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Abstract. We revisit the problem of forming a coherent image by
assembling independent pieces, also known as the jigsaw puzzle. Namely,
we are interested in assembling tile panels, a relevant task for art histori-
ans, currently facing many disassembled panels. Existing jigsaw solving
algorithms rely strongly on texture alignment to locally decide if two
pieces belong together and build the complete jigsaw from local decisions.
However, pieces in tile panels are handmade, independently painted, with
poorly aligned patterns. In this scenario, existing algorithms suffer from
severe degradation. We here introduce a new heat diffusion based affinity
measure to mitigate the misalignment between two abutting pieces. We
also introduce a global optimization approach to minimize the impact of
wrong local decisions. We present experiments on Portuguese tile panels,
where our affinity measure performs considerably better that state of the
art and we can assemble large parts of a panel.
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1 Introduction

We are interested in providing automatic tools to address a problem of great
relevance for art historians: the assembly of tile panels (Fig. 1).

Tile panel assembly is an instance of jigsaw puzzle assembly. In jigsaw, an
image, often photographs of natural scenery, is split into several pieces. The
objective is then to, without knowing the position nor orientation of each indi-
vidual piece, recover the initial image.

However, there are two main differences between tiles and jigsaw puzzles:

1. Tiles have poor texture: they often feature only two colors: white and blue.
2. Tiles have poor alignment between adjacent pieces: they are hand painted

and individually baked

These two differences have a very strong impact on how we decide each
piece position on the final panel. Namely, several algorithms [3,7,11] for jigsaw
assembly rely strongly on texture alignment to locally decide if two pieces should
be side by side and build the complete jigsaw from these local decisions. In this
sense, the alignment between textures acts as an oracle that (almost) always
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Fig. 1. Unsorted tiles at the Portuguese Tile’s Museum.

guesses if any two pieces belong together in a given orientation or not. With the
local responses from an oracle, knowing the jigsaw shape and the position of an
initial piece we can solve the puzzle using a simple algorithm:

input : Oracle; Jigsaw shape; Position of one piece; Unsorted pieces
output: Assembled jigsaw

for Each position Pi occupied with a piece pk do
for each non occupied Pj, abutting Pi do

for each piece pl still in the unsorted pile do
isNeighbor← oracle(pl,pk)
if isNeighbor then

movePieceFromUnsortedToPosition(pl,Pj)
end

end

end

end
Algorithm 1. Simple algorithm for solving jigsaw puzzles assuming the exis-
tence of an oracle.

The most recent algorithm, introduced by Paikin et al. [11], uses a very
similar approach, identifying abutting pairs of pieces with a confidence of ∼95 %
using a dedicated affinity measure. These pairs are then used to ground the
puzzle assembly. However, the affinity measure relies strongly on the existence
of texture, and as we show in this paper, has only a 45% accuracy when evaluated
in tile panels. Thus, the problem of assembling tiles is considerably more difficult
than the problem of assembling jigsaw puzzles from texture rich photographs.

In this work, we introduce a new affinity measure based on diffusion processes,
that performs better than state of the art on our tile’s dataset. The affinity
leverages on existing diffusion based descriptors [2] that represent not only a
pixel, but also its neighborhood, and thus is more robust to misalignments,
achieving a performance of 0.55 % in tile panels (Fig. 2).

Notwithstanding the improvement we achieved, the affinity measure perfor-
mance is still bellow the one obtained by the state of the art algorithms in
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(a) Unsorted tiles (b) Coherent panel, with misalignments

Fig. 2. Tile assembly: find the correct position and orientation of a set of pieces, or
tiles, originally unsorted, so that they form a coherent image, or panel.

jigsaw puzzles from photographs. Thus it cannot be used to replace the local
oracle and we have to move to global affinity criteria to assemble tile panels.
I.e., we propose to maximize the sum of the affinity over all abutting sides on
the final panel reconstruction. To avoid the exhaustive search associated with
such global function, we formulate the tile selection as a graph edge selection,
which we then solve using a linear relaxation. To recover a solution in the binary
space, we use Monte Carlo projection and show that, while we do not guarantee
that we achieve global optimal, we can recover large parts of the complete panel,
even with a modest number of trials.

