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Abstract. In this paper, we present a histopathology image categoriza-
tion method based on Fisher vector descriptors. While Fisher vector has
been broadly successful for general computer vision and recently applied
to microscopy image analysis, its feature dimension is very high and
this could affect the classification performance especially when there
is small amount of training images available. To address this issue,
we design a dimension reduction algorithm in a discriminative learn-
ing model with similarity and representation constraints. In addition, to
obtain the image-level Fisher vectors, we incorporate two types of local
descriptors based on the standard texture feature and unsupervised fea-
ture learning. We use three publicly available datasets for experiments.
Our evaluation shows that our overall approach achieves consistent per-
formance improvement over existing approaches, our proposed discrim-
inative dimension reduction algorithm outperforms the common dimen-
sion reduction techniques, and different local descriptors have varying
effects on different datasets.

1 Introduction

Tissue examination using histopathology images is regularly performed in the
clinical routine for cancer diagnosis and treatment. Computerized histopathology
image classification supports automated categorization of cancer status (benign
or malignant) or subtypes, where manual analysis can be subjective and error-
prone due to the complex visual characteristics of histopathology images. The
majority of existing studies in this area have focused on image feature representa-
tion. For example, custom feature descriptors have been designed based on struc-
tures of cells or regions [3,11,14]. Other approaches propose to use automated
feature learning techniques such as convolutional sparse coding [16], dictionary
learning [12], and deconvolution network [2].
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As a less studied feature representation for biomedical imaging, Fisher vector
(FV) [7] has recently been applied to microscopy image analysis [2,14]. FV is a
feature encoding algorithm that aggregates a dense set of locally extracted fea-
tures, such as dense scale-invariant feature transform (DSIFT) descriptors, based
on the Gaussian mixture model (GMM) to form a high-dimensional image-level
descriptor. Classification of FV descriptors is then performed using the linear-
kernel support vector machine (SVM). This approach has shown excellent per-
formance in many general imaging applications such as face recognition, texture
classification, and object detection.

On the other hand, due to the high dimensionality, the classification perfor-
mance using FV descriptors could be affected if there are insufficient training
data to represent the complex visual characteristics of the problem domain. This
issue would be especially important for histopathology image studies, due to the
cost of preparing training data. While it could be intuitive to apply standard
dimension reduction techniques such as principal component analysis (PCA),
it has been shown that with FV descriptors, discriminative dimension reduc-
tion is more effective for face recognition [10]. However, we are not aware of
existing studies on the design of suitable dimension reduction algorithms for FV
descriptors of histopathology images.

In this work, we propose an automated method to categorize histopathol-
ogy images. Our algorithm contributions are two-fold. First, we design two FV
descriptors to represent the histopathology images, based on the local DSIFT
features and patch-level features that are learned using a deep belief network
(DBN) [4] model, respectively. Second, to address the issue of small training
data, we design a discriminative dimension reduction method to reduce the fea-
ture dimension and enhance the discriminative power of FV descriptors. Our
design is inspired by [10], but we find direct application of this method reduces
the classification performance on some datasets. We thus further improve the
model [10] by devising a classification score-based training set selection technique
and introducing an additional representation constraint into the optimization
objective. For evaluation, three public histopathology image datasets (Fig. 1)
are used. We demonstrate better categorization performance compared to other
feature representation and dimension reduction techniques.

2 Methods

2.1 Fisher Vector Descriptors

FV is analogous to the bag-of-words (BOW) encoding that it encodes a dense
set of local descriptors into an image-level descriptor. The encoding works by
first generating a GMM from all local descriptors. Based on the soft assignments
of local descriptors to the Gaussian modes, the first and second-order difference
vectors between the local descriptors and each of the Gaussian centers are com-
puted. The FV descriptor is then the concatenation of all difference vectors.
Assume that the local descriptor is d dimensional and k Gaussian modes are
used. The resultant FV descriptor is 2dk dimensional.
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Fig. 1. Example images of three datasets: (a) UCSB breast cancer dataset, (b) MICCAI
2015 CBTC challenge training set, and (c) IICBU 2008 malignant lymphoma dataset.
Each image represents one image category.

