
Semantic Technologies
for Data Analysis in Health Care

Robert Piro1(B), Yavor Nenov1, Boris Motik1, Ian Horrocks1, Peter Hendler3,
Scott Kimberly2, and Michael Rossman2

1 University of Oxford, Oxford, UK
robert.piro@cs.ox.ac.uk

2 Kaiser Permanente, Oakland, USA
3 IHTSDO, Copenhagen, Denmark

Abstract. A fruitful application of Semantic Technologies in the field
of healthcare data analysis has emerged from the collaboration between
Oxford and Kaiser Permanente a US healthcare provider (HMO). US
HMOs have to annually deliver measurement results on their quality of
care to US authorities. One of these sets of measurements is defined in a
specification called HEDIS which is infamous amongst data analysts for
its complexity. Traditional solutions with either SAS-programs or SQL-
queries lead to involved solutions whose maintenance and validation is
difficult and binds considerable amount of resources. In this paper we
present the project in which we have applied Semantic Technologies to
compute the most difficult part of the HEDIS measures. We show that
we arrive at a clean, structured and legible encoding of HEDIS in the
rule language of the RDF-triple store RDFox. We use RDFox’s reasoning
capabilities and SPARQL queries to compute and extract the results. The
results of a whole Kaiser Permanente regional branch could be computed
in competitive time by RDFox on readily available commodity hardware.
Further development and deployment of the project results are envisaged
in Kaiser Permanente.

1 Introduction

Modern healthcare critically depends on data analysis, particularly in the context
of quality assurance. In the US, the National Committee for Quality Assurance
(NCQA)1 specifies a wide range of quality measures; these include, e.g., the pro-
portion of diabetic patients having regular eye examinations, because diabetes
can cause retinal damage and eventually blindness. Health Maintenance Organ-
isations (HMOs) are required to demonstrate satisfactory performance w.r.t.
NCQA measures if they wish to participate in government funded healthcare
schemes such as Medicare that cover more than 48 million patients in the US
and represent a substantial share of the healthcare market.

Relevant quality measures can depend on many factors, and their computa-
tion may require complex analysis of the data. Moreover, data may be derived
1 http://ncqa.org/.
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from multiple sources and have heterogeneous structure. Currently, a combina-
tion of SAS programs and SQL queries is used to compute quality measures.
The resulting software systems are complex, inefficient, and difficult to validate
and maintain—a critical issue given that quality measures are regularly revised
and augmented.

Semantic technologies offer a possible solution to this problem: RDF can be
used to integrate data from heterogeneous sources, ontologies can provide flexible
and adaptable schemas, and declarative rules can be used to capture relevant
quality measures. A triple store could then be used to apply the rules to the
data, with SPARQL queries2 being used to return the results.

To test this hypothesis, the Knowledge Representation and Reasoning (KRR)
group at the University of Oxford, together with the US HMO Kaiser Perma-
nente3 (KP), undertook a joint project in which they used declarative rules to
capture a particularly complex set of quality measures relating to diabetes care,
and used these rules with the RDFox [5] triple store in order to compute the
corresponding quality measures for the 466,000 patients in KP’s Georgia region.
The results were extremely encouraging: firstly, only 174 rules were required,
compared to the roughly 3,000 lines of complex and hard to maintain SQL code
of their previously used solution, which has since been replaced by a vendor
product. Secondly, RDFox was easily able to handle the relevant patient data
(which amounted to approximately 1.6 billion triples), and computed the qual-
ity measures via application of the rules in approximately 30 min. The KP data
analyst in charge of quality assurance confirmed that this was fast in compari-
son to their existing solution, and was also impressed with the small number of
iteration cycles needed to check the correctness of our results—a consequence of
the relative legibility of the declarative rules.

2 Motivation

The NCQA maintains and publishes the Healthcare Effectiveness Data and Infor-
mation Set (HEDIS)4, which uses (relatively) precise natural language to define
sets of measures concerning the performance of HMOs in areas such as cancer
screening, immunisation and Comprehensive Diabetes Care (CDC). The mea-
sures are usually expressed as a percentage of a population of interest and are
designed to facilitate performance comparisons across multiple HMOs. In the
case of CDC, the quality measures concern diabetic patients in the age range
of 18 to 75; one measure, for example, is the percentage of the patients who
received an eye exam during the relevant reporting period.

To compute the quality measures, the data first needs to be aggregated from
various patient data systems. This typically involves the invention of one or
more ad hoc schemas into which the data is cast. Such schemas are designed to
facilitate analysis rather than to accurately model the domain, and so they are
2 http://www.w3.org/TR/sparql11-query/.
3 http://www.kaiserpermanente.org.
4 http://www.ncqa.org/HEDISQualityMeasurement.aspx.
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difficult to maintain and are prone to inconsistent interpretation by the members
of the data analysis team.

Computation of NCQA measures over the aggregated data is typically done
via SAS-programs or a sequence of SQL-queries. This process is also complex
and error prone; for example, as already mentioned, computation of the CDC
measures uses roughly 3,000 lines of SQL code. As a result, existing systems are
costly, unreliable, and difficult to maintain.