Thus, the current paper innovates by introducing:

– a tile panel dataset1

– a pairwise affinity measure that accounts for misalignments and poor texture;
– an algorithm for solving puzzles that uses a global affinity as criteria.

2 Dataset

In this work we introduce the seven 5× 5 tile panels represented in Fig. 3. All
panels are painted in white and blue. All free parameters in the affinity measure
were estimated using as subset of Panel 1 tiles.

3 Related Work

Our objective is to reconstruct a tile panel, without knowing a-priori informa-
tion besides the panel final shape. Namely, we have no information on the tiles’
position nor orientation. This is an instance of a broader class of problems - the
jigsaw puzzle assembly. Other instances have different constraints, e.g., there
may be more a-priori information the pieces’ orientation may be known a-priori,
or we may not have all the pieces in the puzzles. The type of puzzles influ-
ences how the puzzles are assembled, i.e., they influence the implementation of

1 Can be found at http://users.isr.ist.utl.pt/∼sbrandao/tilePanels/.

http://users.isr.ist.utl.pt/~sbrandao/tilePanels/
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Panel 1 Panel 2 Panel 3 Panel 4

Panel 5 Panel 6 Panel 7

Fig. 3. Dataset of tile panels

Algorithm 1 or other assembly approach. However, common to most approaches
is the definition of the similarity between adjacent pieces, that acts as an ora-
cle in those approaches but is very unreliable in tile panels. We here compare
our affinity measure with previously propose ones, and discuss how the existing
algorithms would fit the panel reconstruction problem.

3.1 Affinity Measure

As far as we are aware, all affinity measures between adjacent pieces compare
color values, or similar functions, at a very shallow distance from the abutting
boundary: no more that two rows/columns of pixels parallel to the boundary are
used. Similar functions to the pixel color were based on the color gradient in the
direction perpendicular to the abutting boundary.

Gallagher et al. [7] introduced a local affinity measure, linked to the difference
in the gradient at the abutting edges of two adjacent pieces. Cho et al. [4] used
directly the pixel color and Paikin et al. [11] compares not the color, but what
the color should be based on the color gradient in the region perpendicular to
the boundary.

The existing measures have showed very good results on current datasets
created from photographs. In particular, Paikin showed very good results in
finding best buddies (>95%), as we show in Table 1. Best buddies correspond
to pairs of pieces that are simultaneously the most affine to one another, and
thus should have higher accuracy, but lower recall, than just nearest neighbors.
Several assembly algorithms, e.g., [11,12], leverage on the identification of best
buddies to assemble the whole puzzle.

The same table shows the results on the tile dataset, highlighting the need to
define more relevant affinity measures to model the similarity between tiles. We
note that, while we have obtained better results, we still have lower performances
than those reported on photograph based datasets.
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Table 1. Best buddies performance

Results on photographs (from [11]) Results on Tile Panels

Accuracy Recall Accuracy Recall

Paikin [11] 0.96 0.86 Paikin[11] 0.45 0.16

Cho [3,4] 0.88 0.76 This Paper 0.55 0.15

Gallagher [7] 0.93 0.85

Pomeranz [12] 0.94 0.84

3.2 Assembly

The first attempts to automatically solve jigsaw puzzles have been proposed
by Freeman and Garder in 1964 [6]. In the last 15 years it has received renew
attention, leading to an increase in the size of puzzles solved. However, most
algorithms correspond to elaborated versions of Algorithm1.

For example, Gallagher et al. [7] represents the puzzle as a graph, where
edges connect abutting sides and carry a weight associated with the affinity
of the two sides. Initially the algorithm considers edges connecting all possible
combinations between all pieces, and then trims edges by finding a Minimum
Spanning Tree (MST) [9], so that the final edges correspond to the abutting
edges in the assembled jigsaw. The main difficulty with this approach is that
the jigsaw shape has to be verified and corrected during iterations of MST. We
also use a graph representation, but we introduce the jigsaw shape on the graph
construction, namely on the definition of neighboring positions. Thus can use a
global criteria.