The local descriptors can be any patch-level features. In this study, we use two
types of local descriptors. (1) Following the standard FV computation, DSIFT
descriptors are extracted at multiple scales with spatial bins of 4, 6, 8, 10 and
12 pixels and sampled every two pixels. (2) Unsupervised feature learning using
DBN is performed on half-overlapping patches of 8 × 8 pixels. The network
comprises two layers with each layer producing 64 features. The patch-level local
descriptor is the concatenation of features from the two layers. The use of unsu-
pervised feature learning is inspired by existing work [2,6], which shows that
unsupervised feature learning is highly effective and can be more representative
than supervised feature learning for microscopy images. We have also evalu-
ated DBN with other numbers of layers and nodes, using only the features from
the last layer, or generating local descriptors at multiple scales. The proposed
structure is found to provide the best results.

For each type of local descriptor, we set a common feature dimension of 128
to make the different local descriptors directly comparable. PCA is then used to
reduce the local descriptor dimension to 64, and based on which, GMM of 64
modes is generated. The image-level FV descriptor is consistently d = 2 × 64 × 64
dimensional for each of the two types of local descriptors.
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2.2 Discriminative Dimension Reduction

We design a discriminative learning-based dimension reduction algorithm, which
helps to enhance the discriminative power of the FV descriptor. Formally, given
a training set of n images {Ii : i = 1, . . . , n}, the FV descriptor (regardless of
the local descriptor type) of image Ii is denoted as fi with category label yi. The
objective is to learn a linear projection matrix W ∈ R

h× d with h � d indicating
the reduced dimension. The descriptor fi is then transformed to Wfi, which is
expected to meet the similarity and representation constraints. The dimension-
reduced descriptors are finally used to train a linear-kernel SVM to categorize
the histopathology images. The overall method flow is illustrated in Fig. 2.

Similarity constraint. This constraint specifies that after dimension reduction,
descriptors of the same class should be similar and descriptors of different classes
should be dissimilar. As a result, such descriptors would be more easily classified

Fig. 2. Illustration of our method design. To categorize an image, the local DSIFT or
patch-wise DBN features are first extracted then encoded as FV descriptors. These
descriptors are then dimension reduced using our discriminative dimension reduc-
tion method, and finally classified using linear-kernel SVM. Unsupervised learning is
involved in DBN feature extraction and FV encoding, and supervised learning is used
in discriminative dimension reduction and SVM classification.
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compared to the original FV descriptors. We formulate this constraint based on
the Euclidean distance between pairs of descriptors:

‖Wfi − Wfj‖22 < b, ∀yi = yj ; ‖Wfi − Wfj‖22 > b, ∀yi �= yj ; (1)

where i and j index the n training data, and b is a learned threshold. By imposing
a margin of at least one, the constraint is rewritten as:

θij(b − ‖Wfi − Wfj‖22) > 1 (2)

where θij is 1 if yi = yj , and −1 otherwise. This is equivalent to the following
learning objective:

argmin
W,b

∑

i,j

max[1 − θij(b − (fi − fj)TWTW (fi − fj)), 0] (3)

An iterative optimization process can be used to update W and b by incorpo-
rating one pair of descriptors at each iteration [10].

An important issue of this learning process is the selection of descriptor
pairs fi and fj . If all possible pairs of training data are enumerated, there would
be a large number of descriptor pairs imposing contradicting optimization goals
hence affecting the effectiveness of the learned matrix. To overcome this issue, we
design a classification score-based training data selection approach. Specifically,
our idea is that for each fi, we select positive fj (i.e. θij = 1) that has high
classification score of class yj , and negative fj (i.e. θij = −1) that has low
classification score of class yj . The positive fj represents the good data that fi
should move towards, and the negative fj represents the hard examples that fi
should move further from. The classification score is the probability estimate
from a linear-kernel SVM trained using all the training data. The scores of all
training data from one class are then sorted and the score at the pth percentile
is chosen as the threshold. The positive (or negative) fj having a score above
(or below) this threshold is selected to form a training pair with fi. In addition,
we further reduce the number of descriptor pairs by restricting that only images
with classification scores lower than the threshold are used as fi, so that training
will focus on hard examples.

