
Towards Analytics Aware Ontology Based
Access to Static and Streaming Data

Evgeny Kharlamov1(B), Yannis Kotidis2, Theofilos Mailis3,
ChristianNeuenstadt4, Charalampos Nikolaou1, Özgür Özçep4,

Christoforos Svingos3, Dmitriy Zheleznyakov1, Sebastian Brandt5,
Ian Horrocks1, Yannis Ioannidis3, Steffen Lamparter5, and Ralf Möller4

1 University of Oxford, Oxford, UK
evgeny.kharlamov@cs.ox.ac.uk

2 Athens University of Economics and Business, Athens, Greece
3 University of Athens, Athens, Greece

4 University of Lübeck, Lübeck, Germany
5 Siemens Corporate Technology, Munich, Germany

Abstract. Real-time analytics that requires integration and aggrega-
tion of heterogeneous and distributed streaming and static data is a typ-
ical task in many industrial scenarios such as diagnostics of turbines in
Siemens. OBDA approach has a great potential to facilitate such tasks;
however, it has a number of limitations in dealing with analytics that
restrict its use in important industrial applications. Based on our experi-
ence with Siemens, we argue that in order to overcome those limitations
OBDA should be extended and become analytics, source, and cost aware.
In this work we propose such an extension. In particular, we propose an
ontology, mapping, and query language for OBDA, where aggregate and
other analytical functions are first class citizens. Moreover, we develop
query optimisation techniques that allow to efficiently process analytical
tasks over static and streaming data. We implement our approach in a
system and evaluate our system with Siemens turbine data.

1 Introduction

Ontology Based Data Access (OBDA) [9] is an approach to access information
stored in multiple datasources via an abstraction layer that mediates between
the datasources and data consumers. This layer uses an ontology to provide a
uniform conceptual schema that describes the problem domain of the underlying
data independently of how and where the data is stored, and declarative map-
pings to specify how the ontology is related to the data by relating elements of
the ontology to queries over datasources. The ontology and mappings are used
to transform queries over ontologies, i.e., ontological queries, into data queries
over datasources. As well as abstracting away from details of data storage and

This work was partially funded by the EU project Optique (FP7-ICT-318338) and
the EPSRC projects MaSI3, DBOnto, and ED3.

c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part II, LNCS 9982, pp. 344–362, 2016.
DOI: 10.1007/978-3-319-46547-0 31

Towards Analytics Aware Ontology Based Access 345

access, the ontology and mappings provide a declarative, modular and query-
independent specification of both the conceptual model and its relationship to
the data sources; this simplifies development and maintenance and allows for
easy integration with existing data management infrastructure.

A number of systems that at least partially implement OBDA have been
recently developed; they include D2RQ [7], Mastro [10], morph-RDB [38],
Ontop [39], OntoQF [33], Ultrawrap [41], Virtuoso1, and others [8,17]. Some
of them were successfully used in various applications including cultural her-
itage [13], governmental organisations [15], and industry [20,21]. Despite their
success, OBDA systems, however, are not tailored towards analytical tasks that
are naturally based on data aggregation and correlation. Moreover, they offer
a limited or no support for queries that combine streaming and static data. A
typical scenario that requires both analytics and access to static and streaming
data is diagnostics and monitoring of turbines in Siemens.

Siemens has several service centres dedicated to diagnostics of thousands of
power-generation appliances located across the globe [21]. One typical task of
such a centre is to detect in real-time potential faults of a turbine caused by, e.g.,
an undesirable pattern in temperature’s behaviour within various components
of the turbine. Consider a (simplified) example of such a task:

In a given turbine report all temperature sensors that are reliable, i.e., with
the average score of validation tests at least 90%, and whose measurements
within the last 10min were similar, i.e., Pearson correlated by at least
0.75, to measurements reported last year by a reference sensor that had
been functioning in a critical mode.

This task requires to extract, aggregate, and correlate static data about the
turbine’s structure, streaming data produced by up to 2,000 sensors installed in
different parts of the turbine, and historical operational data of the reference sen-
sor stored in multiple datasources. Accomplishing such a task currently requires
to pose a collection of hundreds of queries, the majority of which are semanti-
cally the same (they ask about temperature), but syntactically differ (they are
over different schemata). Formulating and executing so many queries and then
assembling the computed answers take up to 80 % of the overall diagnostic time
that Siemens engineers typically have to spend [21]. The use of ODBA, however,
would allow to save a lot of this time since ontologies can help to ‘hide’ the
technical details of how the data is produced, represented, and stored in data
sources, and to show only what this data is about. Thus, one would be able to
formulate this diagnostic task using only one ontological query instead of a col-
lection of hundreds data queries that today have to be written or configured by
IT specialists. Clearly, this collection of queries does not disappear: the OBDA
query transformation will automatically compute them from the the high-level
ontological query using the ontology and mappings.

Siemens analytical tasks as the one in the example scenario typically make
heavy use of aggregation and correlation functions as well as arithmetic operations.

1 http://virtuoso.openlinksw.com/.

http://virtuoso.openlinksw.com/

346 E. Kharlamov et al.

In our running example, the aggregation function min and the comparison opera-
tor ≥ are used to specify what makes a sensor reliable and to define a threshold
for similarity. Performing such operations only in ontological queries, or only in
data queries specified in the mappings is not satisfactory. In the case of ontological
queries, all relevant values should be retrieved prior to performing grouping and
arithmetic operations. This can be highly inefficient, as it fails to exploit source
capabilities (e.g., access topre-computedaverages), andvalue retrievalmaybe slow
and/or costly, e.g., when relevant values are stored remotely. Moreover, it adds to
the complexity of application queries, and thus limits the benefits of the abstraction
layer. In the case of source queries, aggregation functions and comparison opera-
tors may be used in mapping queries. This is brittle and inflexible, as values such as
90 % and 0.75, which are used to define ‘reliable sensor’ and ‘similarity’, cannot be
specified in the ontological query, but must be ‘hard-wired’ in the mappings, unless
an appropriate extension to the query language or the ontology are developed. In
order to address these issues, OBDA should become

analytics-aware by supporting declarative representations of basic analyt-
ics operations and using these to efficiently answer higher level queries.