Sholomon et al. [13] proposed an automatic jigsaw puzzle solver using genetic
algorithm. In each iteration they generated hundreds of possible solutions, merg-
ing two “parent” to an improved “child” solution. It is performed by detecting,
extracting and combining assembled puzzle segments.

Pomeranz et al. [12] and Paikin et al. [11] introduced approaches that rely
heavily in finding pairs of pieces that had a very high probability of being
together. They obtain such pairs by searching for best buddies. Furthermore,
Paikin et al. [11] takes a step forward by solving puzzles where pieces are in
unknown orientations or are altogether missing. In their approach, Paikin et al.
avoid the complexity introduced by focusing on local decision and improving
affinity measures. In our work, we also account for unknown orientations, but
still aim at a global criteria for deciding on tiles positions.

There are several approaches [1,4,10] that look into the optimization of affin-
ity between adjacent pieces using global criteria. However, all these approaches
assume that the pieces orientation is known and thus do not extent naturally to
unknown orientations.

Andaló et al. [1] presented a global formulation for jigsaw problems, Puzzle
Solving by Quadratic Programming (PSQP). Cho et al. [4] presented a graphical
model based on the patch transform to solve the jigsaw puzzle assuming some
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sort of previous knowledge. The authors propose an algorithm that minimizes
a probability function via loopy belief propagation. Both formulations assume
a one to one correspondence between pieces and positions in the puzzle. This
assumption does not hold when we need to consider different orientations for
each piece.

In our work, we model the solution as a global optimization problem, as in
[1], but we extend the set of available pieces so that each tile in each orientation
is counted as a different tile, while not being necessarily in the final panel. As in
[4], we can also easily incorporate previous knowledge by changing the affinity
of some tiles depending on their position in the panel.

Recent work has also been introduced using neural networks, [10], which solve
small puzzles, by unsupervised learning images structures in a manner similar
to [5]. This approach radically differs from previous ones as it does not depend
on the similarity between points in two adjacent tiles. Instead it depends on the
overall structure of shapes in our environment. However, it again cannot handle
problems where the pieces orientation is unknown.

4 Heat Based Affinity Measure

To address the problem of poor texture or limited descriptive patterns, we intro-
duce a new diffusion based affinity measure that can represent not only compat-
ibility between pixels across the abutting boundary, but also of their neighbor-
hood, providing some level of resilience to misalignment. Furthermore, we also
aim at enhancing the pattern information by looking the alignment between
regions of color transition in the boundary direction.

Diffusion based descriptors are often used to represent 3D shapes, but it was
also showed that they can represent color and textures. In this work, we follow
[2] and consider a diffusion process where color influences the rate of diffusion,
leading to a color dependent, but misalignment resilient, affinity measure. We
illustrate what we mean by color dependent diffusion with the three examples
in Fig. 4 where we simulate the diffusion of a heat source over a tile. In the first
example, corresponding to the first row, we consider only the tile shape. In the
second example, second row, we consider a source at a lighter part of the tile
and, at the third example, we consider a source at a darker part. The source is
showed in red in the first column of Fig. 4 and in the subsequent columns (b∼ f)
we show the temperature increasing around the source following more or less a
concentric shape. While this general effect is the same over the three examples,
the temperature at each point changes between examples as the different colors
propagate heat at different rates. It is of especial interest to our problem the
fact that the rate at which the heat propagates in the neighborhood affects
the temperature evolution at the source itself. Also, the relation between color
and diffusion rate can be defined by a map that minimizes the affinity between
incorrect pairings.

