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Abstract. The diagnosis of Alzheimer’s disease (AD) from neuroimaging data
at the pre-clinical stage has been intensively investigated because of the immense
social and economic cost. In the past decade, computational approaches on
longitudinal image sequences have been actively investigated with special
attention to Mild Cognitive Impairment (MCI), which is an intermediate stage
between normal control (NC) and AD. However, current state-of-the-art diag-
nosis methods have limited power in clinical practice, due to the excessive
requirements such as equal and immoderate number of scans in longitudinal
imaging data. More critically, very few methods are specifically designed for the
early alarm of AD uptake. To address these limitations, we propose a flexible
spatial-temporal solution for early detection of AD by recognizing abnormal
structure changes from longitudinal MR image sequence. Specifically, our
method is leveraged by the non-reversible nature of AD progression. We employ
temporally structured SVM to accurately alarm AD at early stage by enforcing
the monotony on classification result to avoid unrealistic and inconsistent diag-
nosis result along time. Furthermore, in order to select best features which can
well collaborate with the classifier, we present as joint feature selection and
classification framework. The evaluation on more than 150 longitudinal subjects
from ADNI dataset shows that our method is able to alarm the conversion of AD
12 months prior to the clinical diagnosis with at least 82.5 % accuracy. It is worth
noting that our proposed method works on widely used MR images and does not
have restriction on the number of scans in the longitudinal sequence, which is
very attractive to real clinical practice.

1 Introduction

Alzheimer’s disease is an incurable neurodegenerative disease. Typical clinical
symptoms include memory loss, disorientation, language and behavioral issues. The
progression of AD is not reversible, however, there are treatment available to modify
disease effect in the early stage of AD [1]. Thus, early diagnosis or prognosis of AD is
of high value in clinical practice since it can save more time for treatment and then
improve the life quality for not only patients but also their caregivers.
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AD introduces both structural and functional loss that is known to have dynami-
cally evolving morphological patterns [1–3, 12–15]. In the past decade, longitudinal
studies have been actively investigated for AD diagnosis with special attention to MCI
[1, 4], which is an intermediate stage between NC and AD. For example, tensor-based
morphometry is used in [4] to reveal brain atrophy patterns from 91 probable AD
patients and 189 MCI subjects scanned at baseline, and after 6, 12, 18, and 24 months.
Moreover, the trend of longitudinal cortical thickness is used as the morphological
patterns in [5] to identify subjects which eventually convert to AD. However, current
longitudinal AD diagnosis methods have very strong restriction on the longitudinal
image sequence. For example, each subject recruited in [5] should at least 5 time-points
in every six months, and should develop AD after at least 12 months after the baseline
scan. For convenience, many longitudinal approaches assume the number of scans is
equal, albeit implicitly. In real clinical setting, however, not all patients have a large or
an equal number of imaging scans.

In order to accurately measure the tiny structural changes along time, current
state-of-the-art computer assisted diagnosis methods have to wait until the patient has
enough number of longitudinal scans. More critically, the prediction is short term, e.g.,
only 6 months before real onset of AD in [5]. Although promising results have been
achieved in predicting whether the subject has progressed to AD or stays in MCI stage,
the limitation of short-term prediction substantially hamper the deployment in clinical
practice.

In light of this, we propose a flexible solution for early detection of AD by
sequentially and consistently recognizing abnormal patterns of structure change from
longitudinal MR image sequence. First, we present a novel temporally structured SVM
(TS-SVM) which is trained based on a set of partial image sequences cut from the
complete longitudinal data. Compared to conventional SVM, our TS-SVM has two
major improvements to achieve early alarm and high accuracy in detecting AD pro-
gression: (1) Temporal consistency. We enforce monotonic constraint to avoid
inconsistent detection results along time. Since convergent evidence suggests that AD
progression is non-reversible [6, 7], we require the risk of AD progression should
monotonically increase within each subject as more and more time-points are inspec-
ted. (2) Early detection. We employ sequential recognition to achieve best balance of
early alarm and detection accuracy. In the training stage, we specifically train the
classifiers by making the classification margin adaptive to the length of partial image
sequence. Given the longitudinal image sequence of new subject with arbitrary number
of scans, we sequentially examine the longitudinal imaging patterns from baseline and
alarm the AD conversion as long as the detection of abnormal change is of high
confidence. Thus, our proposed AD early detection method does not have requirement
on the number of scans. Second, we further present a joint feature selection and
classification framework, in order to make the selected best features are eventually
optimal to work with the learned support vector machine. We have evaluated the
performance of AD early detection on more than 150 longitudinal subjects from ADNI
dataset. Our method achieved promising results by alarming AD onset 12 months prior
to the clinical diagnosis with at least 82.5 % accuracy.
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2 Methods

2.1 Temporally Structured SVM for Early Detection of AD

The goal of our method is to accurately predict AD converting as early as possible by
longitudinally tracking the structure changes. Since magnetic resonance (MR) image is
non-invasive and widely used in clinic practice, we present a novel temporally struc-
tured SVM on longitudinal MR image sequences.