2.1 Overview of Project

The aim of the project with Kaiser Permanente was to evaluate the effectiveness
of Semantic Technologies for computing NCQA quality measures. The power
of Semantic Technologies lies in the clearly defined declarative formalisms with
which complex relationships can be expressed. One such formalism are Datalog-
like rule languages that are supported by many triple stores and that can be
used, e.g., to perform OWL 2 RL reasoning [4]. Rules can express relationships
via intuitive if-then-statements such as

which says that ‘if the patient has diabetes and an eye exam, then the patient
is to be counted for the measure Eye Exam’. These statements are succinct and
relatively close to natural language.

In this project we used the RDFox triple store with its RDFox-Datalog
rule language. Our goal was to investigate whether RDFox-Datalog is expres-
sive enough to encode HEDIS specifications, if RDFox could handle datasets of
the necessary size and provide competitive performance w.r.t. existing solutions,
and if the resulting semantic technology solution could overcome some of the
shortcomings of existing solutions. We decided to implement HEDIS CDC, as
its variety of logical connexions between the data is rich, and it is particularly
difficult to implement with traditional methods such as SQL and SAS; HEDIS
CDC therefore makes an impressive use case for data analysts who conduct
HEDIS measurements in HMOs.

The project is split into three tasks. The first task is to create a coherent and
extensible data model into which the relevant patient data can be transformed.
We used a data model that is close to human conceptualisation as this makes
the data easier to understand. The data model makes it also easier to develop
and maintain the rules that capture HEDIS measures (see Sect. 3). The second
task is the development of such rules. We implemented the HEDIS CDC spec-
ification as a Datalog ontology (rule set), but had to augment the rules with
SPARQL-queries to fully compute the measures (see Sect. 4). Finally, the app-
roach was evaluated on data provided by the Kaiser Permanente Georgia region.
We translated this data into RDF-triples according to our data model, computed
the HEDIS CDC measures using RDFox, and compared our results with those
computed using existing systems (see Sect. 5).
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3 Healthcare Data Modelling in OWL

In this section we describe the conceptual model that we developed to describe
the clinical and administrative data in KP. When designing our model we tried
to satisfy the following three requirements. Firstly, the model had to be as close
as possible to domain expert conceptualisation so as to facilitate the faithful
representation of domain knowledge. Secondly, the model had to be sufficiently
flexible to uniformly capture the diverse business processes that take place in a
typical healthcare organisation. Thirdly, the model had to be readily amenable to
Semantic Web technologies. We identified a healthcare data modelling standard
from the field of healthcare informatics, called HL7 RIM, that satisfies the first
two requirements. To satisfy the third requirement, we used the methodology
behind the HL7 RIM to build a conceptual model in OWL. In the following two
sections we give a short overview of the HL7 RIM standard and a description of
how it was used to build an OWL ontology describing our data.

3.1 The HMO Data Model

Healthcare data modelling is an important topic in the field of healthcare infor-
matics, and a number of standards have been developed to facilitate the exchange
of clinical and administrative data between HMOs and other third party organi-
sations. One such standard is the Reference Information Model (RIM)5, which is
issued by the international organisation for standardisation Health Level Seven
International (HL7)6.

Entity Role Participation Act
hasRole hasPart hasAct

Fig. 1. Core concepts in the RIM, using the standard RIM colour scheme: Act: red,
Participation: blue, Role: yellow, Entity: green (Color figure online)

The RIM standard models a wide range of healthcare business processes,
including clinical processes, such as clinical visits and laboratory tests, as well
as administrative processes of HMOs, such as patient enrolment and insurance
plan authoring. All business processes in the RIM are uniformly represented
using the notions entity, role, participation, and act. Each act is characterised
by the participation of entities each of which fulfils a particular role (see Fig. 1).
Acts are used to represent business processes, and participations are used to
describe the different parties involved in an act, such as the performer of an act
and the subject of an act. Entities are used to describe physical things, such
as persons and organisations, while roles describe the different competencies of
entities, such as employee and patient, in the case of a person, and insurer, in

5 http://www.hl7.org/implement/standards/rim.cfm.
6 http://www.hl7.org/.
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the case of an organisation. For further details on the RIM standard, please refer
to [2,9].

The scope of the RIM data model far exceeds the needs of this project, so we
used its underlying design principles to build a simplified data model that better
suits our needs. We modelled the different types of entities, roles, participations
and acts as OWL classes that are specialisations of the classes Entity, Role,
Participation, and Act, respectively. Similarly, we modelled the relationships
between these notions as object properties whose domains and ranges are as
specified in Fig. 1.

