
Linked Data (in Low-Resource) Platforms:
A Mapping for Constrained Application Protocol

Giuseppe Loseto, Saverio Ieva, Filippo Gramegna, Michele Ruta(B),
Floriano Scioscia, and Eugenio Di Sciascio

Politecnico di Bari, via E. Orabona 4, 70125 Bari, Italy
{giuseppe.loseto,saverio.ieva,filippo.gramegna,

michele.ruta,floriano.scioscia,eugenio.disciascio}@poliba.it

Abstract. This paper proposes a mapping of the Linked Data Plat-
form (LDP) specification for Constrained Application Protocol (CoAP).
Main motivation stems from the fact that LDP W3C Recommenda-
tion presents resource management primitives for HTTP only. A general
translation of LDP-HTTP requests and responses is provided, as well
as a framework for HTTP-to-CoAP proxying. Experiments have been
carried out using the LDP W3C Test Suite.

Keywords: Linked Data Platform · CoAP · Semantic web of things

Resource type: Software
Permanent URL: http://dx.doi.org/10.5281/zenodo.50701

1 Introduction and Motivation

The World Wide Web Consortium (W3C) has standardized the Linked Data
(LD) management on the Web with the Linked Data Platform (LDP) speci-
fication [8]. Unfortunately, this effort leaves out the so-called Web of Things
(WoT) where HTTP is replaced by simpler protocols, e.g., CoAP (Constrained
Application Protocol) [12], suitable for resource-constrained scenarios. CoAP
adopts a loosely coupled client/server model, based on stateless operations on
resources [2] identified by URIs (Uniform Resource Identifiers). Clients access
them via asynchronous request/response interactions through HTTP-derived
methods mapping the Read, Create, Update and Delete operations of data man-
agement. Section 3.12 of Linked Data Platform Use Cases and Requirements [1]
reports on a possible one-to-one translation of HTTP primitives toward CoAP,
nevertheless the proposed solution appears quite limited. The given mapping [3]
only considers basic HTTP interactions: options, head and patch methods are
not allowed and various MIME content-format types are missing.

Main motivation of this resource is to enable the extension of the Linked
Data Platform standard to Web of Things contexts. A specific variant of the
HTTP-CoAP mapping is proposed, preserving LDP features and capabilities:
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part II, LNCS 9982, pp. 131–139, 2016.
DOI: 10.1007/978-3-319-46547-0 14

http://dx.doi.org/10.5281/zenodo.50701

132 G. Loseto et al.

Table 1. Current LDP implementations

Name Status Last Version License Language Supported LDP Resources

RWW.IO Pending 1.2 (Nov 2014) MIT PHP RS, BC

Apache Marmotta Full release 3.3.0 (Dec 2014) APL 2.0 Java RS, NR, BC

Bygle In progress Feb 2015 APL 2.0 Java RS, BC

Eclipse Lyo Completed 2.1.0 (Mar 2015) EPL 1.0 Java RS, NR, BC, DC

LDP.js Completed Apr 2015 APL 2.0 JavaScript RS, BC, DC

Glutton In progress Apr 2015 GPLv3 Python RS, BC

Carbon LDP In progress 0.5.7 (Oct 2015) BSD JavaScript RS, NR, BC, DC, IC

LDP4j In progress 0.2.0 (Dec 2015) APL 2.0 Java RS, BC, DC, IC

RWW Play In progress 2.3.6 (Dec 2015) APL 2.0 Scala RS, NR, BC

Fedora Full release 4.5.0 (Jan 2016) APL 2.0 Java RS, NR, BC, DC, IC

Callimachus Full release 1.5.0 (Mar 2016) APL 2.0 Java RS, NR, IC

Gold In progress 1.0.1 (Apr 2016) MIT Go RS, BC

OpenLink Virtuoso Full release 7.2.5 (Apr 2016) GPLv2 C/C++ RS, BC

ldnode In progress 0.2.31 (Apr 2016) MIT JavaScript RS, BC

the envisioned HTTP-CoAP proxy makes objects networks first-class Linked
Data providers on the Web. Novel features are also giving added value to the
strongest peculiarities of CoAP with respect to HTTP, e.g., resource discovery
via CoRE Link Format. The proposed solution is released as open source. Per-
formance tests evidence LDP-CoAP supports all types of LDP resources keeping
computational performances comparable with other frameworks. Results of the
W3C LDP conformance test suite show the proposal does not completely cover
LDP specification yet.

