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Abstract. Transesophageal Echocardiography (TEE) and X-Ray fluo-
roscopy are two routinely used real-time image guidance modalities for
interventional procedures, and co-registering them into the same coordi-
nate system enables advanced hybrid image guidance by providing aug-
mented and complimentary information. In this paper, we present an
image-based system of co-registering these two modalities through real-
time tracking of the 3D position and orientation of a moving TEE probe
from 2D fluoroscopy images. The 3D pose of the TEE probe is estimated
fully automatically using a detection based visual tracking algorithm,
followed by intensity-based 3D-to-2D registration refinement. In addi-
tion, to provide high reliability for clinical use, the proposed system can
automatically recover from tracking failures. The system is validated on
over 1900 fluoroscopic images from clinical trial studies, and achieves a
success rate of 93.4 % at 2D target registration error (TRE) less than
2.5 mm and an average TRE of 0.86 mm, demonstrating high accuracy
and robustness when dealing with poor image quality caused by low
radiation dose and pose ambiguity caused by probe self-symmetry.
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1 Introduction

There is a fast growth of catheter-based procedures for structure heart disease
such as transcatheter aortic valve implantation (TAVI) and transcatheter mitral
valve replacement (TMVR). These procedures are typically performed under the
independent guidance of two real-time imaging modalities, i.e. fluoroscopic Xray
and transesophageal echocardiaography (TEE). Both imaging modalities have
their own advantages, for example, Xray is good at depicting devices, and TEE
is much better at soft tissue visualization. Therefore fusion of both modalities
could provide complimentary information for improved security and accuracy
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during the navigation and deployment of the devices. For example, a Xray/TEE
fusion system can help the physican finding correct TAVR deployment angle on
fluoroscopic image using landmarks transformed from annotations on TEE.

To enable the fusion of Xray and TEE images, several methods have been
proposed to recover the 3D pose of TEE probe from the Xray image [1–3,5,6],
where 3D pose recovery is accomplished by 3D-2D image registration. In [1,2,5],
3D-2D image registration is fulfilled via minimizing dissimilarity between digi-
tally generated radiographies (DRR) and X-ray images. In [6], DRR rendering
is accelerated by using mesh model instead of a computed tomography (CT)
volume. In [3], registration is accelerated using a cost function which is directly
computed from X-ray image and CT scan via splatting from point cloud model
without the explicit generation of DRR. The main disadvantage of these meth-
ods is that they are not fully automatic and requires initialization due to small
capture range. Recently, Montney et al. proposed a detection based method to
recover the 3D pose of the TEE probe from an Xray image in work [7]. 3D trans-
lation is derived from probe’s in-plane position detector and scale detector. 3D
Rotation (illustrated in Fig. 1(a)) is derived from in-plane rotation (yaw angle)
based on orientation detector and out-of-plane rotations (roll and pitch angles)
based on a template matching based approach. They demonstrated feasibility
on synthetic data. Motivated by the detection based method, we present a new
method in this paper to handle practical challenges in a clinical setup such as
low X-Ray dose, noise, clutters and probe self-symmetry in 2D image. Two self-
symmetry examples are shown in Fig. 1(b). To minimize appearance ambiguity,
three balls (Fig. 2(a)) and three holes (Fig. 2(b)) are manufactured on the probe.
Examples of ball marker and hole marker appearing in fluoroscopic images are
shown in Fig. 2(c) and (d). Our algorithm explicitly detects the markers and
incorporates the marker detection results into TEE probe pose estimation for
an improved robustness and accuracy.

Fig. 1. (a) Illustration of TEE Euler angles. Yaw is an in-plane rotation. Pitch and
roll are out-of-plane rotations. (b) Example of ambiguous appearance in two different
poses. Green box indicates probe’s transducer array. Roll angle between two poses are
close to 90◦. Without considering markers (Fig. 2), probe looks similar in X-ray images.

In addition, based on the fact of that physicians acquire series of frames
(a video sequence) in interventional cardiac procedure, we incorporate tempo-
ral information to boost the accuracy and speed, and we formulate our 6-DOF
parameter tracking inference as a sequential Bayesian inference framework. To
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further remove discretization errors, Kalman filter is applied to temporal pose
parameters. In addition, tracking failure is automatically detected and auto-
mated tracking initialization method is applied. For critical time points when the
measurements (e.g., annotated anatomical landmarks) from the TEE image are
to be transformed to the fluoroscopic image for enhanced visualization, intensity-
based 3D to 2D registration of the TEE probe is performed to further refine the
estimated pose to ensure a high accuracy.