Person Patient Subject

ClinicalVisit

Person Provider Performer

kp:hasRole kp:hasPart
kp:hasAct

kp:hasRole kp:hasPart
kp:hasA

ct

Fig. 2. The model of a clinical visit

Consider for example the part of our conceptual model depicted in Fig. 2,
which describes the clinical visits of a patient to their health care provider. The
clinical visit is modelled as the class ClinicalVisit, which is a subclass of Act.
Similarly, the two entities involved in a clinical visit are modelled as members
of the class Person, which is a subclass of Entity. One person in the role of a
Provider participates in the clinical visit as a Performer, while the other person
in the role of a Patient participates in the clinical visit as a Subject.

Our model also describes properties relevant to clinical visits, such as diag-
noses and clinical procedures. In healthcare informatics these concepts are rep-
resented by codes from standard vocabularies such as ICD-9 [7], which describes
diagnosis, CPT, which describes clinical procedures, and SNOMED-CT, which
describes clinical terms in general. For example, ICD-9 assigns the code 250.60
to the diagnosis ‘diabetes with neurological manifestations’, and the code 250.70
to the diagnosis ‘diabetes with peripheral circulatory disorders’. We model the
ICD-9 concepts using the class ICD9Term, and we connect its instances to the
ClinicalVisits in which they occur using the object property kp:hasDiag (see
Fig. 3). In healthcare informatics, broader clinical concepts are often modelled
as collections of codes, which are commonly referred to as value sets. For exam-
ple, HEDIS defines the term ‘Diabetes Diagnosis’ as a value set that contains
amongst others the ICD-9 codes 250.60 and 250.70. We model value sets using the
class ValueSet, and the associations between codes and value sets are realised
using the object property kp:hasValueSet. Hence, in our model, the instance
of ICD9Term representing the ICD-9 code 250.60 is connected via the object
property kp:hasValueSet to the instance of ValueSet that represents ‘Diabetes
Diagnosis’.

Finally, for each class in the model we introduce datatype properties that are
used to specify relevant values. For example, every Person has a specified name,
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Fig. 3. Extended upper row of Fig. 2 showing how we capture health record data
according to the developed schema

sex, and date of birth, every Patient has a member number with the HMO,
every ClinicalVisit has a date, every ICD-9 term has a code, a version and a
description, and every value set has a name (see Fig. 3).

3.2 Translating KP Data into RDF

We shall refer to the data provided by the Kaiser Permanente regional branch
as raw data. This is the same data that serves as input to the NCQA approved
vendor product, so it was already appropriately aggregated and curated. The
data is obtained from KP’s internal relational database and consists of delimited
text files each of which represents a relational table. For example the file that
stores clinical visits looks as follows.

Each line in this file specifies the visit ID as primary key, the patient’s member
number, the service date, up to twenty two ICD-9 diagnosis codes, and finally a
provider number.

Before translating KP’s raw data into RDF-triples, we first had to establish
a naming scheme that assigns IRIs to the different objects participating in our
model. We chose a naming scheme that allows us to easily map IRIs to the
objects in the raw data that they represent. To this end we used IRIs that capture
both the types and the identities of the encoded object. This was particularly
important when we had to correct formatting errors in our translation, and in
the recapitulation stage of the project in which we had to justify our results with
the raw data.

For most types of objects the assignment of IRIs was relatively straightfor-
ward. For example, we encoded the patient with member number ‘M4711’ using
the IRI <http://www.kp.org/Patient/M4711> and the provider with provider
number ‘P8736’ using the IRI <http://www.kp.org/Provider/P8736>. Simi-
larly, we encoded the ICD-9 code ‘250.70’ using the IRI <http://www.kp.
org/ICD9Term/250.70>. Note that, as mentioned above, each IRI captures both
the type and the identity of the encoded object.



406 R. Piro et al.

The assignment of IRIs to clinical visits was slightly more involved. In the
initial translation we assumed that each clinical visit is described in a single data-
base record, and thus we used the primary key VID of the record to identify each
visit. In the recapitulation stage of the project, however, it became clear that this
assumption was wrong, as clinical visit may reside in multiple database records.
The data analyst in KP clarified that the identity of a visit is uniquely determined
by the date of the visit, the member number of patient, and the provider number.
To correct the translation, we therefore encoded a clinical visit using IRIs of the
form <http://www.kp.org/Visit/UID>, where UID encodes the slash-separated
values of the date, the member number, and the provider number. So, for exam-
ple, for the clinical visit listed in the record above, UID is equal to 2013-09-
10/M4711/P8736. Finally, since there is a one-to-one correspondence between a
visit and its subject and a visit and its performer, we use a visit’s UID in the IRIs
of its subject and performer. Hence, the subject and the performer of the visit
in our example are encoded using the IRIs <http://www.kp.org/Subject/UID>
and <http://www.kp.org/Performer/UID>, respectively.

Having assigned IRIs to the different objects, we can now easily translate
each record of a clinical visit into RDF-triples by simply referring to the data
model described in Fig. 3. Some of the triples encoding the clinical visit record
in the previous example are given below.