Morphological Features. Suppose we have N training subjects, each subject Sn has a
MR image sequences In ¼ fInt jt ¼ 1; . . .; Tng (n ¼ 1; . . .;N) with Tn longitudinal
scans. For each volumetric image Int , we first register the template image (http://qnl.bu.
edu/obart/explore/AAL/) with 90 manually labeled ROIs (regions of interest) using
hammer registration tool to the underlying image Int and extract seven morphological
features in each ROI which include tissue percentiles (volumetric percentiles of the
ROI volume) of white matter (WM), gray matter (GM), cerebral-spinal fluid (CSF), and
background, and the averaged voxel-wise Jacobian determinant in WM, and GM and
CSF regions. Therefore, the image feature fnt for each volumetric image Int is a 90�
7 ¼ 630 dimension feature vector.

Decomposition to Partial Image Sequences. We can decompose the complete lon-
gitudinal image sequence In into Tn � 1ð Þ partial image sequences Pn ¼ fPnðbÞjb ¼
2; . . .; Tng, where each Pn bð Þ ¼ fInt jt ¼ 1; . . .; bg is the partial image sequence with b
time points from baseline to b� 1ð Þ-th follow-up. For each PnðbÞ, we further extract

longitudinal feature representations and form a column vector h b; nð Þ ¼ Pb
t¼1 f

n
t =b;

h

fn1 � fnb
� ��0 , where the first half elements are the average of morphological features from
baseline to last time point and the second half elements measure the longitudinal
difference of morphological features from baseline to the last follow-up. It is apparent
that each feature representation hðb; nÞ describes both the spatial and temporal mor-
phological patterns. As we will explain in Sect. 2.2, feature selection is of necessity to
remove data redundancy from such high dimension (d ¼ 1; 260).

Naive Way to Achieve Early Detection by Classic SVM. In our application, the goal
of classification is to determine (1) whether we can detect the conversion of AD on the
new testing subject based on its MR image sequence Z ¼ fZtjt ¼ 1; . . .; Tzg up to the
current time point Tz; and (2) whether we could detect the AD onset as early as
possible, i.e., push Tz as close to baseline as possible. Thus, we regard the early
detection of AD as a binary classification problem between MCI non-converter
(MCI-NC for short) and MCI converter (MCI-C for short). Without loss of generality,
we assume the first M subjects belong to MCI-NC group and the remaining subjects
belong to MCI-C group. Therefore, we divide all partial image sequences for training
purpose into two groups: MCI-NC group X ¼ xb;pjxb;p ¼ h b; pð Þ; p ¼ 1; . . .;M;

�
b ¼
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1; . . .; Tpg and MCI-C group Y ¼ yb;pjyb;p ¼ h b; qð Þjq ¼ Mþ 1; . . .;N; b ¼ 1;
�

. . .; Tqg. To achieve above goal, the naïve way is to train a SVM by:

arg minw Wk k2F þ ke2; s:t:
dx � wT

x � wT
y

� �
xb;p\e; e[ 0; 8xb;p 2 X

dy � wT
y � wT

x

� �
yb;q\e; e[ 0; 8yb;q 2 Y

8<
: ; ð1Þ

where W ¼ ½wxwy� is a matrix consisting of classifier wx 2 Nd�1 for MCI-NC group
and wy 2 Nd�1 for MCI-C group. The intuition behind the constraint is that the
probability score wT

x xb;p
� �

for each MCI-NC sample xb;p staying the MCI-NC group

should be greater than the score wT
y xb;p

� �
for jumping to MCI-C group by an

inter-class margin dx. Similar principle also applies to the sample yb;q from MCI-C
group. e is the slack variable which compensates for the mis-classification errors.

It is clear that there is strong structural correlations along partial image sequences in
each subject. However, the naïve SVM solution shown in Eq. (1) treats each partial
sequence separately. As shown in the left of Fig. 1, the probability scores of AD
conversion and staying in MCI stage are not stable along time, which is not realistic
since the structural change and AD progression are normally regarded as
non-reversible.

