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Abstract. In clinical neuroscience, task-based fMRI (tfMRI) is a popular
method to explore the brain network activation difference between healthy
controls and brain diseases like Prenatal Alcohol Exposure (PAE). Traditionally,
most studies adopt the general linear model (GLM) to detect task-evoked acti-
vations. However, GLM has been demonstrated to be limited in reconstructing
concurrent heterogeneous networks. In contrast, sparse representation based
methods have attracted increasing attention due to the capability of automati-
cally reconstructing concurrent brain activities. However, this data-driven
strategy is still challenged in establishing accurate correspondence across indi-
viduals and characterizing group-wise consistent activation maps in a principled
way. In this paper, we propose a novel multi-stage sparse coding framework to
identify group-wise consistent networks in a structured method. By applying
this novel framework on two groups of tfMRI data (healthy control and PAE),
we can effectively identify group-wise consistent activation maps and charac-
terize brain networks/regions affected by PAE.
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1 Introduction

TfMRI has been widely used in clinical neuroscience to understand functional brain
disorders [1]. Among all of state-of-the-art tfMRI analysis methodologies, the general
linear model (GLM) is the most popular approach in detecting functional networks
under specific task performance [2]. The basic idea underling GLM is that task-evoked
brain activities could be discovered by subtracting the activity from a control condition
[3, 4]. In common practice, experimental and control trials are performed several times
and fMRI signals are averaged to increase the signal-to-noise ratio [3]. Thus task-
dominant brain activities are greatly enhanced and other subtle and concurrent activities
are largely overlooked. Another alternative approach is independent component analysis
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(ICA) [5]. However, the theoretical foundation of ICA-based methods has been chal-
lenged in recent studies [6]. Therefore, more advanced tfMRI activation detection
methods are still needed.

Recently, dictionary learning and sparse representation methods have been adopted
for fMRI data analysis [6, 7] and attracted a lot of attention. The basic idea is to
factorize the fMRI signal matrix into an over-complete dictionary of basis and a
coefficient matrix via dictionary learning algorithms [8]. Specifically, each dictionary
atom represents the functional activity of a specific brain network and its corresponding
coefficient vector stands for the spatial distribution of this brain network [7]. It should
be noticed that the decomposed coefficient matrix naturally reveals the spatial patterns
of the inferred brain networks. This novel strategy naturally accounts for the various
brain networks that might be involved in concurrent functional processes [9, 10].

However, a notable challenge in current data-driven strategy is how to establish
accurate network correspondence across individuals and characterize the group-wise
consistent activation map in a structured method. Since each dictionary is learned in a
data driven way, it is hard to establish the correspondence across subjects. To address
this challenge, in this paper, we propose a novel multi-stage sparse coding framework
to identify diverse group consistent brain activities and characterize the subtle cross
group differences under specific task conditions. Specifically, we first concatenate all
the fMRI dataset temporally and adopt dictionary learning method to identify the
group-level activation maps across all the subjects. After that, we constrain spatial/
temporal features in dictionary learning procedure to identify individualized temporal
pattern and spatial pattern from individual fMRI data. These constrained features
naturally preserve the correspondence across different subjects. Finally, a statistical
mapping method is adopted to identify group-wise consistent maps. In this way, the
group-wise consistent maps are identified in a structured way. By applying the pro-
posed framework on two groups of tfMRI data (healthy control and PAE groups), we
successfully identified diverse group-wise consistent brain networks for each group and
specific brain networks/regions that are affected by PAE under arithmetic task.

2 Materials and Methods

2.1 Overview

Figure 1 summarizes the computational pipeline of the multi-stage sparse coding
framework. There are four major steps. First, we concatenate all the subjects’ datasets
temporally to form a concatenated time*voxels data matrix (Fig. 1a) and employ the
dictionary learning and sparse coding algorithms [8] to identify the group-level acti-
vation maps in the population. Then for each subject’s fMRI data, we adopt supervised
dictionary learning method constraining group-level spatial patterns to learn the indi-
vidualized dictionary for each subject (Fig. 1b). These individualized dictionaries
are learned from individual data and thus the subject variety is better reserved. After
that, for each subject, supervised dictionary learning constraining the individual dic-
tionary is adopted to learn individualized coefficient matrix for each subject (Fig. 1c).
In this way, the individualized spatial maps are reconstructed. Finally, based on the
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correspondence established in our method, statistical coefficient mapping method is
then adopted to characterize the group-consistent activation maps for each group
(Fig. 1d). Therefore, the correspondence between different subjects is preserved in the
whole procedure and the group-consistent activation maps are identified in a structured
method.