<http://www.kp.org/Patient/M4711>rdf:type<http://www.kp.org/Patient>.
<http://www.kp.org/Patient/M4711>kp:hasPart<http://www.kp.org/Subject/UID>.
<http://www.kp.org/Subject/UID>kp:hasAct<http://www.kp.org/Visit/UID>.
<http://www.kp.org/Visit/UID>kp:date"2013-09-10"^̂ xsd:date.
<http://www.kp.org/ICD9Term/250.70>rdf:type<http://www.kp.org/ICD9Term>.
<http://www.kp.org/Visit/UID>kp:hasDiag<http://www.kp.org/ICD9Term/250.70>.

...

Since the translation of each clinical visit for a given patient uses the same
patient IRI, the patient’s entire medical history is connected in a contiguous
RDF-graph.

Note that our choice of naming scheme allows us to translate each data-
base record independently of other records. As a result, in addition to
being relatively simple, the translation could also be easily executed concur-
rently, as it maintains no global state. Observe, however, that the record-
by-record translation results in repetition of triples. For example, the triple
asserting that <http://www.kp.org/Patient/M4711> is a member of the class
<http://www.kp.org/Patient> will be generated once for every database record
that mentions that patient. Similarly, there may be repetitions involving each
provider and each diagnosis. As we will see in Sect. 5, this redundancy increases
the number of triples by a factor of 5.5.

Finally, we also had to add to our RDF-graph triples related to the HEDIS
specification. Firstly, as discussed in the previous section, the HEDIS specifica-
tion defines a number of value sets. The membership of codes to value sets is
naturally encoded using assertions for the object property kp:hasValueSet. Addi-
tionally, the HEDIS specification refers to the begin and end dates of the current
measurement year, which in our case is the year 2013, as well as to the measure-
ment period, which in our case consists of the years 2012 and 2013. Instead of
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explicitly referring to these dates and years in our rules, we exploit the following
triple encoding of the relevant information.

4 Encoding HEDIS CDC and Its Challenges

This section describes how we encoded the HEDIS specification in RDFox-
Datalog. The resulting RDFox-Datalog ontology defines the different patient
classes stipulated by the HEDIS specification, e.g. ‘patient with eye exam’; we
then use RDFox to compute class membership for all patients. Simple SPARQL
counting queries determine the number of patients in each class. These numbers
are used to calculate the percentage of the population of interest, which is then
reported to the NCQA.

As we show in the following, capturing the HEDIS specification involved the
use of recursive datalog rules, and hence went beyond what could be achieved via
SPARQL query answering alone. We also needed value manipulation, stratified
negation, and stratified aggregation, which are not commonly supported reason-
ing features. In standard materialisation-based triple stores, these features can
be simulated by iteratively answering full SPARQL queries, adding the query
results to the store, and applying the rules with respect to the enriched data.
Since RDFox supports BIND and FILTER constructs in rule bodies, we had to
simulate only stratified negation and aggregation.

4.1 Encoding Basic Concepts

HEDIS CDC is specified using natural language. The following extract (which we
will refer to as extract 1 ) is drawn from the chapter that defines which patients
are diabetic.

[Diabetics are those patients] who met any of the following criteria during
the measurement year [2013] or the year prior to the measurement year
[2012] (count services that occur over both years):

– At least two outpatient visits (Outpatient Value Set), observation vis-
its (Observation Value Set) or nonacute inpatient visits (Nonacute
Inpatient Value Set) on different dates of service, with a diagnosis of
diabetes (Diabetes Value Set). Visit types need not be the same for
the two visits.

– . . .

We first encode some basic concepts, starting with the notion of a diabetes
diagnosis. Extract 1 specifies that a clinical visit has a diabetes diagnosis if it
has a code in the value set named “Diabetes”. The following rule classifies such
clinical visits by deriving a triple of the form [?CV, rdf:type, aux:diabetesDiagnosis]
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where ?CV is an instance of ClinicalVisit and the prefix aux indicates a derived
property or class.

We add similar rules to classify outpatient visits, observation visits and non-acute
inpatient visits, which derive triples of the form [?CV, rdf:type, aux:outpatient],
etc.

We can now associate each patient with their “admissible visits” using triples
of the form [?Pat, aux:admissibleVisit, ?CV]. According to Extract 1, a patient’s
visit counts as admissible if it has a diabetes diagnosis and is also either an
outpatient, a non-acute inpatient, or an observation visit. For outpatient visits
we thus use the following rule:

For non-acute inpatient visits and the observation visits we use analogous rules.
Abstractions such as aux:admissibleVisit help to keep subsequent rules shorter

and more easily legible. The declarative nature of Datalog allows to introduce
such abstractions without the explicit creation of tables. The flexible RDF-
schema is simply extended and no data needs to be copied into the new schema.

Finally, we need to ensure that there are at least two admissible visits on dif-
ferent dates in the relevant measurement period. We achieve this with SPARQL
BIND and FILTER constructs which RDFox supports in rules bodies. Note that
these features can also be simulated by interrupting the reasoning process and
computing the relevant values using SPARQL queries, as in the case of stratified
negation (see Sect. 4.3).