Temporally Structured SVM on Longitudinal MR Image Sequences. To improve
the accuracy of early AD detection, we propose the temporally structured SVM as:

argminw Wk k2F þ ke2; s:t:C1 :
dxðbÞ � wT

x � wT
y

� �
xb;p\e; e[ 0; 8xb;p 2 X

dyðbÞ � wT
y � wT

x

� �
xb;q\e; e[ 0; 8xb;q 2 Y

; and

8><
>:

C2 : syðlÞ � wT
y ðyb;q � ya;qÞ\e; l ¼ b� a; e[ 0; 2� a\b; 8ya;q; yb;q 2 Y:

ð2Þ

Compared to the objective function of naïve SVM in Eq. (1), two new constraints
(C1 and C2) are used. (1) we first turn the inter-class margins dx and dy in Eq. (1) from
scalar values into the monotonically increasing functions of b (the length of partial

Fig. 1. Advantages of our TS-SVM (right) over the naïve SVM solution (left). In our TS-SVM
method, we enforce the temporal monotony and consistency constraints on the extracted partial
image sequences (shown in the middle))
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image sequence). The constraint C1 is mainly used to achieve early detection, i.e., we
require the probability of making accurate classification should increase as more time
points are available. (2) The second constraint C2 takes advantage of the non-reversible
nature of AD progression. Suppose ya;q and yb;q are the morphological features from
the same MCI-C subject but yb;q is extracted at the later time points after ya;q (i.e.,
a < b). Then we require the probability of the underlying MCI-C subject being con-
verted to AD should higher at later time point b than at earlier time point a, i.e.,
wT

y yb;q [wT
y ya;q since AD conversion is irreversible. Furthermore, the intra-class

margin sy is a monotonically increasing function of l (l ¼ b� a is the length difference
between two partial image sequences). Intuitively, the bigger the gap between two time
points is, the larger the increase of AD conversion risk becomes. It is worth noting that
the constraint C2 is not applicable to MCI-NC subjects since the MCI-NC subject might
convert to AD as more and more follow-ups will be scanned in future. Thus it is
unreasonable to assume the MCI-NC subject can keep staying at MCI stage. As shown
in the right of Fig. 1, for particular MCI-C subject, not only the probability score of AD
conversion but also the difference between the probability scores of converting to AD
and staying MCI monotonically increase as the partial image sequence becomes longer
and longer. Thus, our TS-SVM can detect AD onset at early stage with high confi-
dence. It is worth noting that we set dx bð Þ ¼ b, dy bð Þ ¼ b, sy lð Þ ¼ l in all experiments.

2.2 Joint Feature Selection and Classification on TS-SVM

Since the morphological features are in high dimension, feature selection is a standard
procedure to remove the data redundancy. Usually feature selection is independently
applied prior to train the classifiers. In order to make the selected best features are also
optimal for using TS-SVM, we proposed to jointly select best features and train the
classifiers by introducing L2;1 norm on the classification matrix W:

arg minw Wk k2;1 þ ke2; s:t:C1 andC2: ð3Þ

The intuitions behind using Wk k2;1 are that (1) sparsity constraint on each column of
W: only a small number of features are selected which is useful to suppress the noisy
and redundant patterns, and (2) group-wise constraint on each row ofW: both MCI-NC
and MCI-C classifiers select/discard the same morphological features. In this way, W
can be simultaneously regarded as a coefficient matrix for feature selection and a
classifier for classification.

2.3 Optimization

Although Eq. (3) is a convex problem, it is hard to optimize it directly due to a large
number of linear inequality constraints. To solve this problem efficiently, we refor-
mulate it as an unconstrained problem following the framework of Alternating
Direction Method of Multipliers (ADMM) [8, 9, 16]. Specifically, we rewrite Eq. (3) as
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an unconstrained convex optimization problem by introducing a dummy variable Z to
break the group sparse constraint with other inequality constraints:

arg minW;Z Zk k2;1 þ k
X
xb;p2X

dx bð Þ � wT
x � wT

y

� �
xb;p

���
���
h
þ

X
yb;q2Y

dy bð Þ � wT
y � wT

x

� �
yb;p

���
���
h
þ

2
4

X
ya;q2Y;yb;q2Y

sy b� að Þ � wT
y yb;q � ya;q
� ����

���
h

3
5þ l W� Zk k2F þ Tr KT W� Zð Þ� �

ð4Þ

where k kh is a hinge loss function which measures the mis-classification error with the
quadratic loss: xk kh¼ maxð0; xÞk k22, l is the penalty parameters for the constraint
W ¼ Z,K 2 Nd�2 is the Lagrange multiplier matrix for the equality constraint W ¼ Z,
Trð:Þ represents the trace operator, and k is the penalty parameter for the constraints C1

and C2, respectively. Equation (4) can be optimized by alternatively solving W;Z until
the overall energy function converges.

