 1.98 1.39± 1.70 0.99± 1.52 0.72±0.66 0.74± 0.65

CAT4 1.07± 0.76 2.12± 3.35 1.15± 1.33 0.94± 1.37 0.92± 1.34 0.76±0.77

CAT5 2.54± 3.65 2.02± 4.85 1.04± 0.88 1.65± 5.36 0.84± 1.01 0.83±0.97

CAT6 1.93± 2.15 2.06± 3.92 1.14± 0.95 1.19± 2.03 0.96± 0.92 0.93±0.89

CAT7 1.39± 2.18 1.86± 3.79 1.00± 0.78 0.76± 0.72 0.76± 0.72 0.73±0.63

CAT8 2.74± 4.32 2.30± 5.53 1.31± 2.21 1.22± 2.21 1.74± 3.81 0.96±1.37

CAT9 1.74± 1.25 2.80± 4.78 2.00± 2.74 1.54± 3.44 1.18± 2.02 0.99±1.33

CAT10 3.17± 5.26 2.86± 4.33 2.48± 3.59 0.86± 1.26 0.81±1.12 0.86± 1.29

CAT11 3.96± 5.89 2.68± 4.36 1.17± 0.97 3.50± 11.3 1.35± 3.72 0.80±0.74

75%ile,

100%ile

– 2.00, 47.7 1.40, 24.0 1.00, 70.5 1.00, 48.4 1.00, 19.2

Overall 2.40± 3.62 2.17± 4.14 1.38± 1.90 1.39± 4.16 1.01± 1.93 0.83±0.98
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Fig. 4. Curvilinear structure tracking results. (a) groundtruth, (b) registration, (c)
bipartite matching, (d) tensor based, and (e) proposed method. Red indicates regions
with large errors, while green indicates small errors.

clues for tracking the whole CS. Confirmed by the zoom-in views, with model
prior, our proposed method is less affected by neighboring confounding struc-
tures.

5 Conclusion

We presented a new method to combine hierarchical features learned in CNN
and encode model prior to estimate the motion of CS in X-ray image sequences.
Experiments on two groups of CS demonstrate the effectiveness of our pro-
posed approach. Achieving a tracking error of around one pixel (or smaller than
0.5 mm), it clearly outperforms the other state-of-the-art algorithms. For future
work, we plan to adopt pyramid detection strategy in order to accelerate the
pixel-wised probability map calculation in our current approach.
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