In practice this requires enhancing OBDA technology with ontologies, mappings,
and query languages capable of capturing operations used in analytics, but also
extensive modification of OBDA query preprocessing components, i.e., reasoning
and query transformation, to support these enhanced languages.

Moreover, analytical tasks as in the example scenario should typically be
executed continuously in data intensive and highly distributed environments of
streaming and static data. Efficiency of such execution requires non-trivial query
optimisation. However, optimisations in existing OBDA systems are usually lim-
ited to minimisation of the textual size of the generated queries, e.g. [40], with
little support for distributed query processing, and no support for optimisation
for continuous queries over sequences of numerical data and, in particular, com-
putation of data correlation and aggregation across static and streaming data.
In order to address these issues, OBDA should become

source and cost aware by supporting both static and streaming data
sources and offering a robust query planning component and indexing that
can estimate the cost of different plans, and use such estimates to produce
low-cost plans.

Note that the existence of materialised and pre-computed subqueries relevant to
analytics within sources and archived historical data that should be correlated
with current streaming data implies that there is a range of query plans which
can differ dramatically with respect to data transfer and query execution time.

In this paper we make the first step to extend OBDA systems towards becom-
ing analytics, source, and cost aware and thus meeting Siemens requirements for
turbine diagnostics tasks. In particular, our contributions are the following:

– We proposed analytics-aware OBDA components, i.e., (i) ontology language
DL-LiteaggA that extends DL-LiteA with aggregate functions as first class

Towards Analytics Aware Ontology Based Access 347

citizens,(ii) query language STARQL over ontologies that combine streaming
and static data, and (iii) a mapping language relating DL-LiteaggA vocabulary
and STARQL constructs with relational queries over static and streaming
data.

– We developed efficient query transformation techniques that allow to turn
STARQL queries over DL-LiteaggA ontologies, into data queries using our
mappings.

– We developed source and cost aware (i) optimisation techniques for process-
ing complex analytics on both static and streaming data, including adaptive
indexing schemes and pre-computation of frequent aggregates on user queries,
and (ii) elastic infrastructure that automatically distributes analytical com-
putations and data over a computational cloud for fastest query execution.

– We implemented (i) a highly optimised engine ExaStream capable of han-
dling complex streaming and static queries in real time, (ii) a dedicated
STARQL2SQL⊕ translator that transforms STARQL queries into queries
over static and streaming data, (iii) an integrated OBDA system that relies
on our and third party components.

– We conducted a performance evaluation of our OBDA system with large scale
Siemens simulated data using analytical tasks.

Due to space limitations we could not include all the relevant material in this
paper and refer the reader to its online extended version for further details [26].

2 Analytics Aware OBDA for Static and Streaming Data

In this section we first introduce our analytics-aware ontology language
DL-LiteaggA (Sect. 2.1) for capturing static aspects of the domain of interest.
In DL-LiteaggA ontologies, aggregate functions are treated as first class citizens.
Then, in Sect. 2.2 we will introduce a query language STARQL that allows
to combine static conjunctive queries over DL-LiteaggA with continuous diagnos-
tic queries that involve simple combinations of time aware data attributes, time
windows, and functions, e.g., correlations over streams of attribute values. Using
STARQL queries one can retrieve entities, e.g., sensors, that pass two ‘filters’:
static and continuous. In our running example a static ‘filter’ checks whether a
sensor is reliable, while a continuous ‘filter’ checks whether the measurements
of the sensor are Pearson correlated with the measurements of reference sensor.
In Sect. 2.3 we will explain how to translate STARQL queries into data queries
by mapping DL-LiteaggA concepts, properties, and attributes occurring in queries
to database schemata and by mapping functions and constructs of STARQL
continuous ‘filters’ into corresponding functions and constructs over databases.
Finally, in Sect. 2.4 we discuss how to optimise resulting data queries.

2.1 Ontology Language

Our ontology language, DL-LiteaggA , is an extension of DL-LiteA [9] with con-
cepts that are based on aggregation of attribute values. The semantics for

348 E. Kharlamov et al.

such concepts adapts the closed-world semantics [32]. The main reason why
we rely on this semantics is to avoid the problem of empty answers for aggregate
queries under the certain answers semantics [11,30]. In DL-LiteaggA we distin-
guish between individuals and data values from countable sets Δ and D that
intuitively correspond to the datatypes of RDF. We also distinguish between
atomic roles P that denote binary relations between pairs of individuals, and
attributes F that denote binary relations between individuals and data values.
For simplicity of presentation we assume that D is the set of rational numbers.
Let agg be an aggregate function, e.g., min, max, count, countd, sum, or avg, and
let ◦ be a comparison predicate on rational numbers, e.g., ≥,≤, <,>,=, or �=.

DL-Liteagg
A Syntax. The grammar for concepts and roles in DL-LiteaggA is as

follows:

B → A | ∃R, C → B | ∃F, E → ◦r(agg F), R → P | P−,

where F , P , agg, and ◦ are as above, r is a rational number, A, B, C and E are
atomic, basic, extended and aggregate concepts, respectively, and R is a basic
role.

A DL-LiteaggA ontology O is a finite set of axioms. We consider two types of
axioms: aggregate axioms of the form E � B and regular axioms that take one
of the following forms: (i) inclusions of the form C � B, R1 � R2, and F1 � F2,
(ii) functionality axioms (funct R) and (funct F), (iii) or denials of the form
B1 	 B2 � ⊥, R1 	 R2 � ⊥, and F1 	 F2 � ⊥. As in DL-LiteA, a DL-LiteaggA
dataset D is a finite set of assertions of the form: A(a), R(a, b), and F (a, v).

We require that if (funct R) (resp., (funct F)) is in O, then R′ � R (resp.,
F ′ � F) is not in O for any R′ (resp., F ′). This syntactic condition, as well as
the fact that we do not allow concepts of the form ∃F and aggregate concepts to
appear on the right-hand side of inclusions ensure good computational properties
of DL-LiteaggA . The former is inherited from DL-LiteA, while the latter can be
shown using techniques of [32].