2 Coping with Lightweight Linked Data Platform

The LDP W3C Recommendation provides standard rules for accessing and
managing Linked Data on the Web LDP servers. Basically, it defines seven
types of LDP Resources as well as patterns of HTTP methods and headers
for CRUD (Create, Read, Update, Delete) operations1. W3C LDP implemen-
tations web page (http://www.w3.org/wiki/LDP Implementations) lists several
software tools: Table 1 reports the most relevant ones along with main properties
and supported resource types, in order of release date. All solutions are based on
the HTTP protocol, with no current support for WoT standards such as CoAP.

The W3C suggests explicit use cases [1] aiming to integrate LDP in resource-
constrained devices and networks with specific reference to CoAP [12], a com-
pact protocol conceived for machine-to-machine (M2M) communication. Some
CoAP options are derived from HTTP header fields (e.g., content type, headers
and proxy support), while some other ones have no counterpart in HTTP. So an
HTTP-CoAP mapping is needed to exploit all LDP features with CoAP. An early
mapping proposal was defined in [3], but it only worked with basic HTTP inter-
actions. The HTTP-CoAP mapping for LDP envisioned in [7] and outlined here,
1 Due to space constraints, details of LDP specification are not recalled here; basic

knowledge of LDP is assumed, while the reader is referred to [8] for details.

http://www.w3.org/wiki/LDP_Implementations

Linked Data (in Low-Resource) Platforms 133

Table 2. HTTP-CoAP mapping of preference headers

HTTP Header LDP-CoAP

Prefer: return=representation;

include="pref"

ldp-incl=pref Core Link Format attribute

Prefer:return=representation;

omit="pref"

ldp-omit=pref Core Link Format attribute

Preference-Applied:

return=representation

pref returned using location-query CoAP
option

enables a direct CoAP-to-CoAP interaction. HTTP methods mapping is applied
for each CoAP method (if present). HEAD and OPTIONS, undefined in CoAP, are
mapped to existing GET and PUT methods, by adding the new Core Link Format
attribute ldp. There is full backward compatibility with the standard proto-
col, while extending the basic CoAP functionalities. W.r.t. the early proposal
[7], additional features have been also defined to support: (i) PATCH method;
(ii) RDF Patch format [10] along with application/rdf-patch content-format
media type; (iii) LDP Prefer headers of request/reply messages (Table 2).

LDP-CoAP mapping was implemented in a Java-based framework providing
the basic components required to publish Linked Data on the WoT according to
LDP-CoAP specification. It consists of several modules, as shown in Fig. 1a.

(a) Main modules (b) LDP HTTP-CoAP proxy server

Fig. 1. LDP-CoAP framework architecture

ldp-coap-core : includes the implementation of all LDP-CoAP resources and a
basic LDP-CoAP server handling CoAP-based communication and RDF data
management. The main Java package coap.ldp was partitioned in the following
sub-packages each providing a specific functionality.
– coap.ldp.server: the reference CoAPLDPServer implementation. It extends
the CoAPServer provided by californium-core-ldp module (described below) and
exposes methods to create and manage LDP resources. The package also includes
the CoAPLDPTestSuiteServer, used for experiments described in Sect. 3.

134 G. Loseto et al.

– coap.ldp.resources: according to the LDP resource hierarchy [8], several
Java classes were developed extending the CoAPLDPResource base class providing
common methods and attributes. For each resource class, a specific data handler
can be implemented to retrieve whatever kind of data (e.g., observation from a
sensor) and update the RDF repository with user-defined periodicity. Handlers
can be defined starting from the LDPDataHandler abstract class. In this way,
developers can build specific applications implementing the whole business logic
and data management procedures within the handleData method of the handler,
without any other modification of the source code. CoAPLDPResourceManager
implements read-write operations on the RDF data storage exploiting an Open-
RDF Sesame (http://rdf4j.org) in-memory RDF repository.
– coap.ldp.handler: two simple handlers were defined as usage examples to
expose real-time system CPU load and RAM usage ratio as LDPRDFResource.
Data are collected through the operating system interfaces of Java 7 (or later).
– coap.ldp.exception: a CoAPLDPException class was defined to catch errors
due to incorrect usage of LDP methods, headers or attributes. Its subclasses
represent typical problems (e.g., content format or precondition failed).
– rdf.vocabulary: contains RDF ontologies mapped as Java classes to sim-
plify creation and querying of RDF triple. As an example, SSN-XG ontology [4]
was mapped through the Sesame Vocabulary Builder (http://github.com/tkurz/
sesame-vocab-builder) tool and included here.