Fig. 2. Illustration of probe markers circled in red. (a) 3D TEE probe front side with
3 ball markers and (b) back side with 3 hole markers. (c) Ball markers and (d) hole
markers appear in X-Ray images.

2 Methods

A 3D TEE point QTEE can be projected to the 2D fluoroscopic image point
QFluoro = PintPext(RW

TEEQTEE + TW
TEE), where Pint is C-Arm’s internal pro-

jection matrix. Pext is C-Arm’s external matrix which transforms a point from
TEE world coordinate to C-Arm coordinate. RW

TEE and TW
TEE are TEE probe’s

rotation and position in the world coordinate. The internal and external matrices
are known from calibration and C-Arm rotation angles. RW

TEE = P−1
extR

C
TEE and

TW
TEE = P−1

extT
C
TEE , where RC

TEE and TC
TEE are the probe’s rotation and posi-

tion in the C-Arm coordinate system. RC
TEE is composed of three euler angles

(θz, θx, θy), which are illustrated in Fig. 1(a), and TC
TEE = (x, y, z).

The proposed tracking algorithm is formulated as finding an optimal pose on
the current image t constrained via prior pose from image t − 1. In our work,
pose hypotheses with pose parameters (u, v), θz, s, θx and θy are generated and
optimal pose among these hypotheses are identified in a sequential Bayesian
inference framework. Figure 3 illustrates an overview of the proposed algorithm.
We defined two tracking stages: in-plane pose tracking for parameters (u, v), s,
and θz and out-of-plane tracking for parameters θx and θy. In the context of
visual tracking, the searching spaces of (ut, vt, θzt

, st) and (θxt
, θyt

) are signifi-
cantly reduced via generating in-plane pose hypotheses in the region of interest
(ut−1 ± δT , vt−1 ± δT , θzt−1 ± δz, st−1 ± δs), and out-of-plane pose hypotheses in
the region of interest (θxt−1 ± δx, θyt−1 ± δy), where δT , δz, δs, δx and δy are
searching ranges. Note that we choose these searching ranges conservatively, i.e.
much larger than typical frame-to-frame probe motion.
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Fig. 3. Overview of tracking framework.

2.1 In-Plane Pose Tracking

To realize tracking, we use Bayesian inference network [9] as follows.

P (Mt|Zt) ∝ P (Mt)P (Zt|Mt), (1a)

M̂t = argmax
Mt

P (Mt|Zt) (1b)

where Mt is in-plane pose parameters (u, v, θz, s). M̂t is the optimal solution
using maximum a posterior (MAP) probability. P (Zt|Mt) is the likelihood of
an in-plane hypothesis being positive. P (Mt) represents in-plane motion prior
probability, which is defined as a joint Gaussian distribution with respect to the
parameters (u, v, θz, s) with standard deviations (σT , σT , σθz

and σs).
In-plane pose hypotheses are generated using marginal space learning method

similar to the work in [10]. A series of cascaded classifiers are trained to clas-
sify probe position (u, v), size s, and orientation θz. These classifiers are trained
sequentially: two position detectors for (u, v), orientation detector for θz and
scale detector for s. Each detector is a Probabilistic Boosting Tree (PBT) classi-
fier [8] using Haar-like features [9] and rotated Haar-like features [9]. The position
classifier is trained on the annotations (positive samples) and negative samples
randomly sample to be away from annotations. The second position detector
performs bootstrapping procedure. Negative samples are collected from both
false positive of the first position detection results and random negative sam-
ples. Orientation detector is trained on the rotated images, which are rotated to
0◦ according to annotated probe’s orientations. The Haar-like features are com-
puted on rotated images. During orientation test stage, input image is rotated
every 5◦ in range of θzt−1 ± δz. Scale detector is trained on the rotated images.
Haar-like feature is computed on the rotated images and the Haar feature win-
dows are scaled based on probe’s size. During scale test stage, Haar feature
window is scaled and quantified in the range of st−1 ± δs.

2.2 Out-of-Plane Pose Tracking

Out-of-plane pose tracking performs another Bayesian inference network derived
from Eq. 1. Thus in this case Mt (in Eq. 1) is out-of-plane pose parame-
ters (θx, θy). M̂t is the optimal solution using MAP probability. P (Zt|Mt) is
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likelihood of an out-of-plane hypothesis being positive. P (Mt) is an out-of-plane
motion prior probability, which is defined as a joint Gaussian distribution with
respect to the parameters (θx, θy) with standard deviations (σx,σy).