Consider the ontology capturing the reliability of sensors as in our running
example:

precisionScore � testScore, ≥0.9 (min testScore) � Reliable, (1)

where Reliable is a concept, precisionScore and testScore are attributes, and
finally ≥0.9 (min testScore) is an aggregate concept that captures individuals
with one or more testScore values whose minimum is at least 0.9.

DL-Liteagg
A Semantics. We define the semantics of DL-LiteaggA in terms of first-

order interpretations over the union of the countable domains Δ and D. We
assume the unique name assumption and that constants are interpreted as them-
selves, i.e., aI = a for each constant a; moreover, interpretations of regular
concepts, roles, and attributes are defined as usual (see [9] for details) and for
aggregate concepts as follows:

(◦r(agg F))I = {a ∈ Δ | agg{|v ∈ D | (a, v) ∈ F I |} ◦ r}.

Towards Analytics Aware Ontology Based Access 349

Here {|·|} denotes a multi-set. Similarly to [32], we say that an interpretation I is a
model of O∪D if two conditions hold: (i) I |= O∪D, i.e., I is a first-order model
of O∪D and (ii) F I = {(a, v) | F (a, v) is in the deductive closure of D with O}
for each attribute F . Here, by deductive closure of D with O we assume a dataset
that can be obtained from D using the chasing procedure with O, as described
in [9]. One can show that for DL-LiteaggA satisfiability of O ∪ D can be checked
in time polynomial in |O ∪ D|.

As an example consider a dataset consisting of assertions: precisionScore
(s1, 0.9), testScore(s2, 0.95), and testScore(s3, 0.5). Then, for every model
I of these assertions and the axioms in Eq. (1), it holds that (≥0.9

(min precisionScore))I = {s1}, (≥0.9 (min testScore))I = {s1, s2}, and thus
{s1, s2} ⊆ ReliableI .

Query Answering. Let Q be the class of conjunctive queries over concepts,
roles, and attributes, i.e., each query q ∈ Q is an expression of the form:
q(�x) :- conj(�x), where q is of arity k, conj is a conjunction of atoms A(u), E(v),
R(w, z), or F (w, z), and u, v, w, z are from �x. Following the standard approach
for ontologies, we adapt certain answers semantics for query answering:

cert(q,O,D) = {�t ∈ (Δ ∪ D)k | I |= conj(�t) for each model I of O ∪ D}.

Continuing with our example, consider the query: q(x) :- Reliable(x) that asks
for reliable sensors. The set of certain answers cert(q,O,D) for this q over the
example ontology and dataset is {s1, s2}.

We note that by relying on Theorem 1 of [32] and the fact that each aggregate
concept behaves like a DL-Lite closed predicate of [32], one can show that con-
junctive query answering in DL-LiteaggA is tractable, assuming that computation
of aggregate functions can be done in time polynomial in the size of the data (see
more details in [26]). We also note that our aggregate concepts can be encoded
as aggregate queries over attributes as soon as the latter are interpreted under
the closed-world semantics. We argue, however, that in a number of applications,
such as monitoring and diagnostics at Siemens [21], explicit aggregate concepts
of DL-LiteaggA give us significant modelling and query formulation advantages
(see more details in [26]).

2.2 Query Language

STARQL is a query language over ontologies that allows to query both stream-
ing and static data and supports not only standard aggregates such as count,
avg, etc. but also more advanced aggregation functions from our backend system
such as Pearson correlation. In this section we illustrate on our running example
the main language constructs and semantics of STARQL (see [26,35] for more
details on syntax and semantics of STARQL).

Each STARQL query takes as input a static DL-LiteaggA ontology and dataset
as well as a set of live and historic streams. The output of the query is a stream
of timestamped data assertions about objects that occur in the static input data

350 E. Kharlamov et al.

and satisfy two kinds of filters: (i) a conjunctive query over the input static ontol-
ogy and data and (ii) a diagnostic query over the input streaming data—which
can be live and archived (i.e., static)— that may involve typical mathematical,
statistical, and event pattern features needed in real-time diagnostic scenarios.
The syntax of STARQL is inspired by the W3C standardised SPARQL query
language; it also allows for nesting of queries. Moreover, STARQL has a formal
semantics that combines open and closed-world reasoning and extends snapshot
semantics for window operators [3] with sequencing semantics that can handle
integrity constraints such as functionality assertions.

In Fig. 1 we present a STARQL query that captures the diagnostic task from
our running example and uses concepts, roles, and attributes from our Siemens
ontology [19,21–25,28] and Eq. (1). The query has three parts: declaration of the
output stream (Lines 5 and 6), sub-query over the static data (Lines 8 and 9)
that in the running example corresponds to ‘return all temperature sensors that
are reliable, i.e., with the average score of validation tests at least 90% ’ and
sub-query over the streaming data (Lines 11–17) that in the running example
corresponds to ‘whose measurements within the last 10 min Pearson correlate by
at least 0.75 to measurements reported by a reference sensor last year ’. Moreover,
in Line 1 there is declarations of the namespace that is used in the sub-queries,
i.e., the URI of the Siemens ontology, and in Line 3 there is a declaration of the
pulse of the streaming sub-query.

Fig. 1. Running example query expressed in STARQL

Regarding the semantics of STARQL, it combines open and closed-world rea-
soning and extends snapshot semantics for window operators [3] with sequencing
semantics that can handle integrity constraints such as functionality assertions.
In particular, the window operator in combination with the sequencing operator
provides a sequence of datasets on which temporal (state-based) reasoning can
be applied. Every temporal dataset frequently produced by the window operator
is converted to a sequence of (pure) datasets. The sequence strategy determines

Towards Analytics Aware Ontology Based Access 351

how the timestamped assertions are sequenced into datasets. In the case of the
presented example in Fig. 1, the chosen sequencing method is standard sequenc-
ing assertions with the same timestamp are grouped into the same dataset. So, at
every time point, one has a sequence of datasets on which temporal (state-based)
reasoning can be applied. This is realised in STARQL by a sorted first-order logic
template in which state stamped graph patterns are embedded. For evaluation of
the time sequence, the graph patterns of the static WHERE clause are mixed into
each state to join static and streamed data. Note that STARQL uses semantics
with a real temporal dimension, where time is treated in a non-reified manner
as an additional ontological dimension and not as ordinary attribute as, e.g., in
SPARQLStream [8].

