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Abstract. A key question in learning from clinical routine imaging data
is whether we can identify coherent patterns that re-occur across a pop-
ulation, and at the same time are linked to clinically relevant patient
parameters. Here, we present a feature learning and clustering approach
that groups 3D imaging data based on visual features at corresponding
anatomical regions extracted from clinical routine imaging data without
any supervision. On a set of 7812 routine lung computed tomography vol-
umes, we show that the clustering results in a grouping linked to terms
in radiology reports which were not used for clustering. We evaluate dif-
ferent visual features in light of their ability to identify groups of images
with consistent reported findings.

1 Introduction

The number of images produced in radiology departments is rising rapidly, gen-
erating thousands of records per day that cover a wide range of diseases and
treatment paths [9]. Identifying diagnostically relevant markers in this data is
a key to improving diagnosis and prognosis. Currently, computational image
analysis typically relies on well annotated and curated training data such as
COPDGene or LTRC1 that have fostered substantial methodological advance.
While these kind of data sets enable the creation of accurate and sensitive detec-
tors for specific findings, they are limited, since annotation is only feasible on
a relatively small number of cases. Selection or study specific data acquisition
can introduce bias, and limits the range of observations represented in the data.
In contrast, learning from routine data could enable the discovery of relation-
ships and markers beyond those that can be feasibly annotated, sampling a wide
variety of cases. Furthermore, unsupervised learning on such data enables the
search for novel disease phenotypes that better reflect a grouping of patients
with similar prognosis, than current categories do.
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In this paper, we propose unsupervised learning to group patients based on
non-annotated clinical routine imaging data. We show that based on learned
visual features, we identify population clusters with homogeneous (within clus-
ters) but distinct (across clusters) clinical findings. To evaluate the link between
visual clusters and clinical findings, we compare clusters with corresponding radi-
ology report information extracted with natural language processing algorithms.
An overview of the workflow is given in Fig. 1.

PACS 
Image Data

Spatial
 Normalization

Segmentation Feature
 Extraction

a) Unsupervised Learning from Imaging Data

Clustering

Radiology
Reports

Term
Extraction

Cluster

b) Evaluation based 
on Radiology Reports

Analysis

Fig. 1. Population clustering and evaluation. (a) All processing steps towards pop-
ulation clustering are performed unsupervised and use anonymized routine images
exported from a PACS system. (b) Findings extracted from radiology reports are used
to evaluate if clusters reflect disease phenotypes in the population.

Relation to Previous Work. Radiomics [11] involving (a) imaging data, (b)
segmentation, (c) feature extraction and (d) analysis [10] has recently gained
significant attention, but approaches that reduce the reliance on annotation to
extend the covering of variability are scarse. Our work is a contribution to this
direction. Although applicable to a large number of conditions, radiomics is
mostly applied and developed in oncology [1,3,11]. Aerts et al. use a large number
of routine CT images of cancer patients recorded on multiple sites to discover
prognostic tumor phenotypes [1]. Wibmer et al. differentiate malign from benign
prostate tissue by analysing texture features extracted from MRI images [17].
Shin et al. learn semantic associations between radiology images and reports
from a data set extracted from a PACS [14], but only uses pre-selected 2D key
slices that were referenced from clinicians.

The proposed radiomics approach differs from previous techniques in several
significant aspects. We do not restrict analysis to a certain disease type or a
small region of interest but implement a general form of population analysis.
The most significant difference to prior work is that human interaction is not a
prerequisite to bring images into processable form. We do not require selection of
key images [14] or manual annotation of regions of interest [1,11,17]. In order to
make this possible, spatial normalization involving localization and registration
is performed. The resulting non-linear mapping to a common reference space
allows coordinates and label-masks to be transferred across the population. We
extract texture and shape features and use Latent Dirichlet Allocation (LDA)
[2] to discover latent topics of co-occurring feature classes that are shared across
the population. Subsequently, these topics are used to build volume descriptors
by encoding the contribution of each topic to a specific subject.
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2 Identification of Clusters

Spatial Normalization. We perform spatial normalization to establish spatial
correspondences of voxels across the population. This allows to study location
dependent visual variation without the need for manual definition of regions of
interest or preselection of imaging data only showing a specific organ. For this
purpose, we perform non-linear registrations of all images to a common reference
atlas. For a given image Ii ∈ {I1, . . . , II} and an atlas A, we seek to find a non-
linear transformation T so that A ≈ T(Ii). High variability in the data such as
the absence of organs, variation in size and shape or diseases poses challenges to
such a registration process. To consider parts of this variations in the normal-
ization process we implement a multi-template approach (Fig. 2). Instead of a
direct mapping to an atlas, images are registered to a set of template candidates
{E1, . . . ,EE} that cover variability in the population. The transformations of the
templates to the atlas are performed in advance, when building the template-set.
They are carefully supervised and supported by manually annotated landmarks
to ensure high quality registrations.
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Fig. 2. Multi-Template Approach. During normalization, an image (a) is aligned
to multiple templates (b). All templates are aligned with the atlas (c) by a high qual-
ity registration. An image is mapped to the atlas by concatenation of the two corre-
sponding transformations that yield maximal registration quality. After normalization,
coordinates and label masks are mapped across the population (d).