Out-of-plane pose hypothesis generation is based on a K nearest neighbour
search using library-based template matching. At training stage, we generate
2D synthetic X-Ray images at different out-of-plane poses and keeping the same
in-plane pose. Roll angle ranges from −180◦ to 180◦. Pitch angle ranges from
−52◦ to 52◦, and angles out of this range are not considered since they are not
clinically relevant. Both step sizes are 4◦. All in-plane poses of these synthetic
images are set to the same canonical space: probe positioned at image center,
0◦ yaw angle and normalized size. Global image representation of each image
is computed representing out-of-plane pose and saved in a database. The image
representation is derived based on method presented in [4]. At test stage, L
in-plane pose perturbations (small translations, rotations and scales) about the
computed in-plane pose (Sect. 2.1) are produced. L in-plane poses are utilized
to define L probe ROIs in the same canonical space. Image representation of
each ROI is computed and is used to search (e.g. KD-Tree) in the database and
resulting K nearest neighbors. Unfortunately, only using global representation
is not able to differentiate symmetric poses. For example, a response map of an
exemplar pose to all the synthetic images shown in Fig. 4. Note that there are two
dominant symmetrical modes and thus out-of-plane hypotheses are generated
around these two regions. We utilize markers (Fig. 2) to address this problem.
For each synthetic image, we thus save the marker positions in the database.
The idea is that we perform a visibility test at each marker position in L ∗ K
searching results. The updated searching score T̂score = Tscore

N

∑N
i=1 α+Pi(xi, yi),

where Tscore is a searching score. Pi is ith marker’s visibility ([0.0, 1.0]) at marker
position (xi, yi) in the corresponding synthetic image template. N is the number
of markers. α is a constant value 0.5. Marker visibility test is fulfilled using two
marker detectors: ball marker detector and hole marker detector. Both detectors
are two cascaded position classifiers (PBT classifier with Haar-like features), and
visibility maps are computed based on the detected marker locations.

Fig. 4. An example of template matching score map for one probe pose. X-axis is roll
angle and Y-axis is pitch angle. Each pixel represents one template pose. Dark red
color indicates a high matching score and dark blue indicates a small matching score.

2.3 Tracking Initialization and Failure Detection

Initial probe pose in the sequence is derived from detection results without con-
sidering temporal information. We detect the in-plane position, orientation and
scale, and out-of-plane roll and pitch hypotheses in the whole required searching
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space. We get a final in-plane pose via Non-maximal suppression and weighted
average to the pose with the largest detection probability. The hypothesis with
largest searching score is used as out-of-plane pose. For initializing tracking: (1)
we save poses of Ni (e.g. Ni = 5) consecutive image frames. (2) A median pose
is computed from Ni detection results. (3) Weighted mean pose is computed
based on distance to the median pose. (4) Standard deviation σp to the mean
pose is computed. Once σp < σthreshod, tracking starts with initial pose (i.e.
the mean pose). During tracking, we identify tracking failure through: (1) we
save Nf (e.g. Nf = 5) consecutive tracking results. (2) The average searching
score mscore is computed. If mscore < mthreshold, we stop tracking and re-start
tracking initialization procedure.

2.4 3D-2D Registration Based Pose Refinement

In addition, we perform 3D-2D registration of the probe at critical time points
when measurements are to be transformed from TEE images to fluoroscopic
images. With known perspective geometry of the C-Arm system, a DRR can
be rendered for any given pose parameters. In 3D-2D registration, the pose
parameters are iteratively optimized to maximize a similarity metric calculated
between the DRR and the fluoroscopic image. In the proposed method, we
use Spatially Weighted Gradient Correlation (SWGC) as the similarity met-
ric, where areas around the markers in the DRR are assigned higher weights
as they are more distinct and reliable features indicating the alignment of the
two images. SWGC is calculated as Gradient Correlation (GC) of two weighted
images: SWGC = GC(If · W, Id · W ), where If and Id denote the fluoroscopic
image and the DRR, respectively, W is a dense weight map calculated based
on the projection of the markers, and GC(·, ·) denotes the GC of the two input
images. Using SWGC as the similarity metric, the pose parameters are optimized
using Nelder-Mead optimizer to maximize SWGC.