2.3 Mapping Language and Query Transformation

In this section we present how ontological STARQL queries, Qstarql, are trans-
formed into semantically equivalent continuous queries, Qsql⊕ , in the language
SQL⊕. The latter language is an expressive extension of SQL with the appropri-
ate operators for registering continuous queries against streams and updatable
relations. The language’s operators for handling temporal and streaming infor-
mation are presented in Sect. 3.

As schematically illustrated in Eq. (2) below, during the transformation
process the static conjunctive QStatCQ and streaming QStream parts of Qstarql,
are first independently rewritten using the ‘rewrite’ procedure that relies on the
input ontology O into the union of static conjunctive queries Q′

StatUCQ and a
new streaming query Q′

Stream, and then unfolded using the ‘unfold’ procedure
that relies on the input mappings M into an aggregate SQL query Q′′

AggSQL and
a streaming SQL⊕ query Q′′

Stream that together give an SQL⊕ query Qsql⊕ , i.e.,
Qsql⊕ = unfold(rewrite(Qstarql)):

Qstarql ≈ QStatCQ ∧ QStream
rewrite−−−−→

O
Q′

StatUCQ ∧ Q′
Stream

unfold−−−→
M

Q′′
AggSQL ∧ Q′′

Stream ≈ Qsql⊕ . (2)

In this process we use the rewriting procedure of [9], while the unfolding relies
on mappings of three kinds: (i) classical : from concepts, roles, and attributes to
SQL queries over relational schemas of static, streaming, or historical data, (ii)
aggregate: from aggregate concepts to aggregate SQL queries over static data,
and (iii) streaming : from the constructs of the streaming queries of STARQL
into SQL⊕ queries over streaming and historical data. Our mapping language
extends the one presented in [9] for the classical OBDA setting that allows only
for the classical mappings.

We now illustrate our mappings as well as the whole query transformation
procedure.

352 E. Kharlamov et al.

Transformation of Static Queries. We first show the transformation of the
example static query that asks for reliable sensors. The rewriting of this query
with the example ontology axioms from Eq. (1) is the following query:

rewrite(Reliable(x)) = Reliable(x) ∨ (≥0.9 (min testScore))(x).

In order to unfold ‘rewrite(Reliable(x))’ we need both classical and aggregate
mappings. Consider four classical mappings: one for the concept ‘Reliable’ and
three for the attributes ‘testScore’ and ‘precisionScore’, where sqli are some SQL
queries:

Reliable(x) ← sql1(x), testScore(x, y) ← sql3(x, y),
precisionScore(x, y) ← sql2(x, y), testScore(x, y) ← sql4(x, y).

We define an aggregate mapping for a concept E = ◦r(agg F) as E(x) ←
sqlE(x), where sqlE(x) is an SQL query defined as

sqlE(x) = SELECT x FROM SQLF (x, y) GROUP BY x HAVING agg(y) ◦ r
(3)

where SQLF (x, y) = unfold(rewrite(F (x, y))), i.e., the SQL query obtained as the
rewriting and unfolding of the attribute F . Thus, a mapping for our example
aggregate concept E = (≥0.9 (min testScore)) is

sqlE(x) = SELECT x FROM SQLtestScore(x, y) GROUP BY x HAVING min(y) ≥ 0.9

where SQLtestScore(x, y) = sql2(x, y) UNION sql3(x, y) UNION sql4(x, y).
Finally, we obtain

unfold(rewrite(Reliable(x))) = sql1(x) UNION sqlE(x).

Note that one can encode DL-LiteaggA aggregate concepts as standard
DL-LiteA concepts using mappings. We argue, however, that such an approach
has practical disadvantages compared to ours as it would require to create a map-
ping for each aggregate concept that can be potentially used, thus overloading
the system (see more details in [26]).

Transformation of Streaming Queries. The streaming part of a STARQL
query may involve static concepts and roles such as Rotor and testRotor that are
mapped into static data, and dynamic ones such as hasValue that are mapped
into streaming data. Mappings for the static ontological vocabulary are classical
and discussed above. Mappings for the dynamic vocabulary are composed from
the mappings for attributes and the mapping schemata for STARQL query
clauses and constructs. The mapping schemata rely on user defined functions
of SQL⊕ and involve windows and sequencing parameters specified in a given
STARQL query which make them dependent on time-based relations and tem-
poral states. Note that the latter kind of mappings is not supported by traditional
OBDA systems.

Towards Analytics Aware Ontology Based Access 353

For instance, a mapping schema for the ‘GRAPH i’ STARQL construct (see
Line 16, Fig. 1) can be defined based on the following classical mapping that
relates a dynamic attribute ex :hasVal to the table Msmt about measurements
that among others has attributes sid and sval for storing sensor IDs and mea-
surement values:

ex :hasVal(Msmt .sid ,Msmt .sval) ← SELECT Msmt .sid ,Msmt .sval FROM Msmt .

The actual mapping schema for ‘GRAPH i’ extends this mapping as following:

GRAPH i {?sensor ex :hasVal ?y} ← SELECT sid as ?sensor , sval as ?y

FROM Slice(Msmt , i, r, sl , st),

where the left part of the schema contains an indexed graph triple pattern and
the right part extends the mapping for ex :hasVal by applying a function Slice
that describes the relevant finite slice of the stream Msmt from which the triples
in the ith RDF graph in the sequence are produced and uses the parameters such
as the window range r, the slide sl, the sequencing strategy st and the index i.
(See [34] for further details.)

2.4 Query Optimisation

Since a STARQL query consists of analytical static and streaming parts, the
result of its transformation by the rewrite and unfold procedures is an analytical
data query that also consists of two parts and accesses information from both
live streams and static data sources. A special form of static data are archived-
streams that, though static in nature, accommodate temporal information that
represents the evolution of a stream in time. Therefore, our analytical opera-
tions can be classified as: (i) live-stream operations that refer to analytical tasks
involving exclusively live streams; (ii) static-data operations that refer to ana-
lytical tasks involving exclusively static information; (iii) hybrid operations that
refer to analytical tasks involving live-streams and static data that usually orig-
inate from archived stream measurements. For static-data operations we rely
on standard database optimisation techniques for aggregate functions. For live-
stream and hybrid operations we developed a number of optimisation techniques
and execution strategies.