In the following we describe how to simulate heat diffusion over surfaces,
which the familiar reader may jump. Then we show how we estimate the affinity
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used to compute the results presented in Table 1, including how we define the
map between color and diffusion rate, and how we introduce the alignment at
the color transitions into the overall affinity

4.1 Heat Diffusion on Color Surfaces

Heat diffusion is an umbrella term for the dynamic process that affects some
quantity, we here refer to as temperature, described by a function f(x̄, t) : Rn ×
R

+ → R whose evolution in time is described by:

∇2f(x̄, t) = c(x̄)∂tf(x̄, t), (1)

where x̄ = [x1, ..., xn] is a position vector, ∇2f(x̄, t) is the Laplacian of function
f and c(x̄) is the heat conductivity at any given point.

The diffusion over tiles’ surface is a discrete version of the above equation.
In this case f(x̄, t) becomes a vector f̄(t) ∈ R

N whose entry [f̄(t)]i is the tem-
perature at some pixel vi in the surface and the conductivity is represented by
a vector c̄ ∈ R

N with a vector corresponding to the color at each pixel. In this
work, we discretize the Laplacian operator using a distance based representation
of L, where L is a weighted graph Laplacian where the weight of each edge is
the inverse of its length:

Lf̄(t) = (D − W ) f̄(t), [W ]vi,vj
=

{
1/‖x̄vi

− x̄vj
‖2, iff el = (vj , vi) ∈ E

0, otherwise ,

(2)

and where D is a diagonal matrix with entries Dii =
∑N

j=1[W ]ij .
The equation allows to estimate a temperature at any time instant t given an

initial temperature. In our work, and others previously [8], we consider a single
source placed at some pixel s. In this case, the temperature can be written as

f̄(t) =
N∑

i=1

φ̄T
i f̄(0) exp(−λit)[c̄]s (3)

where λi and φ̄i are the solution to the generalized eigenvalue problem Lφ̄i =
Cφ̄iλi. Here C is a diagonal matrix whose entry Cl,l is a scalar cl representing
the color of pixel l. To move from RGB values to scalars, we use a map function
γ : R3 → R, which we define shortly.

The temperature at each point will then depend both on the shape of the
surface, in this case the rectangle formed by the two abutting tiles and in the
color of both pieces. As the shape of the pieces is the same for all pairs, we
remove this dependency. With that in mind, we first find the solution f̄shape(t)
corresponding to the upper row in Fig. 4, i.e., we solve Eq. 3 using the same L
and the same initial condition but with c̄ = 1̄.

By dividing the solution with color f̄(t) by the solution at f̄shape(t) we obtain
a vector ḡ(t) : [ḡ(t)]i = [f̄(t)]i/[f̄shape(t)]i that depends on the color and on the
neighborhood, but is not affected by shape.
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Fig. 4. Impact of color on diffusion. The first row corresponds to a diffusion process
where all the points are equal. The second and third correspond to diffusion process
where the rate depends on color. The red dot corresponds to the heat source on both
cases. (Color figure online)

4.2 Affinity Measure

As heat diffusion depends on the neighborhood of each point, it should be similar
across points in two abutting sides. We access the affinity between two tiles by
first placing the two side by side, as showed in Fig. 5(a), and then consider
multiple sources sl, at each side of the boundary, as showed in Fig. 5(b). For
each source individually, we estimate [ḡ(t′)]sl

at a fixed time instant t′. Finally,
Fig. 5(c), shows how much ḡ changes across the boundary in the two cases. In
this last graphic, we note that positive values correspond to higher temperatures
in the left tile, associated with darker colors in this region.

We note that the vector ḡi, containing all the temperature of all the ordered
sources at tile i, changes smoothly for neighboring sources, even under large
changes in the tile’s color. It is this smoothness that provides more resilient to
misalignment than existing affinity measures. We thus compare the temperature
for points in the same row/column, across boundaries: Δ̄1,2 : ḡ1(t) − ḡ2(t). The
affinity corresponds to the sum of the squares of Δ̄.