2.2 Data Acquisition and Pre-processing

Thirty subjects participated in the arithmetic task-based fMRI experiment under IRB
approval [11]. They are young adults aging from 20–26 and are from two groups:
unexposed health control (16 subjects) and PAE affected ones (14 subjects). Two
participants from healthy control group are abandoned due to the poor data quality. All
participants were scanned in a 3T Siemens Trio scanner and 10 task blocks were
alternated between a letter-matching control task and a subtraction arithmetic task. The
acquisition parameters are as follows: TR = 3 s, TE = 32 ms, FA = 90, the resolution
is 3.44 mm � 3.44 mm � 3 mm and the dimension is 64 � 64 � 34. The prepro-
cessing pipeline was performed in FSL [12] including motion correction, slice time
correlation, spatial smoothing, and global drift removal. The processed volumes were
then registered to the standard space (MNI 152) for further analysis.

2.3 Dictionary Learning and Sparse Representation

Given the fMRI signal matrix S �R
L�n, where L is the fMRI time points number and

n is the voxel number, dictionary learning and sparse representation methods aim to
represent each signal in S with a sparse linear combination of dictionary (D) atoms and
the coefficient matrix A, i.e., S = D�A. The empirical cost function is defined as

Fig. 1. The computational framework of the proposed methods. (a) Concatenated sparse coding.
t is the number of time point number and n is the voxel number and k is the dictionary atom
number. (b) Supervised dictionary learning with spatial maps fixed. (c) Supervised dictionary
learning with temporal features fixed. (d) Statistical mapping to identify group-wise consistent
maps for each group.
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where D is the dictionary, ‘ is the loss function, n is the voxel number and, si is a
training sample which represents the time course of a voxel. This problem of mini-
mizing the empirical cost could be further rewritten as a matrix factorization problem
with sparsity penalty:

min
DeC;AeRk�n

1
2
jjS� DAjj22 þ kjjAjj1;1 ð2Þ

where k is a sparsity regularization parameter, k is the number of dictionary atom
number and C is the set defined by the constraint to prevent D having arbitrarily large
values. In order to solve this problem, we adopt the online dictionary learning and
sparse coding method [8] and the algorithm pipeline is summarized in Algorithm 1
below.

2.4 Constrain Spatial Maps in Dictionary Learning

In this section, we adjust the dictionary learning procedure to constrain spatial maps in
dictionary learning procedure to learn the individualized dictionary. Similar to GLM,
we name each identified network as activation map. First, each group of activation map
is transferred into binary vector matrix V 2 f0; 1gk�n by thresholding. Since both A
and S share the same number of voxels, they have similar structures. We set all these
vectors V as constrains in updating coefficient matrix. Specifically, if the coefficient
matrix element in corresponding constrain matrix location is zero, this elements will be
replaced with 0.1 (other small nonzero value is acceptable) to keep this element ‘ac-
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tive’. It should be noticed that the coefficient matrix is updated except that part of the
elements keeps ‘active’ (nonzero). The coefficient matrix updating procedure could be
represented as follows.

Ai , argmin
AieR

m

1
2

si � Dðt�1ÞAi

�� ���� ��2
2 þ k Aij jj j1;

Ap
i ¼ 0:1 if Ap

i ¼ 0 && V i; pð Þ ¼ 1 ð5Þ

2.5 Constrain Temporal Features in Dictionary Learning

In our method, the dictionary is set as a fully fixed dictionary and the learning problem
becomes an easy regression problem. Specifically, this dictionary learning and sparse
representation problem leads to the following formulation:

min
AeRk�n

1
2
jjS� DcAjj22 þ kjjAjj1;1

where Dc is the fixed individualized dictionary, k is the dictionary atom number, and
A is the learned coefficient matrix from each individual fMRI data with constrained
individualized dictionary in dictionary learning procedure.

2.6 Statistical Mapping

With the help of constrained features in dictionary learning procedure, the corre-
spondences of spatial activation maps between different subjects are naturally pre-
served. In order to reconstruct accurate consistency maps between different groups, we
hypothesize that each element in coefficient matrix is group-wisely null and a standard
T-test is carried out to test the acceptance of the hypothesis. Specifically,

T i; jð Þ ¼ AGxði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAGxði; jÞÞ

p ð7Þ

where AGxði; jÞ represents the average value of the elements in each group and x
represents the patient group or control group. Specifically, the T-test acceptance
threshold is set as p\0:05. The derived T-value is further transformed to the standard
z-score. In this way, each group generated a group consistent Z statistic map and each
row in Z can be mapped back to brain volume standing for the spatial distribution of
the dictionary atom.

3 Experimental Results

The proposed framework was applied to two groups of tfMRI data: unexposed healthy
control and PAE patients. In each stage, the dictionary size is 300 and the sparsity is
around 0.05 and the optimization method is stochastic approximations. Briefly, we
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identified 263 meaningful networks in concatenated sparse coding stage and 22 of them
were affected by PAE. The detailed experimental results are reported as follows.

3.1 Identified Group-Level Activation Maps by Concatenated Sparse
Coding

Figure 2 shows a few examples of identified group-level activation maps by con-
catenated sparse coding in Fig. 1a From these figures, we can see that both GLM
activation map as well as common resting state networks [13] are identified, which
indicates that sparse coding based methods are powerful in identifying diverse and
concurrent brain activities. The quantitative measurement is shown in Table 1. The
spatial similarity is defined as:

R X; Tð Þ ¼ X \ Tj j
Tj j ð8Þ

where X is the learned spatial network from Al and T is the RSN template.