3 Experiment Setup, Results and Discussions

For our study, we trained machine learning based detectors on ∼ 10, 000 fluoro-
scopic images (∼ 90 % images are synthetically generated images and ∼ 10 %
images are clinical images). We validated our methods on 34 X-Ray fluoro-
scopic videos (1933 images) acquired from clinical experiments, and 13 videos
(2232 images) from synthetic generation. The synthetic images were generated
by blending DRRs of the TEE probe (including tube) with real fluoroscopic
images containing no TEE probe. Particularly for the test synthetic sequences,
we simulate realistic probe motions (e.g., insertion, retraction, roll etc.) in the
fluoroscopic sequences. Ground truth poses for synthetic images are derived
from 3D probe geometry and rendering parameters. Clinical images are man-
ually annotated using our developed interactive tool by 4 experts. Image size is
1024 × 1024 pixels. Computations were performed on a workstation with Intel
Xeon (E5-1620) CPU 3.7 GHz and 8.00 GB Memory. On average, our tracking
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algorithm performs at 10 fps. We performed our proposed detection algorithm
(discussed in Sect. 2.3, tracking is not enabled), proposed automated tracking
algorithm and registration refinement after tracking on all test images. Algo-
rithm accuracy was evaluated by calculating the standard target registration
error (TRE) in 2D. The targets are defined at the four corners of the TEE imag-
ing cone at 60 mm depth and the reported TRE is the average TRE over the
four targets. 2D TRE is a target registration error that z axis (depth) of the
projected target point is not considered when computing distance error. Table 1
shows success rate, average TRE and median TRE at 2D TRE < 4 mm and
< 2.5 mm respectively. Figure 5 shows success rate vs 2D TRE on all validated
clinical and synthetic images.

)b()a(

Fig. 5. Result of success rate vs 2D TRE on clinical (a) and synthetic (b) validations
of the proposed detection, tracking and 3D-2D registration refinement algorithms.

Due to limited availability of clinical data, we enlarged our training data set
using synthetic images. Table 1 and Fig. 5 show our approach performs well on
real clinical data utilizing hybrid training data. We expect increased robustness
and accuracy after larger number of real clinical cases become available. Track-
ing algorithm improved robustness and accuracy comparing to detection alone
approach. One limitation of our tracking algorithm is not able to compensate
all discretization errors although temporal smoothing is applied using Kalman
filter. This is a limitation of any detection based approach. To further enhance
accuracy, refinement is applied when physicians perform the measurements. To

Table 1. Quantitative results on validations of the proposed detection (Det), tracking
(Trak) and 3D-2D registration refinement (Reg) algorithms. Numbers in the table show
success rate, mean TRE (mm), median TRE (mm) under different TRE error ranges.

Clinical data Synthetic data

Method TRE < 4mm TRE < 2.5mm TRE < 4mm TRE < 2.5mm

Det (80.0%, 2.09, 2.02) (50.9%, 1.47, 1.48) (88.4%, 1.86, 1.73) (64.7%, 1.38, 1.35)

Trak (91.6%, 1.71, 1.61) (73.7%, 1.38, 1.36) (96.4%, 1.59, 1.42) (79.7%, 1.28, 1.22)

Reg (98.0%, 0.97, 0.79) (93.4%, 0.86, 0.75) (96.4%, 0.69, 0.52) (94.3%, 0.63, 0.51)
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better understand the performance from registration refinement, in our study we
applied the refinement step on all images after tracking. Note that the refinement
algorithm did not bring more robustness but improved the accuracy.

4 Conclusion

In this work, we presented a fully automated method of recovering the 3D pose of
TEE probe from the Xray image. Tracking is very important to give physicians
the confidence that the probe pose recovery is working robustly and continu-
ously. Abrupt failed probe detection is not good especially when the probe does
not move. Detection alone based approach is not able to address abrupt fail-
ures due to disturbance, noise and appearance ambiguities of the probe. Our
proposed visual tracking algorithm avoids abrupt failure and improves detection
robustness as shown in our experiment. In addition, our approach is a near real-
time approach (about 10 FPS) and a fully automated approach without any user
interaction, e.g. manual pose initialization as required by many state-of-the-art
methods. Our proposed complete solution addressing TEE and X-Ray fusion
problem is applicable to clinical practice due to high robustness and accuracy.

Disclaimer: The outlined concepts are not commercially available. Due to reg-
ulatory reasons their future availability cannot be guaranteed.
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