A straightforward evaluation strategy on complex continuous queries con-
taining static-data operations is for the query planner to compute the static
analytical tasks ahead of the live-stream operations. The result on the static-
data analysis will subsequently be used as a filter on the remaining streaming
part of the query.

We will now discuss, using an example, the Materialised Window Signa-
tures technique for hybrid operations. Consider the relational schema depicted
in Fig. 2 which is adopted for storing archived streams and performing hybrid
operations on them. The relational table Measurements represents the archived
part of the stream and stores the temporal identifier (Time) of each measurement

354 E. Kharlamov et al.

Windows
Wid Window_Start Window_EndMWS_Avg

2016-02-08, 15:00:00 2016-02-08, 15:01:00

2016-02-08, 15:02:00 2016-02-08, 15:03:00

Measurements
Time Measurment

2016-02-08, 15:00:00

2016-02-08, 15:01:00

2016-02-08, 15:02:00

2016-02-08, 15:03:00

Fig. 2. Schema for storing archived streams and MWSs

and the actual values (attribute Measurement). The relational table Windows
identifies the windows that have appeared up till now based on the existing
window-mechanism. It contains a unique identifier for each window (Wid) and
the attributes that determine its starting and ending points (Window Start,
Window End). The necessary indices that will facilitate the complex analytic com-
putations are materialised. The depicted schema is flexible to query changes since
it separates the windowing mechanism —which is query dependent— from the
actual measurements.

In order to accelerate analytical tasks that include hybrid operations over
archived streams, we facilitate precomputation of frequently requested aggre-
gates on each archived window. We name these precomputed summarisations
as Materialised Window Signatures (MWSs). These MWSs are calculated when
past windows are stored in the backend and are later utilised while performing
complex calculations between these windows and a live stream. The summari-
sation values are determined by the analytics under consideration. E.g., for the
computation of the Pearson correlation, we precompute the average value and
standard deviation on each archived window measurements; for the cosine simi-
larity, we precompute the Euclidean norm of each archived window; for finding
the absolute difference between the average values of the current and the archived
windows, we precompute the average value, etc.

The selected MWSs are stored in the Windows relation with the use of addi-
tional columns. In Fig. 2 we see the MWS summary for the avg aggregate func-
tion being included in the relation as an attribute termed MWS Avg. The applica-
tion can easily modify the schema of this relation in order to add or drop MWSs,
depending on the analytical workload.

When performing hybrid operations between the current and archived win-
dows, some analytic operations can be directly computed based on their MWS
values with no need to access the actual archived measurements. This provides
significant benefits as it removes the need to perform a costly join operation
between the live stream and the, potentially very large, Measurements relation.
On the opposite, for calculations such as the Pearson correlation coefficient and
the cosine similarity measures, we need to perform calculations that require the
archived measurements as well, e.g., for computing cross-correlations or inner-
products. Nevertheless, the MWS approach allows us to avoid recomputing some
of the information on each archived window such as its avg value and deviation
for the Pearson correlation coefficient, and the Euclidean norm of each archived
window for the cosine similarity measure. Moreover, in case when there is a

Towards Analytics Aware Ontology Based Access 355

selective additional filter on the query (such as the avg value exceeds a thresh-
old), by creating an index on the MWS attributes, we can often exclude large
portions of the archived measurements from consideration, by taking advantage
of the underlying index.

3 Implementation

In this section we discuss our system that implements the OBDA extensions pro-
posed in Sect. 2. In Fig. 3 (Left), we present a general architecture of our system.
On the application level one can formulate STARQL queries over analytics-
aware ontologies and pass them to the query compilation module that performs
query rewriting, unfolding, and optimisation. Query compilation components
can access relevant information in the ontology for query rewriting, mappings
for query unfolding, and source specifications for optimisation of data queries.
Compiled data queries are sent to a query execution layer that performs dis-
tributed query evaluation over streaming and static data, post-processes query
answers, and sends them back to applications. In the following we will discuss two
main components of the system, namely, our dedicated STARQL2SQL⊕ trans-
lator that turns STARQL queries to SQL⊕ queries, and our native data-stream
management system ExaStream that is in charge of data query optimisation
and distributed query evaluation.

Application

Transformer for
Answers Query Rewriting

Component

Query Unfolding
Component

Access and Cost
Optimiser

Backend Optimisation and Execution Layer

Analytics-aware
Ontology

Mappings (classical,
aggregate, streaming

Source Specs (cost,
access restrictions,

constraints

application-level answers application-level queries

data
answers

query
answers

optimised
queries

optimised
queries

query
answers

Q
ue

ry
 C

om
pi

la
tio

n

rewritten queries

unfolded queries

optimised middleware plan

Gateway

Execution
Engine

Resource
Manager

Parser

Registry Scheduler

Master

Worker Worker Worker

Compute
Cloud

streaming datastatic data

Storage
Cloud

Fig. 3. (Left) General architecture. (Right) Distributed stream engine of ExaStream

STARQL to SQL⊕ Translator. Our translator consists of several modules for
transformation of various query components and we now give some highlights on
how it works. The translator starts by turning the window operator of the input
STARQL query and this results in a slidingWindowView on the backend system
that consists of columns for defining windowID (as in Fig. 2) and dataGraphID

356 E. Kharlamov et al.

based on the incoming data tuples. Our underlying data-stream management
system ExaStream already provides user defined functions (UDFs) that auto-
matically create the desired streaming views, e.g., the timeSlidingWindow func-
tion as discussed below in the ExaStream part of the section.

The second important transformation step that we implemented is the trans-
formation of the STARQL HAVING clause. In particular, we normalise the HAVING
clause into a relational algebra normal form (RANF) and apply the described
slicing technique illustrated in Sect. 2.3, where we unfold each state of the tempo-
ral sequence into slices of the slidingWindowView. For the rewriting and unfold-
ing of each slice, we make use of available tools using the OBDA paradigm in
the static case, i.e., the Ontop framework [39]. After unfolding, we join all states
together based on their temporal relations given in the HAVING sequence.