Representation constraint. While the similarity constraint measures the pair-
wise similarity between descriptors, the representation constraint evaluates the
representativeness of the descriptor by the overall class space. In the lower dimen-
sional space, we expect the descriptor fi to be well represented by the correct
class only. Specifically, assume that there are nj descriptors from class j, and
the descriptor set is denoted as Rj ∈ R

d×nj (note for simplicity j is now used
to index the classes). The representation of fi by class j, defined as μi,j , is com-
puted as the sparse reconstruction from Rj , μi,j = Rjci,j . Here ci,j ∈ R

nj is a
weight vector with q nonzero elements and is derived analytically using locality-
constrained linear coding (LLC) [13]:

min
ci,j

‖fi − Rjci,j‖2 + λ‖vi,j � ci,j‖2 s.t.1T ci,j = 1, ‖ci,j‖0 = q (4)
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where vi,j ∈ R
nj contains the Euclidean distances between fi and each descriptor

in Rj , and the constant λ = 0.01. Note that fi is excluded from Rj if yi = j.
The representation constraint is then defined in a similar construct to the

similarity constraint, but replacing the distance between pairs of descriptors by
distance between the descriptor and its reconstructions. Formally, this constraint
is formulated as:

θij(b − ‖Wfi − Wμi,j‖22) > 1 (5)

where θij = 1 if yi = j, and otherwise θij = −1. The learning objective is thus:

argmin
W,b

∑

i,j

max[1 − θij(b − (fi − μi,j)TWTW (fi − μi,j)), 0] (6)

Note that we can set multiple q values q = {q1, q2, . . .}, so that for fi and each
class j, we obtain multiple representations {μi,j : q = q1, q2, . . .} and expect each
of the representation to satisfy Eq. (5). In this way, we increase the number of
training pairs for the representation constraint.

Algorithm 1. Discriminative Dimension Reduction
Data: Training data {f1, y1}, . . . , {fn, yn}.
Result: Linear projection matrix W .
Train a linear kernel SVM on the training data;
Based on the classification scores of the training data, create a set of training
pairs {(fi, fj), i ∈ {1, . . . , n}, j ∈ {1, . . . , n}};
Initialize W using PCA on the training data;
Initialize b as the threshold that can satisfy θij(b − ‖Wfi − Wfj‖2

2) > 1 for most
training pairs;
repeat

for each training pair (fi, fj) do
if θij(b − ‖Wfi − Wfj‖2

2) ≤ 1 then
Δij = (fi − fj)(fi − fj)

T ;
Wt+1 = Wt − γθijWtΔij , b = b + αθij ;

end

end
for each training data fi, class j, and parameter q do

minci,j ‖fi − Rjci,j‖2 + λ‖vi,j � ci,j‖2 s.t.1T ci,j = 1, ‖ci,j‖0 = q;
μi,j = Rjci,j ;
if θij(b − ‖Wfi − Wμi,j‖2

2) ≤ 1 then
Δij = (fi − μi,j)(fi − μi,j)

T ;
Wt+1 = Wt − γθijWtΔij , b = b + αθij ;

end

end

until convergence or maximum number of iterations is reached ;

Combined optimization. W is first initialized using PCA on the training data.
Then, W and b are learned using a stochastic sub-gradient method combining
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Table 1. Classification accuracy (%) comparing feature representations.

UCSB CBTC IICBU

DSIFT-BOW 47.9 53.1 73.8

DBN-BOW 44.5 43.8 70.9

DSIFT-FV 87.8 50.0 90.9

DBN-FV 86.2 65.6 90.1

DSIFT-FV-DDR (proposed) 89.7 56.3 93.3

DBN-FV-DDR (proposed) 89.7 75.0 91.2

Eqs. (3) and (6). First, at each iteration t, the algorithm takes a descriptor pair
fi and fj . If Eq. (2) is not met, W and b are updated by:

Wt+1 = Wt − γθijWtΔij , b = b + αθij (7)

where Δij = (fi − fj)(fi − fj)T , γ and α are constant learning rates and default
to 0.25 and 1. After the selected descriptor pairs are enumerated, the training
pair fi and μi,j is used at each iteration to update W and b using Eq. (7)
with Δij = (fi − μi,j)(fi − μi,j)T . The iteration continues until convergence or
maximum number of iterations is reached. The overall discriminative dimension
reduction method is summarized in Algorithm 1.