Let Tie denote a non-linear transformation from Ii to a template Ee and
TeA the transformation from Ee to A. Ii is then mapped to A by concatenating
both non-linear transformations so that A ≈ TeA(Tie(Ii)). The use of multiple
templates gives a candidate set of registrations of a fragment to the reference
atlas. Normalized Cross Correlation (NCC) is then used as a quality criteria to
select the best transformation by

arg max
1≤e≤E

NCC(A,TeA(Tie(Ii))) (1)

In most cases, radiology images cover a delimited region rather than the whole
body. To identify location and extend of these fragments in the templates, we
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perform rigid and affine transformations. An initial rigid position estimation is
performed by utilizing correlated 3D-SIFT features [15]. For the template set and
the atlas, we use 17 volumes of the VISCERAL Anatomy 3 dataset [4], which
provides CT volumes paired with manually annotated landmarks and organ
masks. Non-linear registrations are performed on an isotropic voxel resolution of
2 mm using Ezys [5].

Feature Extraction. We extract two types of features that capture comple-
mentary visual characteristics in order to map an image to a visual descriptor
representation so that Ii �→ fi.
1. Texture Features. We densely sample Haralick [6] features of orientation
independent Gray-Level Co-occurrence Matrices similar to the work in [16].
Haralick features are able to encode 3D texture and have been used to clas-
sify lung diseases [7,16] or distinguish between cancerous and benign breast
tissue [17].
2. Shape Features. We extract 3D-SIFT [15] features to encode rotation vari-
ant gradient changes such as shape. 3D-SIFT has been used in diagnosis of lung
and brain diseases [8,13].
3. Bag of Words. We follow the Bag Of Visual Words paradigm to summarize
local features to global volume descriptors. In advance, we augment the features
with their spatial position in the reference space. This enables to train spatio-
visual vocabularies. To account for the different occurrence frequencies of small
and large 3DSIFT features, we train two separate vocabularies, microSIFT (3D-
SIFT features with ≤2 cm in diameter) and macroSIFT (diameter> 2 cm). We
denote fHi (Haralick) and fSi (SIFT) as the word count feature representations
for an image Ii.
4. Embedding. Finally, we learn a set of 20 latent topics of co-occurring feature
settings of fH and fS using Latent Dirichlet Allocation (LDA) [2]. This allows
to interpret an image as a mixture of topics represented by its 20 dimensional
topic assignment vector fLi .
Clustering. We perform clustering of the population to retrieve groups of sub-
jects with (visually) similar properties. Here we interpret the Euclidean distance
between two volume descriptors as a measure of visual similarity. This allows to
extract clusters utilizing vector quantization. We use the k-means algorithm, an
iterative procedure to minimize the sum of squared errors within the clusters,
for this purpose. Each subject i is mapped to one clusters c(i) : i �→ k, k ∈
{1, . . . , K}. We evaluate if these clusters based on visual information reflect
homogeneous profiles of findings in the corresponding radiology reports.

3 Evaluation

Data. Experiments are performed on a set of 7812 daily routine CT scans
acquired in the radiology department of a hospital. The dataset includes all
CT scans that were taken during a period of 2 1/2 years and show the lung. We
only include volumes with slice thickness of ≤3 mm, where the number of slices
exceeds 100 and a high spatial frequency reconstruction kernel (e.g. B60, B70,
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B80, I70, I80,. . . ) was used. For a subset of 5886 cases, the radiology reports in
the form of unstructured text are available.

Term Extraction. We build a NLP framework for automatic extraction of
terms describing pathological findings in radiology reports. Extracted terms are
mapped to the RadLex2 ontology, which provides a unified vocabulary of clinical
terms, and models relationships by mapping into multiple hierarchies. One of
these hierarchies comprises all words that are related to pathological findings.
We identify pathological terms by searching for words and their synonyms in
the report that are part of this specific hierarchy. The words are then mapped
to their respective RadLex term. Our framework is furthermore able to identify
negations, so that explicitly negated terms are ignored. We define T as the
number of distinct pathological terms and substitute each term by an integer
number {1, . . . , T}. We define Ti as the set of all terms that occur in the radiology
report of subject i. For further analysis we only consider terms that occur more
than 50 times resulting in a set of T = 69 distinct terms.