ExaStream Data-Stream Management System. Data queries produced by
the STARQL2SQL⊕ translation, are handled by ExaStream which is embed-
ded in Exareme, a system for elastic large-scale dataflow processing in the
cloud [29,42].

ExaStream is built as a streaming extension of the SQLite database engine,
taking advantage of existing Database Management technologies and optimisa-
tions. It provides the declarative language SQL⊕ for querying data streams and
relations. SQL⊕ extends SQL with UDF s that incorporate the algorithmic logic
for transforming SQLite into a Data Stream Management Systems (DSMS). E.g.,
the timeSlidingWindow operator groups tuples from the same time window and
associates them with a unique window id. In contrast to other DSMS s, the user
does not need to consider low-level details of query execution. Instead, the sys-
tem’s query planner is responsible for choosing an optimal plan depending on the
query, the available stream/static data sources, and the execution environment.

ExaStream system exploits parallelism in order to accelerate the process of
analytical tasks over thousands of stream and static sources. It manages an elas-
tic cloud infrastructure and dynamically distributes queries and data (including
both streams and static tables) to multiple worker nodes that process them in
parallel. The architecture of ExaStream’s distributed stream engine is pre-
sented in Fig. 3 (Right). One can see that queries are registered through the
Asynchronous Gateway Server. Each registered query passes through the ExaS-
tream parser and then is fed to the Scheduler module. The Scheduler places the
stream and relational operators on worker nodes based on the node’s load. These
operators are executed by a Stream Engine instance running on each node.

4 Evaluation

The aim of our evaluation is to study how the MWS technique and query dis-
tribution to multiple workers accelerate the overall execution time of analytic
queries that correlate a live stream with multiple archived stream records.

Towards Analytics Aware Ontology Based Access 357

Evaluation Setting. We deployed our system to the Okeanos Cloud Infrastruc-
ture2. and used up to 16 virtual machines (VMs) each having a 2.66 GHz proces-
sor with 4 GB of main memory. We used streaming and static data that con-
tains measurements produced by 100, 000 thermocouple sensors installed in 950
Siemens power generating turbines. For our experiments, we used three test
queries calculating the similarity between the current live stream window and
100,000 archived ones. In each of the test queries we fixed the window size to 1 h
which corresponds to 60 tuples of measurements per window. The first query is
based on the one from our running example (see Fig. 1) which we modified so
that it can correlate a live stream with a varying number of archived streams.
Recall that this query evaluates window measurements similarity based on the
Pearson correlation. The other two queries are variations of the first one where,
instead of the Pearson correlation, they compute similarity based on either the
average or the minimum values within a window. We defined such similarities
between vectors (of measurements) �w and �v as follows: |avg(�w)−avg(�v)| < 10◦C
and |min(�w) − min(�v)| < 10◦C. The archived streams windows are stored in the
Measurements relation, against which the current stream is compared.

MWS Optimisation. This set of experiments is devised to show how the MWS
optimisation affects the query’s response time. We executed each of the three
test queries on a single VM-worker with and without the MWS optimisation.
In Fig. 4 (Left) we present the results of our experiments. The reported time is
the average of 15 consecutive live-stream execution cycles. The horizontal axis
displays the three test queries with and without the MWS optimisation, while
the vertical axis measures the time it takes to process 1 live-stream window
against all the archived ones. This time is divided to the time it takes to join
the live stream and the Measurements relation and the time it takes to perform
the actual computations. Observe that the MWS optimisation reduces the time
for the Pearson query by 8.18 %. This is attributed to the fact that some com-
putations (such as the avg and standard deviation values) are already available
in the Windows relation and are, thus, omitted. Nevertheless, the join operation
between the live stream and the very large Measurements relation that takes
69.58 % of the overall query execution time can not be avoided. For the other
two queries, we not only reduce the CPU overhead of the query, but the opti-
miser further prunes this join from the query plan as it is no longer necessary.
Thus, for these queries, the benefits of the MWS technique are substantial.

Intra-query Parallelism. Since the MWS optimisation substantially acceler-
ates query execution for the two test queries that rely on average and minimum
similarities, query distribution would not offer extra benefit, and thus these
queries were not used in the second experiment. For complex analytics such as
the Pearson correlation that necessitates access to the archived windows, the
ExaStream backend permits us to accelerate queries by distributing the load

2 https://okeanos.grnet.gr/home/.

https://okeanos.grnet.gr/home/

358 E. Kharlamov et al.

0

20

40

60

80

100

120

140

160
Ti

m
e

(s
ec

)

Pearson
Corr.

Pearson
Corr. +
MSW

Avg. Avg. +
MSW

Min. Min. +
MSW

Type of similarity (+ MSW)

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

ec
)

Number of VM-workers

5 10 15 20

Aggregate

Join

Pearson
Correlation

Fig. 4. (Left) Effect of MWS optimisation (Right) Effect of intra-query parallelism

among multiple worker nodes. In the second experiment we use the same set-
ting as before for the Pearson computation without the MWS technique, but we
vary this time the number of available workers from 1 to 16. In Fig. 4 (Right),
one can observe a significant decrease in the overall query execution time as the
number of VM-workers increases. ExaStream distributes the Measurements
relation between different worker nodes. Each node computes the Pearson coef-
ficient between its subset of archived measurements and the live stream. As the
number of archived windows is much greater than the number of available work-
ers, intra-query parallelism results is significant decrease to the time required to
perform the join operation.

To conclude this section, we note that MWSs gave us significant improve-
ments of query execution time for all test queries and parallelism would be essen-
tial in the cases where MWSs do not help in avoiding the high cost of query joins
since it allows to run the join computation in parallel. Due to space limitations,
we do not include an experiment examining the query execution times w.r.t. the
number of archived windows. Nevertheless, based on our observations, scaling
up the number of archived windows by a factor of n has about the same effect
as scaling down the number of workers by 1/n .

5 Related Work

OBDA System. Our proposed approach extends existing OBDA systems since
they either assume that data is in (static) relational DBs, e.g [15,39], or stream-
ing, e.g., [8,17], but not of both kinds. Moreover, we are different from existing
solutions for unified processing of streaming and static semantic data e.g. [36],
since they assume that data is natively in RDF while we assume that the data
is relational and mapped to RDF.