The following libraries are required to correctly compile ldp-coap-core: JSON-
java (http://github.com/stleary/JSON-java) to format data in JSON; jsonld-java
(http://github.com/jsonld-java) to support the json-ld specification [6]; Apache
Marmotta RDFPatchUtil (http://marmotta.apache.org/sesame.html) to update
RDF statements of a Sesame repository according to the rdf-patch [10] format.

californium-core-ldp: a modified version of the Californium CoAP framework
[5], extended to support LDP features. Main modifications include: (i) novel
content-format media types added to MediaTypeRegistry class; (ii) additional
response codes introduced within CoAP main class.

ldp-coap-proxy : a modified version of californium-proxy implementing the
mapping rules defined before and translating LDP-HTTP request to the
corresponding LDP-CoAP ones. As shown in Fig. 1b, LDP-CoAP mapping
procedures take advantage of the classes in this module. In particular, Prox-
yHttpServer is responsible for processing a request –coming from a generic
HTTP client– through its HttpStack member class where the mapping occurs.
HttpStack transforms an HTTP request into a compatible LDP-CoAP one and
for each CoAP request it starts two threads, CoapRequestWorker and CoapRe-
sponseWorker, synchronized according to the producer-consumer pattern. The
CoapRequestWorker thread produces the LDP-CoAP translated request for the
ProxyHttpServer class instance which forwards that request to the proper LDP-
CoAP server. The CoapResponseWorker is responsible for consuming and trans-
lating the LDP-CoAP response coming from the ProxyHttpServer into the HTTP
response which is returned to the client.

http://rdf4j.org
http://github.com/tkurz/sesame-vocab-builder
http://github.com/tkurz/sesame-vocab-builder
http://github.com/stleary/JSON-java
http://github.com/jsonld-java
http://marmotta.apache.org/sesame.html

Linked Data (in Low-Resource) Platforms 135

In addition to the basic framework, the following two packages were developed
to build LDP-CoAP applications on embedded and resource-constrained devices.

ldp-coap-raspberry : ldp-coap-core was tested on a Raspberry Pi (http://www.
raspberrypi.org) board. W.r.t. other LDP implementations, LDP-CoAP is very
lightweight and simple to run on low-resource environments like Raspberry Pi,
having a minimum number of dependencies and low system requirements in
terms of memory and processing capabilites. As a reference example, two han-
dlers were implemented to publish CPU temperature and free RAM as LDP
resources. Data are retrieved using the Pi4J (http://pi4j.com) library.

ldp-coap-android : a simple project exploiting ldp-coap-core on Android
devices. It runs unmodified on all platforms supporting modules compiled with
Java SE runtime environment, version 7 or later, so it can be directly used
as a library also by Android applications. Android OS provides a uniform
interface (the Android sensor framework, http://developer.android.com/guide/
topics/sensors/sensors overview.html) to access sensor data. Therefore, a sin-
gle handler (named GenericSensorHandler) was implemented to manage both
hardware and software-based device sensors. The project includes a basic activ-
ity starting a LDP-CoAP server exposing data from interface sensors modeled
as LDP resources. Source code is available on [9], including Javadoc documenta-
tion; quick usage examples are on the project website http://sisinflab.poliba.it/
swottools/ldp-coap. All modules were developed as Eclipse (http://eclipse.org)
projects using Apache Maven (http://maven.apache.org) to manage dependen-
cies. Only ldp-coap-android is a project for Android Studio (http://developer.
android.com/tools/studio/index.html), the Google official IDE for app develop-
ment. In this case, all dependencies can be defined through a Gradle (http://
gradle.org) configuration file.

A few validation examples are reported here, in order to clarify the proposal.
Full examples are on the LDP-CoAP project website.

Ex. 1 – Basic HTTP GET request on an LDP resource. HTTP-CoAP
mapping is shown in Fig. 2. As described in [7], a single CoAP GET request
cannot produce all the needed headers. So the original HTTP request (Fig. 2a)
is translated to three LDP-CoAP packets: a GET message (Fig. 2d), a CoAP
discovery message (Fig. 2c), and an OPTIONS message (Fig. 2b). In particular,
since Allow, Accept-Post and Accept-Patch response headers are not defined
in CoAP, their values are set in the LDP-CoAP OPTIONS response body in JSON
syntax and then mapped to the corresponding HTTP headers. As per the CoRE
Link Format specification [11], the CoAP discovery request maps the HTTP
Link header with the resource type (rt) retrieved via the /.well-known/core
reserved resource path.