3.2 Learned Individualized Temporal Patterns

After concatenated sparse coding, in order to better account for subject activation
variety, we constrained these identified spatial patterns in dictionary learning procedure
and learned individualized temporal patterns (the method is detailed in Sect. 2.4) for
each subject. Figure 3 shows two kinds of typically learned individualized temporal

Fig. 2. Examples of identified meaning networks by concatenated sparse coding. The first row is
the template name and the second row is the template spatial map. The third row is the
corresponding component network number in concatenated sparse coding. The last row is the
corresponding spatial maps in concatenated sparse coding. RSN represents common resting state
network in [13] and GLM result is computed from FSL feat software.

Table 1. The spatial overlap rates between the identified networks and the corresponding GLM
activation map and resting state templates.

GLM RSN#1 RSN#2 RSN#3 RSN#4 RSN#5 RSN#6 RSN#7 RSN#8 RSN#9

0.47 0.45 0.57 0.45 0.37 0.29 0.36 0.48 0.34 0.34
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patterns and the correlation matrix between different subjects. Specifically, Fig. 3a
shows the learned temporal patterns from constraining task-evoked group activation
map (Network #175 in Fig. 2). The red line is the task design paradigm which has been
convoluted with hemodynamic response function. It is interesting to see that the
learned individualized temporal patterns from constraining task-evoked activation map
are quite consistent and the average of these learned temporal patterns is similar to the
task paradigm regressor. The correlation matrix between subjects in healthy control
group is visualized in the right map in Fig. 3a and the average value is as high as 0.5.
Another kind of dictionary patterns are learned from constraining resting state net-
works. Figure 3b shows the learned temporal patterns and correlation matrix between
the healthy control group subjects with constraining resting state network (#152 in
Fig. 2). The temporal patterns are quite different among different subjects and the
average correlation value is as low as 0.15. From these results, we can see that the
learned individualized temporal patterns are reasonable according to current neuro-
science knowledge and the subtle temporal activation pattern differences among dif-
ferent subjects under the same task condition are recognized with the proposed
framework (Fig. 4).

(a)

(b)

Fig. 3. Identified individualized temporal patterns and correlation matrix between different
subjects. (a) Identified individualized temporal patterns by constraining the same task-evoked
activation map (identified in concatenated sparse coding) in dictionary learning procedure. The
red line is the task paradigm pattern and the other lines are derived individualized temporal
activity patterns from healthy control group subjects for the same task-evoked activation
map. The right figure is the correlation matrix between different subjects. (b) Identified
individualized temporal patterns by constraining resting state activation map (identified in
concatenated sparse coding).
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3.3 Affected Activation Networks by Prenatal Alcohol Exposure

In order to identify individualized spatial activation maps, we then constrained indi-
vidualized dictionary in dictionary learning procedure (detailed in Sect. 2.5) for each
subject. These fixed features naturally preserve the correspondence information
between subjects. After that, we adopted statistical mapping in Sect. 2.6 to generate
statistical group-wise consistency maps for each group. It is easy to see that although
the general spatial shapes are similar, there are subtle difference between different
group statistical consistent maps which indicated the multi-stage sparse coding better
captures the individual variety. Specifically, blue circles highlight the brain regions that
are difference between healthy control group and PAE group. These areas includes left
inferior occipital areas, left superior, right inferior parietal regions, and medial frontal
gyrus which have been reported related to Prenatal Alcohol Exposure [11]. Further, it is
also interesting to see that there is a clear reduction of region size in corresponding
group consistency networks suggesting the similar effect of Prenatal Alcohol Exposure
reported in the literature [11].

(a)

(b)

Fig. 4. Examples of identified group-wise activation map in different groups. (a) and (b) are
organized in the same fashion. The first row shows the component number and the second row
shows the concatenated sparse coding results. While the third row shows the reconstructed
statistical activation map in healthy control group, the last row shows the statistical activation
map in PAE group. Blue circles highlight the difference between statistical maps in two groups.
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4 Conclusion

We proposed a novel multi-stage sparse coding framework for inferring group con-
sistency maps and characterizing the subtle group response differences under specific
task performance. Specifically, we combined concatenated sparse coding and super-
vised dictionary learning methods and statistical mapping method together to identify
statistical group consistency maps in each group. This novel framework greatly
overcomes the limitation of lacking correspondence between different subjects in
current sparse coding based methods and provides a structured way to identify sta-
tistical group consistent maps. Experiments on healthy control and PAE tfMRI data
have demonstrated the great advantage of the proposed framework in identifying
meaningful diverse group consistency brain networks. In the future, we will further
investigate the evaluation of subjects’ individual maps in the frame work and parameter
optimization and test our framework on a variety of other tfMRI datasets.
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