With the derived linear projection matrix W , a descriptor fi is dimension
reduced to Wfi. SVM training and classification are then performed on these
lower dimensional descriptors to obtain the image category. Our empirical analy-
sis shows that a linear-kernel SVM is more effective than the polynomial and
radial basis function (RBF) kernels.

2.3 Datasets and Implementation

We use three public histopathology image datasets: (1) UCSB breast cancer
dataset of 58 hematoxylin and eosin (H&E) stained tissue microarray (TMA)
images, including 32 benign (B) and 26 malignant (M) cases; (2) MICCAI 2015
CBTC challenge training set, containing 32 whole-slide images of brain tumors
with 40× apparent magnification, out of which 16 are astrocytoma (A) and 16
are oligodendroglioma (O); and (3) IICBU 2008 malignant lymphoma dataset
of 374 H&E stained image sections from brightfield microscopy, including 113
chronic lymphocytic leukemia (CLL), 139 follicular lymphoma (FL), and 122
mantle cell lymphoma (MCL) cases. The first two datasets represent problems
with small numbers of training data, and the third dataset demonstrates multi-
class categorization. Example images are shown in Fig. 1.

For all datasets, we employ four-fold cross validation with three parts of
the data for training and one part for testing, following the same protocol used
in existing studies for the UCSB breast cancer dataset [3,5]. For the first two
datasets, we set h (the reduced feature dimension) to half of the number of



Histopathology Categorization with Dimension Reduction of Fisher Vectors 313

Fig. 3. Classification results comparing dimension reduction approaches when DSIFT
or DBN is used as the local descriptor. The left column shows the classification accu-
racies (%). The middle and right columns show the ROC curves and AUCs using our
approaches DSIFT-FV-DDR and DBN-FV-DDR.

images and p (the pth percentile of classification score) to 80. For the third
dataset, due to the relatively large number of images, h is set to a quarter of
the number of images, and p is set to 60. For the representation constraint, we
set q to 3 and 5 for all datasets. These parameter settings are determined using
10-fold cross validation within the training set.

3 Experimental Results

We first evaluate the effect of different local descriptors (DSIFT, DBN) and fea-
ture encoding algorithms (BOW, FV), and our proposed method. Table 1 shows
that in general FV encoding outperformed the BOW encoding by a large extent.
DBN-FV is particularly effective for the CBTC dataset while DSIFT-FV is more
descriptive for the other two datasets. With our proposed discriminative dimen-
sion reduction (DDR), we achieve the best performance for all three datasets.
DBN-FV-DDR is more effective for the CBTC dataset while DSIFT-FV-DDR
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Table 2. AUCs on the UCSB breast cancer dataset compared to existing studies.

DSIFT-FV-DDR DBN-FV-DDR [3] [5] [9]

0.93 0.93 0.92 0.93 0.95

Table 3. Classification accuracies (%) on the IICBU 2008 lymphoma dataset compared
to existing studies.

DSIFT-FV-DDR DBN-FV-DDR [8] [15]

93.3 91.2 85 70.9

is more effective for the IICBU dataset. Overall, the results suggest that FV can
provide more discriminative power than BOW, but the choice of local descriptors
(DSIFT or DBN) needs to be evaluated for different datasets.

Figure 3 shows the results using the original FV descriptor (no dimension
reduction), our proposed discriminative dimension reduction (DDR) algorithm,
and the other popular dimension reduction techniques: PCA (unsupervised), lin-
ear discriminative analysis (LDA) and generalized discriminative analysis (GDA)
[1] (supervised). It can be seen that PCA is useful for the CBTC dataset only.
While GDA with DSIFT local descriptors performs the best for the IICBU
dataset, the performance using GDA fluctuates largely for different datasets
and local descriptors. Our DDR method provides more consistent advantage.

The receiver operating characteristic (ROC) curves using our methods are
shown in Fig. 3 as well. For the UCSB dataset, although the DSIFT-FV-DDR
and DBN-FV-DDR methods produced the same classification accuracy (89.7 %)
and AUC (0.93), differences exist in the ROC curves. It can be seen that to obtain
100 % true positive rate, DBN-FV-DDR outputs a lower false positive rate; and
with 0 % false positive rate, DBN-FV-DDR gives a higher true positive rate,
when compared to SIFT-FV-DDR. Similar performance differences are observed
for the other two datasets as well. This indicates the overall advantage of using
DBN as the local descriptors over DSIFT.