Ex. 2 – Create a new LDP resource through an HTTP POST request.
In this case, the HTTP request (Fig. 3a) is translated to a single CoAP POST
message, as in Fig. 3b (see [7] for details).

http://www.raspberrypi.org
http://www.raspberrypi.org
http://pi4j.com
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://sisinflab.poliba.it/swottools/ldp-coap
http://sisinflab.poliba.it/swottools/ldp-coap
http://eclipse.org
http://maven.apache.org
http://developer.android.com/tools/studio/index.html
http://developer.android.com/tools/studio/index.html
http://gradle.org
http://gradle.org

136 G. Loseto et al.

GET /alice/ HTTP/1.1
Host: example.org Accept: text/turtle

HTTP/1.1 200 OK
Content-Type: text/turtle; charset=UTF-8
Link: <http://www.w3.org/ns/ldp#BasicContainer> rel="type",
<http://www.w3.org/ns/ldp#Resource> rel="type"
Allow: OPTIONS,HEAD,GET,POST,PUT,PATCH
Accept-Post: text/turtle, application/ld+json
Accept-Patch: application/rdf-patch
Content-Length: 250
ETag: W/’123456789’
...RDF payload...

(a) HTTP GET

GET coap://example.org/alice?ldp=options

2.05 Content
Content-Format (ct): application/json
{
"Allow": ["OPTIONS", "HEAD", "GET",
"POST", "PUT", "PATCH"],
"Accept-Post": ["text/turtle",
"application/ld+json"],
"Accept-Patch": "application/rdf-patch"
}

(b) CoAP OPTIONS

GET coap://example.org/.well-known/core?title=alice

2.05 Content
Content-Format (ct): application/link-format
</alice>
rt="http://www.w3.org/ns/ldp#BasicContainer
http://www.w3.org/ns/ldp#Resource";
ct=4; title="alice"

(c) CoAP Discovery

GET coap://example.org/alice/
Accept: text/turtle

2.05 Content
Content-Format (ct): text/turtle
ETag: W/’123456789’
...RDF payload...

(d) CoAP GET

Fig. 2. HTTP-CoAP mapping for an LDP GET request/response

POST /alice/ HTTP/1.1
Host: example.org Slug: foaf
Content-Type: text/turtle
...RDF payload...

HTTP/1.1 201 Created
Location: http://example.org/alice/foaf
Link: <http://www.w3.org/ns/ldp#Resource> rel=’type’
Content-Length: 0

(a) HTTP POST

POST coap://example.org/alice?title=foaf
Content-Format (ct): text/turtle
...RDF payload...

2.01 Created
Location-Path:
coap://example.org/alice/foaf

(b) CoAP POST

Fig. 3. HTTP-CoAP mapping for an LDP POST request/response

3 Experiments

The W3C LDP Test Suite (http://w3c.github.io/ldp-testsuite/) is used to evalu-
ate the functionality of the proposed framework and to compare it with existing
solutions. The suite consists of 236 tests which query an LDP server by means of
HTTP messages; only for LDP-CoAP requests were sent to the server through
an LDP-CoAP proxy as in Fig. 1a. Obtained results are grouped by supported
LDP resources (RDF Sources, Non-RDF Sources and Basic, Direct, Indirect
Containers – see [8] for definitions) and compliance levels (MUST, SHOULD,
MAY). For each resource/level pair, Table 3 compares the score of LDP-CoAP
with the highest value obtained by other LDP tools. Full LDP-CoAP results are
on the project website. Overall, LDP-CoAP presents good scores, when consid-
ering 17 manual tests were skipped in this first experimental campaign and only
automated ones were executed.

In addition to LDP-CoAP 7 tools were evaluated: Virtuoso, LDP.js, Apache
Marmotta, LDP4j, RWW.IO, Fedora4 and Eclipse Lyo. They were selected
according to the features listed in Table 1: current status, completeness, open
license, last update and supported resources (in particular RDF Source and Basic

http://w3c.github.io/ldp-testsuite/

Linked Data (in Low-Resource) Platforms 137

Table 3. Comparison of implementation conformance tests

Feature MUST SHOULD MAY

LDP-CoAP Highest Val. LDP-CoAP Highest Val. LDP-CoAP Highest Val.