Ontology Language. The semantic similarities of DL-LiteaggA to other works have
been covered in Sect. 2. Syntactically, the aggregate concepts of DL-LiteaggA
have counterpart concepts, named local range restrictions (denoted by ∀F.T)

Towards Analytics Aware Ontology Based Access 359

in DL-LiteA [4]. However, for purposes of rewritability, these concepts are
not allowed on the left-hand side of inclusion axioms as we have done for
DL-LiteaggA , but only in a very restrictive semantic/syntactic way. The semantics
of DL-LiteaggA for aggregate concepts is very similar to the epistemic semantics
proposed in [11] for evaluating conjunctive queries involving aggregate functions.
A different semantics based on minimality has been considered in [30]. Concepts
based on aggregates functions were considered in [5] for languages ALC and EL
with concrete domains, but they did not study the problem of query answering.

Query Language. While already several approaches for RDF stream reason-
ing engines do exist, e.g., CSPARQL [6], RSP-QL [1] or CQELS [37], only one
of them supports an ontology based data access approach, namely SPARQL-
stream [8]. In comparison to this approach, which also uses a native inclusion
of aggregation functions, STARQL offers more advanced user defined functions
from the backend system like Pearson correlation.

Data Stream Management System. One of the leading edges in database man-
agement systems is to extend the relational model to support for continuous
queries based on declarative languages analogous to SQL. Following this app-
roach, systems such as TelegraphCQ [14], STREAM [2], and Aurora [16] take
advantage of existing Database Management technologies, optimisations, and
implementations developed over 30 years of research. In the era of big data and
cloud computing, a different class of DSMS has emerged. Systems such as Storm
and Flink offer an API that allows the user to submit dataflows of user defined
operators. ExaStream unifies these two different approaches by allowing to
describe in a declarative way complex dataflows of (possibly user-defined) opera-
tors. Moreover, the Materialised Window Signature summarisation, implemented
in ExaStream, is inspired from data warehousing techniques for maintaining
selected aggregates on stored datasets [18,31]. We adjusted these technique for
complex analytics that blend streaming with static data.

6 Conclusion, Lessons Learned, and Future Work

We see our work as a first step towards the development of a solid theory and
new full-fledged systems in the space of analytics-aware ontology-based access
to data that is stored in different formats such as static relational, streaming,
etc. To this end we proposed ontology, query, and mapping languages that are
capable of supporting analytical tasks common for Siemens turbine diagnostics.
Moreover, we developed a number of backend optimisation techniques that allow
such tasks to be accomplished in reasonable time as we have demonstrated on
large scale Siemens data.

The lessons we have learned so far are the encouraging evaluation results over
the Siemens turbine data (presented in Sect. 4). Since our work is a part of an
ongoing project that involves Siemens, we plan to continue implementation and
then deployment of our solution in Siemens. This will give us an opportunity to
do further performance evaluation as well as to conduct user studies.

360 E. Kharlamov et al.

Finally, there is a number of important further research directions that we
plan to explore. On the side of analytics-aware ontologies, we plan to explore
bag instead of set semantics for ontologies since bag semantics is natural and
important in analytical tasks; we also plan to investigate how to support evolu-
tion of such ontologies [12,27] since OBDA systems are dynamic by its nature.
On the side of analytics-aware queries, an important further direction is to align
them with the terminology of the W3C RDF Data Cube Vocabulary and to
provide additional optimisations after the alignment. As for query optimisation
techniques, exploring approximation algorithms for fast computation of complex
analytics between live and archived streams is particularly important. That is
because these algorithms usually provide quality guarantees about the results
and in the average case require much less computation. Thus, we intend to exam-
ine their effectiveness in combination with the MWS approach.

References

1. Aglio, D.D., Valle, E.D., Calbimonte, J.-P., Corcho, O., Semantics, R.-Q.: A uni-
fying query model to explain heterogeneity of RDF stream processing systems.
IJSWIS 10(4), 17–44 (2015)

2. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J.,
Widom, J.: STREAM: the stanford stream data manager. In: SIGMOD (2003)

3. Arasu, A., Babu, S., Widom, J., Continuous, T.C., Language, Q.: Semantic foun-
dations and query execution. VLDBJ 15(2), 121–142 (2006)

4. Artale, A., Ryzhikov, V., Kontchakov, R.: DL-Lite with attributes and datatypes.
In: ECAI (2012)

5. Baader, F., Sattler, U.: Description logics with aggregates and concrete domains.
IS 28(8), 979–1004 (2003)

6. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a
continuous query language for RDF data streams. Int. J. Seman. Comput. 4(1),
3–25 (2010)

7. Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs.
In: ISWC (2004)

8. Calbimonte, J.-P., Corcho, Ó., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P.,
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496,
pp. 96–111. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17746-0 7

9. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R.: Ontologies and databases: the DL-Lite approach. In: Tes-
saris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C.,
Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03754-2 7

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A.,
Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system
for ontology-based data access. Seman. Web 2(1), 43–53 (2011)

11. Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over ontolo-
gies. In: ONISW, October 2008

12. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite
knowledge bases. In: ISWC (2010)

http://dx.doi.org/10.1007/978-3-642-17746-0_7
http://dx.doi.org/10.1007/978-3-642-03754-2_7

Towards Analytics Aware Ontology Based Access 361

13. Calvanese, D., Liuzzo, P., Mosca, A., Remesal, J., Rezk, M., Rull, G.: Integration,
ontology-based data in EPNet: production and distribution of food during the
Roman empire. Eng. Appl. AI 51, 212–229 (2016)

14. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S.R., Reiss, F., Shah, M.A.: TelegraphCQ:
continuous dataflow processing. In: SIGMOD (2003)

15. Civili, C., Console, M., De Giacomo, G., Lembo, D., Lenzerini, M., Lepore, L.,
Mancini, R., Poggi, A., Rosati, R., Ruzzi, M., Santarelli, V., Savo, D.F.: MASTRO
STUDIO: managing ontology-based data access applications. In: PVLDB, vol. 6,
no. 12 (2013)

16. Abadi, D., Carney, D. et al.: Aurora: a data stream management system. In: SIG-
MOD (2003)

17. Fischer, L., Scharrenbach, T., Bernstein, A.: Scalable linked data stream processing
via network-aware workload scheduling. In: SSWKBS@ISWC (2013)

18. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H., Cube, D.: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)

19. Kharlamov, E., Brandt, S., Jimenez-Ruiz, E., Kotidis, Y., Lamparter, S., Mailis, T.,
Neuenstadt, C., Özçep, Ö., Pinkel, C., Svingos, C., Zheleznyakov, D., Horrocks,
I., Ioannidis, Y., Möller, R.: Ontology-based integration of streaming and static
relational data with optique. In: SIGMOD (2016)

20. Kharlamov, E., Hovland, D., Jiménez-Ruiz, E., Pinkel, D.L.C., Rezk, M.,
Skjæveland, M.G., Thorstensen, E., Xiao, G., Zheleznyakov, D., Bjørge, E.,
Horrocks, I.: Enabling ontology based access at an oil and gas company statoil.
In: ISWC (2015)

21. Kharlamov, E., et al.: How semantic technologies can enhance data access at
siemens energy. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 601–619.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11964-9 38

22. Kharlamov, E., Brandt, S., Giese, M., Jiménez-Ruiz, E., Kotidis, Y., Lamparter,
S., Mailis, T., Neuenstadt, C., Özçep, Ö.L., Pinkel, C., Soylu, A., Svingos, C.,
Zheleznyakov, D., Horrocks, I., Ioannidis, Y.E., Möller, R., Waaler, A.: Enabling
semantic access to static, streaming distributed data with optique: demo. In: DEBS
(2016)

23. Kharlamov, E., Brandt, S., Giese, M., Jiménez-Ruiz, E., Lamparter, S.,
Neuenstadt, C., Özçep, Ö.L., Pinkel, C., Soylu, A., Zheleznyakov, D., Roshchin, M.,
Watson, S., Horrocks, I.: Semantic access to siemens streaming data: the optique
way. In: ISWC (P&D) (2015)

24. Kharlamov, E., Jiménez-Ruiz, E., Pinkel, C., Rezk, M., Skjæveland, M.G., Soylu,
A., Xiao, G., Zheleznyakov, D., Giese, M., Horrocks, I., Waaler, A.: Optique:
ontology-based data access platform. In: ISWC (P&D) (2015)

25. Kharlamov, E., Jiménez-Ruiz, E., Zheleznyakov, D., Bilidas, D., Giese, M., Haase,
P., Horrocks, I., Kllapi, H., Koubarakis, M., Özçep, Ö.L., Rodriguez-Muro, M.,
Rosati, R., Schmidt, M., Schlatte, R., Soylu, A., Waaler, A.: Optique: towards
OBDA systems for industry. In: ESWC (Selected Papers) (2013)

26. Kharlamov, E., Kotidis, Y., Mailis, T., Neuenstadt, C., Nicolaou, C., Özçep, Ö.,
Svingos, C., Zheleznyakov, D., Brandt, S., Horrocks, I., Ioannidis, Y., Lamparter,
S., Möller. R.: Towards analytics aware ontology based access to static and stream-
ing data (extended version). In: CoRR (2016)

27. Kharlamov, E., Zheleznyakov, D., Calvanese, D.: Capturing model-based ontology
evolution at the instance level: the case of DL-Lite. J. Comput. Syst. Sci. 79(6),
835–872 (2013)

http://dx.doi.org/10.1007/978-3-319-11964-9_38

362 E. Kharlamov et al.

28. Kharlamov, E. et al.: Optique 1.0: semantic access to big data: the case of norwe-
gian petroleum directorate factpages. In: ISWC (P&D) (2013)

29. Kllapi, H., Sakkos, P., Delis, A., Gunopulos, D., Ioannidis, Y.: Elastic processing
of analytical query workloads on IaaS clouds. arXiv (2015)

30. Kostylev, E.V., Reutter, J.L.: Complexity of answering counting aggregate queries
over DL-Lite. J. Web Seman. 33, 94–111 (2015)

31. Kotidis, Y., Roussopoulos, N., DynaMat: a dynamic view management system for
data warehouses. In: SIGMOD (1999)

32. Lutz, C., Seylan, I., Wolter, F.: Mixing open, closed world assumption in ontology-
based data access

33. Munir, K., Odeh, M., McClatchey, R.: Ontology-driven relational query formula-
tion using the semantic and assertional capabilities of OWL-DL. KBS 35, 144–159
(2012)

34. Neuenstadt, C., Möller, R., Özçep, Ö.L.: OBDA for temporal querying and streams
with STARQL. In: HiDeSt (2015)

35. Özçep, Ö.L., Möller, R., Neuenstadt, C.: A stream-temporal query language
for ontology based data access. In: Lutz, C., Thielscher, M. (eds.) KI 2014.
LNCS (LNAI), vol. 8736, pp. 183–194. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11206-0 18

36. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25073-6 24

37. Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Engines,
linked stream data processing: facts and figures. In: ISWC (2012)

38. Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using Morph. In: WWW (2014)

39. Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Access, ontology-based
data: ontop of databases. In: ISWC (2013)

40. Rodrıguez-Muro, M., Calvanese, D.: High performance query answering over DL-
lite ontologies. In: KR (2012)

41. Sequeda, J., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data.
JWS 22, 19–39 (2013)

42. Tsangaris, M.M., Kakaletris, G., Kllapi, H., Papanikos, G., Pentaris, F., Polydoras,
P., Sitaridi, E., Stoumpos, V., Ioannidis, Y.E.: Dataflow processing and optimiza-
tion on grid and cloud infrastructures. IEEE Data Eng. Bull. 32(1), 67–74 (2009)

http://dx.doi.org/10.1007/978-3-319-11206-0_18
http://dx.doi.org/10.1007/978-3-319-11206-0_18
http://dx.doi.org/10.1007/978-3-642-25073-6_24

	Towards Analytics Aware Ontology Based Access to Static and Streaming Data
	1 Introduction
	2 Analytics Aware OBDA for Static and Streaming Data
	2.1 Ontology Language
	2.2 Query Language
	2.3 Mapping Language and Query Transformation
	2.4 Query Optimisation

	3 Implementation
	4 Evaluation
	5 Related Work
	6 Conclusion, Lessons Learned, and Future Work
	References