This rule says that a patient is a diabetic patient if they had two admissible
visits in the years ?y0 and ?y1 (computed using BIND), each of which is either
the measurement year or the year prior to that, and that the visits occurred
on different dates (established using FILTER). The measurement year and the
year prior to that are retrieved from the dataset as described in Sect. 3.2. Note
that this rule is also non-treeshaped, and cannot be expressed in OWL 2 or its
fragments. The non-treeshapedness is unavoidable since we need to compare for
each patient the dates of each pair of admissible visits.

4.2 Recursion

We were able to encode all notions discussed so far by using only non-recursive
Datalog rules, which means that we could also compute these notions using (large
and complex) SPARQL queries. However, as we show next, HEDIS CDC also
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contains notions that require genuine recursion, and thus cannot be computed
using SPARQL queries alone.

A period in which a patient is insured with a HMO is called an enrolment.
Patients often have multiple consecutive enrolments within the measurement
year, which is due to changes in circumstances such as retirement, change of
workplace or switching between health plan packages. A patient may also have
gaps in their enrolment history, because they switched HMOs or were uninsured.
However, the NCQA requirements on HMOs apply only to patients who have
a continuous enrolment with the HMO which, according to the HEDIS CDC
specification, is when they have:

no more than one gap in enrolment of up to 45 days during the measure-
ment year. [. . . Patients must be insured with the HMO on] December 31
of the measurement year.

To determine whether a patient has a continuous enrolment we proceed as
follows. First, we identify as connected all enrolment acts that are connected to
the end date of the measurement period via a sequence of enrolment acts with-
out any gaps. Second, we identify as gap-connected all enrolment acts that are
connected to the end date of a measurement period via a sequence of enrolment
acts with one gap. Finally, we identify that a patient has a continuous enrolment
if they have a (gap-)connected enrolment act containing the begin date of the
measurement period.

The notion of connected enrolment act has the following recursive definition.
An enrolment act is connected (1) if its period contains the end date of the
measurement year, or (2) if it is directly succeeded by a connected enrolment.
Case (1) of the definition is handled by the following rule.

For the recursive case (2), we need to identify the connecting successor. This
involves date manipulation because we have to compute the date of the previous
day. Unfortunately, SPARQL BIND does not provide arithmetic on the data type
xsd:date and instead we had to compute the previous day during data translation
which was stored using the data value property kp:beginDT-1.

The notion of gap-connected enrolment can again be defined recursively. An
enrolment act is gap-connected (1) if it has a gap of at most 45 days to a
connected enrolment act, or (2) if it is directly succeeded by a gap-connected
enrolment. Similarly to before, during our translation we precomputed the date
that is 46 days earlier than the start date of an enrolment act and stored it using
the data property kp:beginDT-46.
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Note that we compare all pairs of enrolments of each patient, which is
quadratic in the number of patient’s enrolments. To reduce the workload, we
restricted aux:connEnr to enrolments whose period intersects the measurement
year. We measured the outdegree of aux:connEnr, which was maximally 6 and
thus manageable.

Finally, we determine if a patient was continuously enrolled using two simple
rules that identify all patients having a connected or a gap-connected enrolment
act whose period contains the begin date of the measurement period. We are
thus able to encode this HEDIS section using just 6 recursive Datalog rules. This
compares to 500 lines of heavily commented and involved SQL-code previously
used by the Kaiser Permanente.

4.3 Stratified Negation

Stratified negation is a feature that is not commonly supported by RDF-triple
stores but that can be very useful when conclusions need to be drawn based on
the lack of some information. We next give an example of a HEDIS CDC measure
whose computation requires negation, and we describe how it was computed
before RDFox was extended to handle stratified negation.

HbA1c is a special type of haemoglobin, whose level is used as an indicator for
average blood glucose levels over three months and whose healthy level is below
7 %. HMOs are required to pursue good levels of HbA1c, but only in patients
without severe health issues, such as by-pass operations, etc. Concretely, the
measure for HbA1c control is computed as #patients in HbA1c denom. with HbA1c<%7

#patients in the HbA1c denominator ,
where the HbA1c denominator contains those patients in the population of inter-
est that have no exclusions. For example, HEDIS CDC states in the definition
of the HbA1c denominator:

Exclude members [from the pop. of interest] who meet any of the following
criteria:

– IVD [Ischemic Vascular Disease]. Members who met at least one of
the following criteria during both the measurement year and the year
prior to the measurement year. Criteria need not be the same across
both years.
• At least one outpatient visit (Outpatient Value Set) with an IVD

diagnosis (IVD Value Set).
• At least one acute inpatient encounter (Acute Inpatient Value Set)

with an IVD diagnosis (IVD Value Set).