LDP-RS 91.7% (22/24) 100% [a,b,c,d,e] 71.4% (5/7) 100% [a,b,c,d] 100% (1/1) 100% [all]

LDP-BC 86.5% (32/37) 100% [b,c,d,e] 88.2% (15/17) 100% [b,c] 100% (4/4) 100% [b,c,e,f]

LDP-DC 88.1% (37/42) 100% [b,d,e] 89.5% (17/19) 100% [b] 100% (4/4) 100% [b,d,f]

LDP-IC 84.6% (33/39) 97.4% [a] 88.2% (15/17) 88.2% [d] 100% (4/4) 100% [f]

LDP-NR 80.0% (12/15) 100% [a,b,c] 100% (1/1) 100% [a,b,c,f,i] 66.7% (4/6) 100% [b,c,f]

(a) Callimachus, (b) Eclipse Lyo, (c) Apache Marmotta, (d) LDP4j, (e) LDP.js, (f) Fedora4, (g) ldphp,

(h) Virtuoso, (i) rww-play

Container). Gold was tested and discarded due to the limited compatibility with
LDP specification. Only supported resources were taken into account to retrieve
processing time. Each test was repeated three times on the same PC and (only
for tests passed by all tools) the average value was reported in Fig. 4. Fedora4
and LDP-CoAP support all LDP resources. Eclipse Lyo and LDP4j manage four
resources groups, whereas remaining frameworks only operate on RDF Sources
and Basic Containers. LDP-CoAP has good processing times, as results are com-
parable with the other implementations even while involving the HTTP-CoAP
proxy. Only for non-RDF Source tests performance is slightly worse.

20 30 40 50 60 70 80 90 100 110

Basic Container

Direct Container

Indirect Container

RDF Resource

Non RDF Source

Processing Time (ms)

LD
P

Re
so

ur
ce

s

Eclipse Lyo
Fedora4
RWW.IO
LDP4j
Marmo a
LDP.js
Virtuoso
LDP-CoAP

Fig. 4. Comparison of processing time for tested LDP implementations

To evaluate the feasibility of exploiting LDP in mobile and pervasive com-
puting scenarios, LDP-CoAP performance was tested on three different Java-
compatible platforms: a PC2, an Android smartphone (LG Google E960 Nexus
4, specifications at http://www.lg.com/us/cell-phones/lg-LGE960-nexus-4) and
a Raspberry Pi 1 Model B+ board (http://www.raspberrypi.org/products/
model-b-plus/) All requests were originated from a PC client running both
the LDP Test Suite and the LDP HTTP-CoAP proxy, connected through a
local IEEE 802.11 network to one of the three LDP-CoAP servers for each test.
The overall processing time, shown in Fig. 5, is defined as the time elapsed from
2 With Intel Core i7 CPU 3770K at 3.50 GHz (4 cores/8 threads), 12 GB DDR3-

SDRAM (1333 MHz), 2 TB SATA (7200 RPM) HD, 64-bit Microsoft Windows 7
Professional and 64-bit Java 8 SE Runtime Environment (build 1.8.0 65-b17).

http://www.lg.com/us/cell-phones/lg-LGE960-nexus-4
http://www.raspberrypi.org/products/model-b-plus/
http://www.raspberrypi.org/products/model-b-plus/

138 G. Loseto et al.

10.0

100.0

1000.0

10000.0

Basic
Container

Direct
Container

Indirect
Container

RDF
Resource

Non RDF
Source

Ti
m

e
(m

s)

LDP Resources

PC Android Raspberry Pi

Fig. 5. Device time comparison

2
3
4
5
6
7
8

1 6 11 16 21 26 31 36 41 46 51 56

M
em

or
y

U
sa

ge
 (M

B)

Sampling Time (T = 2 sec)

Fig. 6. Memory use on Raspberry Pi

sending the request until receiving a response by the client, including commu-
nication and HTTP-CoAP message translation times. Values on Android are
roughly 3 times higher than on PC, whereas performance on Raspberry are
an order of magnitude higher with respect to PC. However, average response
times are under 1 second both on Android and Raspberry (except for LDP-NR
responses on Raspberry). Memory usage was also measured every 2 s during the
execution of the test suite for the three platforms. Memory allocation peak of the
LDP-CoAP server was about 44.7 MB on PC, 18.3 MB on Android and 7.4 MB on
Raspberry. Stricter memory constraints on smartphones and embedded devices
imposes to have as much free memory as possible at any time. Consequently,
on these platforms Java virtual machines perform more frequent and aggressive
garbage collection (see Fig. 6). The garbage collector was invoked many times,
corresponding to the falling edges in the chart. This behavior reduces memory
usage, but on the other hand it causes the processing time gap found on the
different platforms.