Evaluating Associations Between Visual Clusters and Report Terms.
For evaluation, we restrict the area of interest to the lung, so that only features
extracted in the lung are used. Clustering is performed on the full set of images,
while for evaluation only records with a report are considered. Aim of the evalu-
ation is to test the hypothesis, that the clustering reflects pathological subgroups
in the population. In order to do so we test whether volume label assignments
(pathology terms) are associated with cluster assignments. A cell-χ2-test is per-
formed for each term t ∈ {1, . . . , T} and each cluster k ∈ {1, . . . , K} to test
whether its cluster frequency V is significantly different from its population fre-
quency C by a 2 × 2 contingency table:

Here, B denotes the total number of subjects in the population and R the
size of a cluster. Since V is potentially small, we perform Fisher’s exact test. This
results in a p-value that gives the statistical significance of term t being over or
under represented in cluster k. Testing for each cluster independently increases
the Family-Wise Error (FWE) rate and inflates the probability of making a false
discovery of an association between the term and a cluster. We strongly control
the FWE by correcting the p-values with the Bonferroni-Holmes approach. We
define ptk as the corrected p-value for term t being associated with cluster k and
ORtk as the corresponding Odds Ratio. As this is an exploratory analysis we do
not correct the p-values on the term level.

Quality Criterion of Clusters. We interpret the number of discovered asso-
ciations between cluster and terms as a measure of quality of the population

2 http://www.rsna.org/RadLex.

http://www.rsna.org/RadLex
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clustering. This not only allows to quantify the relative quality of an image
descriptor, but also enables to find the optimal number of clusters. For a prede-
fined number of clusters K we define the measure of quality

QK =
K∑

k=1

T∑

t=1

[ptk ≤ 0.05]. (2)

4 Results

Figure 3 shows values of the quality criterion (Eq. 2) for various numbers of K
using the LDA volume descriptor fL for clustering. K-means is based on random
initialization. Thus, to rule out random effects, we perform the experiments with
a set of 5 different random seeds. Graphs are shown for each seed (gray), the
average result (blue) that was used to determine the number of clusters and
the random seed (red) for which the evaluation results are reported. Figure 4
shows a comparison of different feature sets (fH , fS and fL) with respect to the
clustering quality QK . Concatenating texture and shape features [fH fS ] allows
to discover more structure in the data than each feature set individually. The
LDA embedding fL further improves the number of associations discovered. For
further results the descriptor fL and the number of cluster 20 are fixed. Figure 5
illustrates the visual variability of the data by showing a 2D visualization of
the fL descriptors using t-SNE [12]. In addition, exemplary slices of volumes
at different positions in the feature space are shown. Figure 6a illustrates all
associations discovered by population clustering. Positive associations (ORtk >
1) and negative associations (ORtk < 1) are shown for all ptk ≤ 0.05. Figure 6(b–
e) shows a comparison of 3 exemplary clusters illustrating the raw features (b),
the embedding (c) a set of terms that are associated with the cluster (d) and
exemplary slices of volumes in the cluster (e).

Fig. 3. Number of discovered associations
(Q) over varying numbers of clusters (K)
for different seeds (gray) and averaged
(blue). Red indicates the seed used to gen-
erate the evaluation results.

Fig. 4. Comparison of different feature
sets. “SIFT3D+Haralick” denotes the
concatenation of the two feature sets.
The values represent the average using
5 different seeds.
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Fig. 5. 2D visualization of the LDA image descriptors of 7812 volumes using t-SNE.
Exemplary volume slices from different areas in the feature space are given to illustrate
the visual variability in the population.
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Fig. 6. (a) Discovered associations between clusters (columns) and terms (rows). Terms
are sorted by decreasing occurrence frequency. Positive associations (OR > 1) are
indicated red and negative associations (OR < 1) are indicated blue. (b–e) Comparison
of three clusters. (b) Shows raw features, (c) The LDA embedding and (d) Indicates
the appearance of 6 terms that are overrepresented in one of these clusters. (e) Shows
exemplary volume slices of members and lists of up to 5 significantly overrepresented
terms with p-values and OR of the respective clusters.

5 Conclusion

We propose a framework for visual population clustering of large clinical routine
imaging data. After spatial normalization, visual features are learned, and a
clustering is performed on the volume level. We evaluate the impact of features
on the clustering, and validate the clinical relevance of the resulting grouping
of patients based on corresponding radiology reports. Results show that the
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clustering after normalization identifies groups with coherent sets of reported
findings. This demonstrates that visual markers that relate to clinical findings,
can be learned without supervision. The proposed approach is a step towards
unsupervised learning from clinical routine imaging data.
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