From what we have seen earlier, it is not difficult to imagine how to write
rules which identify patients with IVD and with other excluded properties.
All final rules computing the excluded patients have the head [?Pat, rdf:type,
aux:HasExclusion] and thus mark a patient excluded from the HbA1c denomina-
tor for the respective reporting year. Yet, computing the HbA1c denominator
requires selecting all patients from the population of interest who do not have
an exclusion and thus it requires negation.
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Stratified negation [1,6] is a well established extension of recursive Data-
log and is sufficient for our purposes. However, RDFox did not support strat-
ified negation at the time, so we applied a well-known work-around [3,8] that
uses the FILTER NOT EXISTS construct in SPARQL. After populating the class
aux:Denominator with the population of interest and the class aux:HasExclusion
with the part of the population that needs to be excluded, we halt RDFox’s
reasoning process and execute the following query.

We save the answers as triples into a file, which we then load back into RDFox.
This solution, however, is not optimal in a setting where transparency and

proximity to the natural language specification is a major selling point. RDFox
has since been extended to support stratified negation. The query can now be
expressed as the following rule that can be listed and evaluated together with
the other axioms:

4.4 Aggregates

Aggregate functions collapse multiple inputs into one single value, like ‘max’,
‘count’, ‘average’ but also ‘list’ or ‘set’. The HEDIS CDC specification requires
for measurement results always the latest and ‘best’ reading, if more than one
measurement was taken on the same date. For example HEDIS CDC requires to

[. . . ] identify the most recent BP reading taken during an outpatient visit
(Outpatient Value Set) or a non-acute inpatient encounter (Nonacute Inpa-
tient Value Set) during the measurement year. The member is numerator
compliant if the BP is <140/80 mmHg. The member is not compliant if
[. . . ] the systolic or diastolic level is missing. If there are multiple BPs on
the same date of service, use the lowest systolic and lowest diastolic BP
on that date as the representative BP.

We first use a rule to classify a clinical visits which has both systolic and diastolic
measurements as instances of aux:HasCompleteBP. Amongst these the latest,
i.e. the date maximal, measurement has to be determined. Since RDFox had
no support for aggregate functions at the time, we used a workaround which
incidentally shows the connexion between aggregates such as max, min etc. and
negation: We first mark all those visits which have a later visit using the rule
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and we use, as done in Sect. 4.3, a SPARQL query to determine all those clinical
visits that do not have a later visit:

The answers of the this query are added to the running store in RDFox.
We can then populate the class aux:latestBP-140-80 with clinical visits from
the class aux:latestBP. Note that our work-around computes aux:hasLaterVisit
using quadratically many rule instantiations in the number of the blood pressure
measurements per patient per year, and that a native implementation of the
aggregate function max can achieve the same in linear time by iterating through
all measurements and retaining the binding with the latest date.

5 Performance and Evaluation

We evaluated our approach on a commodity server provided by the Kaiser Per-
manente data centre. The server was security compliant according to the sensi-
tive nature of the data. All tests were performed on this server and none of the
provided data has been transferred outside of the security compliant infrastruc-
ture. The server runs Linux RedHat, has 8 Intel Xenon E5-2680 CPUs, clocked
at 2.7 GHz and has 64 GB RAM. In what follows we shall first discuss data
translation then the computation of HEDIS CDC using RDFox and finally the
reconciliation of the results.

5.1 Data Translation

Kaiser Permanente provided the data in several files listed in Table 1. A multi-
threaded Scala application translated the data into an RDF-graph. As discussed
in Sect. 3.2, the application produced many duplicate RDF-triples expanding
the number of triples by a factor of 5.5 from 293 M triples to 1.6 G triples. The
translation took 47 min and produced 8 GZip files amounting to 8.8 GB.

Table 1. Files provided by Kaiser Permanente regional branch in Georgia

Content Records Size Content Records Size RDF-graph

Providers 113 k 6.8MB Prescriptions 8.9M 892MB Total triples: 1.6G triples

Members 466 k 84MB Labs 28.3M 1.4GB Unique triples: 293M triples

Enrolment 3.3M 332MB Visits 54M 8.6GB Translation time: 45min (8 CPUs)

5.2 Computing HEDIS CDC

RDFox imported the 1.6 G RDF-triples in 11 min using 8 threads (Table 2, first
row), which, due to duplicate elimination, resulted in a store containing 293 M
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unique triples. RDFox’s importation process comprises reading, parsing, resolv-
ing the IRIs in an internal dictionary, eliminating duplicates and populating the
store and its index structures.

The Datalog encoding of the HEDIS CDC specification consists of 174 rules
of which approximately 65 % can be expressed in OWL 2 RL. Many of the OWL
2 RL expressible rules contain at most two body atoms whilst longer rules tend
to be not tree-shaped and are thus not OWL 2 RL expressible, as the examples
in Sect. 4 show.

The evaluation of larger rules, such as those for computing continuous enrol-
ments, incur a high work-load, which leads to unacceptable computation times
when applied to the whole RDF-graph. We therefore apply the full HEDIS Dat-
alog ontology on a much smaller subgraph, which we compute using Datalog
reasoning, and which contains all the data for the population of interest. To this
end, we first identify the patients defined in extract 1 by evaluating the relevant
rules on the full RDF-graph. These are simple rules, which RDFox can evaluate
efficiently. Next, we use rules to mark all relevant triples connected to the iden-
tified patients. Finally, using a SPARQL query, we load the marked triples into
a new store, on which we evaluate the full HEDIS Datalog ontology.