4 Future Directions

This paper presented an LDP-CoAP mapping and framework for managing
Linked Data in the Web of Things. Performance tests evidence LDP-CoAP
supports all types of LDP resources and its computational performances are
comparable with those of other frameworks. Future revisions will extend com-
pliance as much as possible; progress will be measured through test suite adopted
here. Planned developments also include: evolving the forks of Californium core
and proxy modules to merge them with the original codebase eventually; adding
the capability to manage RDF resources on persistent storage in addition to
in-memory ones; porting LDP-CoAP server to more languages (e.g., C/C++,
Python, Go) and computing platforms (e.g., Arduino).

References

1. Battle, S., Speicher, S.: Linked data platform use cases and requirements. W3C
Working Group Note, W3C, March 2014. http://www.w3.org/TR/ldp-ucr/

2. Bormann, C., Castellani, A., Shelby, Z.: CoAP: an application protocol for billions
of tiny internet nodes. IEEE Internet Comput. 16(2), 62–67 (2012)

http://www.w3.org/TR/ldp-ucr/

Linked Data (in Low-Resource) Platforms 139

3. Castellani, A., Loreto, S., Rahman, A., Fossati, T., Dijk, E.: Guidelines for HTTP-
CoAP Mapping Implementations. Internet-Draft 07, IETF Secretariat, July 2015

4. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S.,
Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The SSN Ontology
of the W3C Semantic Sensor Network Incubator Group. Web Semantics: Science,
Services and Agents on the World Wide Web 17, (2012)

5. Kovatsch, M., Lanter, M., Shelby, Z.: Californium: Scalable cloud services for the
Internet of Things with CoAP. In: International Conference on the Internet of
Things, 2014, pp. 1–6. IEEE (2014)

6. Lanthaler, M., Sporny, M., Kellogg, G.: JSON-LD 1.0. W3C Recommendation,
W3C, January 2014. http://www.w3.org/TR/json-ld/

7. Loseto, G., Ieva, S., Gramegna, F., Ruta, M., Scioscia, F., Di Sciascio, E.: Linking
the web of things: LDP-CoAP mapping. In: Shakshuki, E., (ed.) 7th International
Conference on Ambient Systems, Networks and Technologies (ANT 2016)/Affili-
ated Workshops. Procedia Computer Science, vol. 83, pp. 1182–1187. Elsevier, May
2016

8. Malhotra, A., Arwe, J., Speicher, S.: Linked Data Platform 1.0. W3C Recommen-
dation, W3C, February 2015. http://www.w3.org/TR/ldp/

9. Ruta, M., Scioscia, F., Loseto, G., Ieva, S., Gramegna, F., Sciascio, E.D.: LDP-
CoAP: Linked Data Platform for the Constrained Application Protocol (v1.0)
(2016). http://dx.doi.org/10.5281/zenodo.50701

10. Seaborne, A., Vesse, R.: RDF Patch Describing Changes to an RDF Dataset. Unof-
ficial Draft, August 2014. https://afs.github.io/rdf-patch/

11. Shelby, Z.: Constrained RESTful Environments (CoRE) Link Format. RFC 6690,
August 2012. http://www.ietf.org/rfc/rfc6690.txt

12. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol
(CoAP). RFC 7252, June 2014. http://www.ietf.org/rfc/rfc7252.txt

http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/ldp/
http://dx.doi.org/10.5281/zenodo.50701
https://afs.github.io/rdf-patch/
http://www.ietf.org/rfc/rfc6690.txt
http://www.ietf.org/rfc/rfc7252.txt

	Linked Data (in Low-Resource) Platforms: A Mapping for Constrained Application Protocol
	1 Introduction and Motivation
	2 Coping with Lightweight Linked Data Platform
	3 Experiments
	4 Future Directions
	References