Table 2 lists the AUCs of our methods and those reported in the existing
studies [3,5,9] for the UCSB dataset. The existing methods are based on multiple
instance learning (MIL) models and a combination of texture and morphological
features. Our method can be considered as related to MIL that only image-level
label is available; however, in our method, local descriptors are combined using
FV encoding and classification is performed at the image-level only. The results
show that while the advanced MIL method with joint clustering and classification
[9] is more effective, our method performs better than or comparably to the other
approaches [3,5]. We suggest that our method can be a viable and conceptually
simpler alternative to the MIL models.

Table 3 lists the classification accuracies of methods and those reported in the
literature [8,15] for the IICBU dataset. The approach [8] is standard benchmark
for the IICBU dataset, and performs image classification by extracting texture
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and shape features and then using a variation of kNN classification. The more
recent approach [15] provides another open platform for the microscopy image
classification task with a different set of features and SVM classification. Our
results show large improvement over these approaches. We note that for the
CBTC dataset, to the best of our knowledge, there is no available benchmark
for performance comparison.

Fig. 4. Classification accuracy (%) comparing our DDR method with several variations
(Sim, Rep, and OneP) when DSIFT or DBN is used as the local descriptor. Results
using FV (without dimension reduction) or [10] are also included. Confusion matrices
of classification using our methods are shown as well.

The effects of individual components in our DDR method are evaluated by
comparing the following approaches: (1) Sim: only the similarity constraint is
used for discriminative dimension reduction; (2) Rep: only the representation
constraint is used; and (3) OneP: a single p value (p = 3) is used when con-
structing the representation constraint. We also compare with the original dis-
criminative dimension reduction algorithm [10], which is equivalent to using only
the similarity constraint but without the classification score-based training data
selection, i.e. all possible positive and negative pairs are used in training. As
shown in Fig. 4, when DSIFT is used as the local descriptor, Sim provides some
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performance improvement over FV; but when DBN is used as the local descrip-
tor, Rep is more effective than Sim. Combining Sim and Rep (i.e. DDR) gives
the best classification. The performance difference between Sim and [10] illus-
trates the usefulness of having training data selection. It can be seen that Sim
outperforms [10] in most cases except when DBN is used as the local descriptor
on the CBTC dataset. We suggest that this is because the CBTC dataset con-
tains a small number of images, and including all possible training data is helpful
to better exploit the feature space characteristics. The overall advantage of our
DDR method over the compared approaches demonstrates that it is essential
to have both the similarity and representation constraints in the optimization
objective, and to use only a subset of descriptor pairs for training.

The confusion matrices of classification using our DSIFT-FV-DDR and DBN-
FV-DDR methods are shown in Fig. 4. For the CBTC dataset, with DBN-FV-
DDR, there is a tendency that more images are classified as oligodendroglioma
than astrocytoma, hence resulting in a high recall (81 %) but low precision rate
(72 %) of oligodendroglioma. For the IICBU dataset, DSIFT-FV-DDR generates
more balanced results among the various classes compared to DBN-FV-DDR.
Compared to using FV (without dimension reduction), the main difference is
that more MCL cases are correctly identified.

With Matlab implementation on a PC, the training process of DDR needs
about 3.8 s on the UCSB dataset, 1.8 s on the CBTC dataset, and 36.4 s on the
IICBU dataset. The different sizes of datasets affect the size and complexity of
training data, and subsequently affect the number of iterations and time required
for optimization.

4 Conclusions

We present a histopathology image categorization method in this paper. Our
method comprises two major components: FV encoding of local descriptors that
are computed using DSIFT or based on unsupervised learning with DBN; and
discriminative dimension reduction of FV descriptors with similarity and rep-
resentation constraints. Our method is evaluated on three public datasets of
breast cancer, brain tumor and malignant lymphoma images, and we show bet-
ter performance in comparison with some existing approaches and other feature
representation and dimension reduction techniques.
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