We note that, as with other affinity measures for jigsaw puzzles, Δ̄1,2 �= Δ̄2,1,
as when we switch tiles positions, the connecting sides are no longer the same.
In the remaining of the paper, we always assume that Δ1,2 corresponds to the

(a)Connecting two pieces (b)Placing sources (c) Temperature differ-
ence across the boundary

Fig. 5. Computing affinity between two abutting tiles. The top images corresponds to
a correct pair, while the second correspond to an incorrect pair.
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affinity between tile 1 and 2, when 1 is on the left side of 2 on a fixed orientation.
By reasons that will be clear in Sect. 5, we consider all possible orientations of
each physical tile as different tiles.

The overall process to compute the affinity measure between tiles pi and pj ,
when pi is in the left side of pj , is summarized in Algorithm 2.

input : Tiles pi, pj ; Color map to scalar γ
output: Affinity: ‖Δ̄‖
I ← connect(pi,pj)
s̄i,j ← findSourcePosition(pi,j)
Li,j ← computeLaplacian(I) (Eq. 2)
C ← extractColor(γ, I)
f̄ i,j(ts) ← computeTemperatureColor(L,C,s̄i,j) (Eq. 3)
f̄shape(ts) ← computeTemperatureColor(L,const,s̄i,j) (Eq. 3, C constant).
Δ̄ : [Δ̄]l =

(
[f̄ i]l − [f̄ j ]l

)
/[f̄shape]l

Algorithm 2. Computing affinity between tiles pi and pj , when placed side
by side, with pi on the left of pj .

4.3 Scalar Representation of Color

To use the above affinity definition, we need a map γ : R3 → R between color
and diffusion rate. We define such a map as the projection of each pixel color
value Ipixel on an unit norm vector ξ̄ ∈ R

+3. Such definition ensures that the
map γ (i) has a lower positive bound, i.e., that all generalized eigenvalues are
positive and that f̄(t) converges, and that (ii) has an bound making the problem
feasible.

We parameterize such vector as: ξ̄ = [cos(θ); sin(θ) sin(φ); sin(θ) cos(φ)], for
all θ, φ ∈ [0, π/2]. Using several correct and incorrect pairs of puzzle 1 from
the dataset, we searched for the parameters θ and φ that best minimized the
distance between corrects and maximized the distance between incorrect.

Figure 6 shows that the distance function is convex on the chosen parameter-
ization. Furthermore, it also shows that the minimum is close, but not equal, to

Fig. 6. Impact of different maps on the affinity measure.
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Fig. 7. Gradient alignment.

the vector [0; 0; 1], which corresponds to a small deviation of the blue color. While
we could have used convex optimization tools to further improve our estimation,
we opted to use the minimum over this sparse sampling to avoid over-fitting to
the small dataset of pairs we used to estimate the best distance.

4.4 Gradient Alignment

We want to align color transitions that occur in the boundary direction, so that
Fig. 7(a) is less penalized than Fig. 7(b), as in the later there is match a between
two distinctive patterns.

Thus we introduce a second affinity measure that matches the gradient par-
allel to the boundary in both tiles, as illustrated in Fig. 7(c and d). For each
pair of pieces, the affinity depends on the norm of the vector with the difference
between the two gradients.

We combine the two affinities by means of a coefficient α so that Aaffinity =
Aheat+αAalign. Using panel 1 we found that α = 0.11 provided the best relation
between precision and recall in best buddies.

5 Linear Programming for Tiling Reconstruction

As previously stated, we follow Gallagher [7] and represent the jigsaw problem
as an edge selection problem in a graph. However, nodes in our graph repre-
sentation correspond to all possible orientations of each tile at each position.
Thus, for a panel with M tiles, the graph has M2 × 4 nodes. Edges in the graph
connect the nodes at abutting positions in the panel leading to (M × 4)2 for
each pair of positions in the panel. The complete set of edges in a panel with
Mx × My = M tiles positions is [(Mx − 1)My + (My − 1)Mx] × 16M2. Figure 8
shows and example of all possible nodes and edges for a puzzle 2×2. In Fig. 8(a)
we represent all possible orientations of the four pieces. Each position in the
panel will have associated a set of nodes corresponding to these orientations.
The nodes in two abutting positions will be connected by edges, as showed in
Fig. 8(b). The complete set of edges and nodes is represented in Fig. 8(c).
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Each edge has an associated weight given by the affinity of the two sides
of the tiles that it connects. Our objective is to select a single edge between
abutting positions so that the global affinity is high. However, the set of edges
must respect some global constraints that ensure that the puzzle is feasible, e.g.,
that all the edges connecting to a given position are associated with the same
node.