This strategy considerably reduces total computation time from 1 h 45 min to
30 min (sum of times in Table 2). Computing and extracting the subgraph on the
full RDF-graph takes 13 min (795 s) using all 8 CPUs (Table 2, second row). Just
before the subgraph extraction, the memory consumption peaks at 28 % at which
RDFox uses 53 Bytes per RDF-triple. In dropping the store that contains the full
RDF-graph, we release 18.1 GB of RAM. RDFox imports the subgraph in 32.4 s
and consumes 2.5 % of the available RAM (Table 2, third row). The subgraph
contains 14,000 patients of which almost all belong to the population of interest.
This effectively reduces the original RDF-graph from 293 M triples to 23.4 M
triples or to 8 % of its original size. Evaluating the full HEDIS Datalog ontology
on the subgraph as well as running the counting queries then takes 4.5 min (258 s)
on 8 CPUs (Fig. 2, fourth row). We could not properly compare our performance
to the vendor product’s performance. The vendor product not only computes
HEDIS CDC but all HEDIS measure sets in approximately 8 h. The vendor
product generally acts as black box and it is not possible to separate all different
stages of computation from outside. Loading and initialising the database takes
the vendor product 1 h. Then it executes a 4 h long pre-processing step which also
includes the computation of the expensive continuous enrolment. The following
stage contains an 18 min phase which can be associated with HEDIS CDC. Lastly
the computation times of the vendor product were achieved on the more powerful
licensed production server which has 16 CPUs but was not at our disposal.

5.3 Reconciliation of Results

For each category, we compared the membership numbers output by RDFox with
those output by the vendor solution, and we found differences. The results are
reported in Table 3. The row ‘RDFox’ reports the number of patients computed
by RDFox. ‘RDFox+’ reports the number of excess patients which were not
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Table 2. Computing HEDIS CDC with RDFox

Patients RDF-triples RAM % of 64G B Time

Import 466 k 1.6 G (293 M) 17.8 GB 28 % 661 s

Extract 1 and extraction 466 k 367 M 18.1 GB 28 % 795 s

Import subgraph 14 k 23.4 M 1.6 GB 2.5 % 32.4 s

CDC numerators/counting 14 k 32.0 M 1.6 GB 2.5 % 258 s

included in the results of the vendor solution. Analogously ‘Vendor+’ shows the
number of patients computed by the vendor that were not included in the RDFox
results. ‘CDC denominator’ reports the population of interest, whilst each other
category is a subset of the CDC denominator. The RDFox excess of 4 reported
for the CDC denominator propagates through all other categories. We therefore
indicate with the second summand for each category, how many of the excess
patient were contained in the excess of the CDC denominator.

All results that were computed by RDFox were approved by the HEDIS
data analyst. We shall shortly explain why discrepancies still remain. For each
derived triple, RDFox can provide a proof tree that shows the rule instances
and the RDF-triples in the RDF input graph which contributed to its deriva-
tion. Using these RDFox explanations and the information encoded in the IRIs
(see Sect. 3.2), we can easily look up the records in the raw data and find the
diagnosis codes in question. We can thus argue the correctness of RDFox’s devi-
ation directly. We showed, for instance, that RDFox’s CDC denominator excess
is actually correct and should also be output by the vendor solution. It is how-
ever much more difficult to argue why an excess in the Vendor product occurs.
The vendor product only gives hints as to why it counts a patient into a certain
category. For example it prints out the relevant visit date which is meant to help
looking up the triggering visit. However in the case of Nephrological Attention,
these visit dates of patients in the vendor excess could not be found in the raw
data and it was not possible to explain the origin of these dates. The lack of
explanations is a clear and typical short coming of traditional solutions.

Table 3. Computed numbers by RDFox and deviations

Results CDC
Denom

LDL-C BP Eye
exam

Neph
attent

HbA1c HbA1c <7%

Lab <100mg/dl <140/80 <140/90 Lab <8% >9% Denom Lab

RDFox 14402 13217 7952 8963 11442 5430 13204 13474 9465 3132 8939 3702

RDFox+ 0+4 0+3 0+2 3+3 0+4 0 2+3 0+3 0+3 0+1 1+3 0+2

Vendor+ 0 0 0 0 0 1692 230 0 0 0 13 5

Since the HbA1c <7 % denominator uses negative information, the roles were
reversed. We could show using RDFox explanations that all 13 patients in the
vendor product’s excess had an explicit exclusion and should not be counted.
This excess propagates into HbA1c <7 % Lab. The minor RDFox excess in BP
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140/80 could be traced to us interpreting a rule in a different way, which was
subsequently approved by the HEDIS help-desk. The large discrepancy in Eye
Exam was due to data that was not delivered by Georgia region.

6 Lessons Learnt

The project was very successful and we have learnt useful lessons in particular
with regards to encoding and representing the data. However, the project also
revealed some limitations of Semantic Technologies and suggested several ways
in which they could be adapted to better fit data analysis applications of this
kind.