3 Experiments

In the following experiments, we select 70 MCI-C subjects from ADNI dataset which
have AD onset in the middle of longitudinal image sequence and 81 MCI-NC subject
which stay in MCI stage until the last scan in the latest ADNI dataset. For all subjects,
95.3 % have 4 follow-ups every 6 months, and the remaining 4.7 % having more than 4
follow-ups. Specifically, for 70 MCI-C subjects, 11.1 % are diagnosed AD at 6 months,
31.8 % at 12 months, 25.3 % are diagnosed AD at 18 months after baseline scan, while
the remaining 31.8 % are diagnosed AD more than 24 months after baseline scan. We
compare our proposed TS-SVM based early detection method with standard SVM based
method. Furthermore, we evaluate the importance of feature selection in both TS-SVM
and standard SVM method. Thus, we compare the classification performance for four
method in total, denoted by SVM, SVM+FS, TS-SVM, and TS-SVM+FS, respectively.
In all experiments, we split the data into 10 non-overlap folders and report the averaged
classification accuracy after 10-fold cross validation. The parameters are tuned using
grid search strategy only in the training dataset.

Performance of AD Early Detection. In each cross validation case, we train our
TS-SVM on the training data and sequentially apply the trained classifier to the testing
subject image sequence from the first follow-up. Since the month of converting to AD
after baseline scans varies across MCI-C subjects, we show the detection accuracy for
MCI-C subjects converting to AD 12 months, 18 months, and 24 months after the
baseline scan in Tables 1, 2 and 3, separately. It is clear our TS-SVM beat the standard
SVM with more than 10 % improvement in terms of classification accuracy, which
shows the advantage of temporal consistency and monotony constraints in our pro-
posed method. Also, feature selection is very important to improve the detection
accuracy, where SVM+FS and TS-SVM+FS can obtain average 3.8 % and 2.9 %
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increase over SVM and TS-SVM, respectively. In brief, our full method (TS-SVM+FS)
can detect AD 6 months prior to AD onset with 86.8 % accuracy, 12 months prior to
AD onset with 82.5 % accuracy, and 18 months prior to AD onset with 76.5 %
accuracy. Note, the early detection performance in Table 3 is worse than Tables 1 and
2 at corresponding pre-diagnosis windows. The reason is that the subjects in Table 3
mostly have 5 time points and have AD onset exactly at the last time point. Thus, the
unbalanced partial image sequences before and after AD onset challenge the learning of
robust classifiers.

Critical Brain Regions Related with AD Progression. Since our method jointly
select morphological features in training TS-SVM, it is interesting to examine the
critical brain regions where the morphological features extracted from these region
contribute significantly to detect AD progression via longitudinal tracking. Figure 2
show the top 20 regions selected by our TS-SVM+FS method. It is apparent that the
selected brain regions are located at AD related sub-cortical regions (such as putamen,
thalamus, and hippocampus) and cortical areas (such as orbitofrontal cortex,
medial/lateral temporal lobe, and medial/lateral parietal lobe), which is in consensus
with the neuroimaging observations in the literatures [10, 11]. We also compared the
top selected ROI for short term and long term detection and found that the cortical
regions contribute more for short term detection and the sub-cortical regions, such as
such as putamen, thalamus, and hippocampus, contribute more for long term converters
detection. This may indicate that the sub-cortical regions changes are more significant
compared with the cortical regions at the earlier AD progression stage. We did not
visualize this result due to the page limitation.

Table 1. Accuracy of AD early detection at 6 months, and 0 month before AD onset for the
MCI-C subjects converting to AD 12 months after baseline scan.

Method 18 months 12 months 6 months 0 month
ACC AUC ACC AUC ACC AUC ACC AUC

SVM - - - - 0.7110 0.7612 0.7345 0.7937
SVM+FS - - - - 0.7557 0.7862 0.7735 0.8237
TS-SVM - - - - 0.8816 0.9327 0.8975 0.9431
TS-SVM+FS - - - - 0.9025 0.9649 0.9075 0.9776

Table 2. Accuracy of AD early detection at 12 months, 6 months, and 0 month before AD onset
for the MCI-C subjects converting to AD 18 months after baseline scan.

Method 18 months 12 months 6 months 0 month
ACC AUC ACC AUC ACC AUC ACC AUC

SVM - - 0.7325 0.7822 0.7455 0.7917 0.7535 0.8223
SVM+FS - - 0.7537 0.7912 0.7685 0.8123 0.7725 0.8314
TS-SVM - - 0.8425 0.8851 0.8593 0.9042 0.8635 0.9128
TS-SVM+FS - - 0.8475 0.8932 0.8720 0.9277 0.8812 0.9216
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4 Conclusion

In this paper, we present a novel early AD diagnosis method using temporally struc-
tural SVM. In order to avoid inconsistent and unrealistic classification results, we
propose the monotony on the output of SVM since the AD progression is generally
non-reversible. In order to achieve early alarm of AD onset, we propose to adjust the
classification margin such that the confidence of detecting AD progression becomes
high as more and more follow-up scans are examined. Furthermore, we jointly perform
feature selection and training of TS-SVM, in order to make the selected features can
work well with the trained classifiers.
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