The edge selection problem associated with these global constraints can be
written as binary linear program, but is still an NP-Hard problem. While we can
solve it for small problems, it does not escalate well with the size of the puzzle.
As an example, a 4 × 4 puzzle can take up to 2 h to solve. To allow scalability,
we relax the problem to a linear program. To recover an integer solution from
the relaxed problem, we introduce a Monte Carlo projection.

5.1 Binary Optimization Problem

To write the edge selection problem as an optimization problem, we represent
any set of selected edges as vector τ̄ ∈ {0, 1}16×M2

, such that [τ̄ ]i = 1 if we
select edge i and [τ̄ ]i = 0 otherwise. Thus we want to optimize the function
y(τ̄) = q̄T τ̄ , where [q̄]i is the affinity between the two nodes connected by edge i.

We ensure a solution of the optimization problem corresponding to a feasible
puzzle by introducing constraints in τ . We can divide such constraints in four
families:

The first is that between two abutting positions, we select one, and only one
edge:

τ̄T1edge
E = 1, ∀E = 1, ..., (2M − Mx − My) (4)

where 1tile
E is an indicator vector, where [1tile

E ]i = 1 if and only if the edge i is
associated with the abutting tiles at position E in the panel and zero otherwise.

The second is that each tile should be chosen once, and can be expressed as:

M∑
P=1

τ̄T1tilep,P = wP , ∀p = 1, ...,M (5)

(a)Consider all possible
pieces and orientations, Ω

(b) For each edge position,
E , estimate affinity between
all elements in Ω

(c) Replicate for all posi-
tions.

Fig. 8. Modeling a jigsaw puzzle structure as a graph.
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where [1tile
p,P ]i = 1 if and only if the edge i connects with tile p at the panel

position P, and wP is the number of abutting positions to P, e.g., for a corner
the weight is 2.

The third is that edges connecting to a given position have to connect to the
same node:

τ̄T
(
wP1Ω

ω,P − [1Ω
ω,P ]t

)
= 0 ∀ω ∈ Ω P = 1, ...,M t ∈ Eω,P (6)

where [1Ω
ω,P ]i = 1 if and only if the edge i connects with a node ω ∈ Ω, cor-

responding to some physical tile at a given orientation, at position P and zero
otherwise. Furthermore, Eω,P is the set of edges connecting to node ω in P.

The forth removes symmetries resulting from the the puzzle structure, and
is fundamental to avoid degenerate cases. The symmetries can be removed by
considering that there is a tile with a single orientation. For example for p = 1,
instead of considering the whole set Ω, we must consider only a single orientation
regardless of its position in the panel:

τ̄T1Ω
ω̃1,P = 0 ∀ω̃1 = 1, ..., 3M P = 1, ...,M t ∈ Eω,P (7)

where ω̃1 corresponds to all possible orientations except 1.
Thus, we can formulate the jigsaw puzzle as the integer optimization problem:

τ∗ = arg max
x

q̄T τ̄ (8)

s.t.Aτ̄ = b̄ [τ̄ ]i ∈ {0, 1} (9)

where A is a matrix with entries [A]i,j ∈ N sparse matrix with (2M − Mx −
My) + M + 4M2 rows and 16 × M2 × (2M − Mx − My) columns. Each row of A
corresponds to an indicator vectors 1 from the above constraints. Finally b̄ also
has integer entries[b̄]i ∈ N .

Any prior information that we want to introduce in the solution, can be
added directly by introducing more rows in A and b̄.

5.2 Linear Relaxation

When we relax the above problem, we end up with a program whose solving
time depends linearly on the total number of edges. The relaxed version of the
above problem corresponds simply to replace Eq. 9 by [τ̄ ]i ∈ [0, 1].