Expressivity of the Ontology Language. The project revealed that OWL
2 alone is insufficient to compute the HEDIS measures. As we saw in Sect. 4.1,
non-treeshaped expressions are necessary to determine the diabetic population.
However, OWL 2, and consequently its tractable fragment OWL 2 RL, pro-
hibits such expressions in order to ensure decidability. Furthermore, OWL 2
supports neither stratified negation nor stratified aggregation. As witnessed in
Sects. 4.3 and 4.4 the absence of such constructs necessitates the introduction of
non-declarative workarounds that make the behaviour of the system as a whole
more difficult to understand. Finally, as we saw in Sect. 4.2, value manipula-
tion during reasoning is an important language feature for data analysis appli-
cations. Although unrestricted value manipulation endangers the termination,
non-recursive value manipulation preserves the termination guarantee and, and
as seen in this project, is sufficient to encode the HEDIS specification.

Use of RDF as Data Format. RDF restricts the user to triples which corre-
spond to unary and binary predicates. Hence rule bodies feature a large number
of atoms, as n-ary relations have to be reified. Within rules this amounts to a
named parameter perspective, since predicate names appear as constant in every
rule body atom. It is therefore helpful to have meaningful predicate names which
also indicate whether or not a triple is derived, as this makes rules legible and
comprehensible. We also applied naming conventions that indicate which class
of the data model an individual instantiates and from which data it originates.
Both allowed us to debug and judge the correctness of the HEDIS encoding much
faster. The resulting large number of joins that need to be performed in order to
evaluate rules with many body atoms is not prohibitive in practical applications
as RDF-triple stores are optimised for computing these large numbers of joins.

Due to the flexible schema of RDF, the data has a fully normalised represen-
tation. In particular, our data does not contain any null values and, for example
in the case of clinical visits allows a variable number of diagnosis per clinical
visit. The flexibility of RDF also helped us in the recapitulation stage of the
project, in which, as discussed in Sect. 3.2, it became apparent that the data
pertaining to a given clinical visit might be spread over multiple records in the
raw data. This led to the misclassification of certain patients. The solution was
simply to modify the assignment of IRIs to clinical visits in the data translation
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phase, which effectively merged database records referring to the same visit. Due
to the flexibility of RDF, we did not have to change the conceptual schema or
the way in which we compute the HEDIS measures.

The RIM modelling standard. Successful deployment of (semantic) technol-
ogy also requires addressing ‘soft’ issues such as user expectations and familiar-
ity. In this project it was crucial to win the support of the domain experts, who
are the future users. This can be achieved by exploiting modelling standards in
the respective field as we did with HL7 RIM. Following these conceptualisations
makes it easier to argue clarity and intuitiveness of Semantic Technologies which
are their major selling points.

We also used the RIM modelling standard to structure the types of clinical
processes that occur in our project, which allowed us to uniformly represent
healthcare data regardless of whether it describes visits, prescriptions or lab
results. Due to the uniformity, the data model could be more easily memorised
which facilitated rule authoring as it was not necessary to frequently refer to the
data model documentation

7 Conclusion

In this paper we described the project conducted in collaboration with Kaiser
Permanente to investigate the benefits of using Semantic Technologies in data
analysis. Using the RIM modelling standard, we developed a schema ontology
that mirrors how domain experts conceptualise business processes in health-
care, and we translated the raw data into an RDF-graph following this schema.
With this data model in hand we encoded in RDFox-Datalog the HEDIS CDC
specification which is renowned for its complexity. The declarative nature of
RDFox-Datalog allowed us to succinctly express HEDIS CDC in a rule ontology
which is close to the language of the specification. During the development of the
rule ontology RDF proved to be a flexible data format that keeps the vocabulary
explicit and thus confers its legibility to the rules.

The process of evaluating the rules on the patients and reconciling the results
exceeded our and the HEDIS data analyst’s expectations. The data of 466 000
patients fit easily into memory and the results were computed on modest resources
within 30 min using the highly efficient triple store RDFox. Due to RDFox’s good
scalability we are confident that we could significantly reduce this time on a
machine with more threads such as the vendor licensed production server.

The HEDIS data analyst noted that we had very few discrepancies from the
outset and appreciated the ease with which changes and amendments could be
done, not least because the data model and the rules provided comprehensible
context. The explanation facilities in RDFox allowed us to easily trace discrep-
ancies into the raw data. This reduced the number of development cycles of our
application and we even discovered problems with the vendor solution. All results
computed by our solution using RDFox were approved by the HEDIS analyst.

With this project we have successfully demonstrated the advantages of
Semantic Technologies over traditional solutions in the context of data analysis
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in healthcare, and we are planning a further project with Kaiser Permanente in
which the approach will be extended to all of HEDIS and all of their regions. The
project also shows a possible avenue for applications of Semantic Technologies in
encoding regulatory corpora in the field of data analysis in general, and demon-
strates that it has the potential to cut development and maintenance costs in
business settings.
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