To recover an integer solution from the relaxed one, we use Monte Carlo
projections. We first compute a relaxed version of the algorithm. Then, for each
edge position E , we associate the solution of the relaxed version to probability
distributions on possible edges between tiles. We uniformly at random pick an
edge position and, for that position, randomly select a connecting edge using
the distribution. We then add the selected edge as a constraint to the linear
optimization program and resolve it again. We iterate between sampling edges
and solving the linear program until convergence, which often occurs after few
iterations. After assigning an edge to each position, we have a binary solution,



780 S. Brandão and M. Marques

from which we can reconstruct a puzzle. However, we have no idea of how far we
are from the minimum. We thus restart the projection several times, and look
into the solutions with lower cost for the one that is able to better reconstruct
tile panels.

Algorithm 3 summarizes the main steps of our algorithm for solving the
relaxed version of our optimization formulation.

input : Affinity c̄, Set of edge E , Set of positions P, Set of tiles in all possible
orientations Ω

output: Selection vector τ̄ : [τ̄ ]i ∈ {0, 1}
(A,b̄)← getConstraints(E , P, Ω), (Eqs. 4–7)
(af1, τ̄1)← solveLinearProgram(c̄,A, b̄), (Eq. 9)
for i ← 1; i ≤ Ns; i + + do

A1 ← A; b̄1 ← b̄;
for j ← 1; j ≤ M − 1; j + + do

e ←randomWeightedEdgeSelection(E , τ̄j)
(Aj+1, b̄j+1) ← addSelectedEdgeAsConstraint(e, Aj , b̄j)
(afj+1, τ̄j+1)← solveLinearProgram(c̄,Aj ,b̄)

end
if afM < minAf then

minAf ← afM
τ̄ ← τ̄M

end

end
Algorithm 3. Automatic tile panel assembly using linear programming

6 Results

Using the full binary solution, we were able to reconstruct a 4× 4 subpanel of
Panel 1 from Fig. 3, provided that we used as an a-priori information that the
first and second piece were connected at the top left corner.

Panel 1 Panel 2 Panel 3 Panel 4

Panel 5 Panel 6 Panel 7

Fig. 9. Best reconstructions, where polygons highlight correctly assembled parts
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For the full version of all the panels, without a-priori information and with the
Monte Carlo projection, we cannot reconstruct the panels completely. However,
we could recover large parts of each panel.

In Fig. 9 we present the best solutions, among the best 15 with highest affin-
ity obtained from 100 independent Monte Carlo trials. And, to illustrate the
difficulty of the dataset, we present in Table 2 the best buddies precision for
each panel.

Table 2. Affinity precision on each panel

Affinity Panel: 1 2 3 4 5 6 7

Paikin 0.50 0.47 0.56 0.10 0.20 0.50 0.57

This paper 0.64 0.61 0.5 0.57 0.29 0.8 0.38

7 Conclusions

In this paper we introduced a variation to the known jigsaw problem, where the
affinity between pieces is not reliable. We have introduced a new dataset of tile
panels, which correspond to jigsaws with very little texture and severe misalign-
ment. We introduced a novel affinity measure, which showed considerably better
results than previous state of the art on this particular dataset. Finally, we have
introduced a global approach for assembling jigsaw puzzles.

While the affinity precision is still too small and we cannot correctly assemble
whole panels without a small external help, when looking at the final assembled
panels it is clear that many pairings resulting from our algorithm are still visu-
ally convincing, at least locally. We note that this is particularly true in panels
4 and 5, which also have small affinity precisions. This highlights the difficulty
of automatically reconstruct puzzles with little texture. On the other hand, the
proposed approach can be used interactively by an art historian in the recon-
struction of the complete panel.

We note that the results here presented were obtained using only 100 Monte
Carlo trials for the projections, which took one day of computing using an Intel
Core i7-5500u, with no parallelization and the Gurobi optimization package. As
each trial is independent from all previous ones, in future work we expect to be
able to further explore and improve on these results.
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