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Abstract. Finding associations between entities is a common informa-
tion need in many areas. It has been facilitated by the increasing amount
of graph-structured data on the Web describing relations between enti-
ties. In this paper, we define an association connecting multiple entities in
a graph as a minimal connected subgraph containing all of them. We pro-
pose an efficient graph search algorithm for finding associations, which
prunes the search space by exploiting distances between entities com-
puted based on a distance oracle. Having found a possibly large group
of associations, we propose to mine frequent association patterns as a
conceptual abstract summarizing notable subgroups to be explored, and
present an efficient mining algorithm based on canonical codes and par-
titions. Extensive experiments on large, real RDF datasets demonstrate
the efficiency of the proposed algorithms.

Keywords: Association finding · Canonical code · Distance oracle ·
Frequent association pattern mining · Graph search

1 Introduction

Finding associations between entities has found applications in many areas. For
instance, social networking services suggest friends based on known associations
between people. Security agents are interested in associations between suspected
terrorists. In recent years, the increasing amount of graph-structured data on the
Web, like RDF data, has made association finding easier than extracting from
Web text [14]. In such a graph describing relations between entities, associations
between entities are reflected by paths or subgraphs connecting them. Finding
such connections is also an essential component of some semantic search and
question answering systems [18].

Existing research efforts mainly focus on finding, ranking, and filtering asso-
ciations between two entities [2,3,5–8,10,15,20], which are usually defined as
paths connecting them in a graph. Given multiple (i.e., two or more) entities,
a more general notion of association naturally builds on the paths between all
pairs of entities, but requires a more concise structure [4,12,17]. In this work,
we define an association connecting multiple entities in a graph as a mini-
mal connected subgraph that contains all of them. Then two challenges arise:
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(a) how to efficiently find associations in a possibly very large graph, and (b) how
to help users explore a possibly large set of associations that have been found.
Both challenges are addressed in this paper. Our contribution is threefold.

– We propose an efficient algorithm for finding associations based on graph
search and path merging. To prune the search space, distances between entities
are exploited, and a distance oracle is used to achieve a trade-off between time
for computing and space for materializing distances.

– To help users explore a large group of associations, complementary to the
existing ranking approaches [4,12,17], we propose to identify its notable sub-
group(s) that match a common conceptual structure called a frequent associa-
tion pattern, which provides a high-level abstract of major results. Our efficient
algorithm for mining frequent association patterns calculates frequency based
on canonical codes of association patterns, and reduces calculations using par-
titions of associations.

– We carry out extensive experiments based on large, real RDF datasets. The
results demonstrate the efficiency of the proposed algorithms.

In this paper, we focus on the efficiency of algorithms for finding associations
and mining frequent association patterns. The effectiveness of using frequent
association patterns for exploring associations between two entities has been
demonstrated in [6]. The effectiveness in a multiple-entity setting will be empir-
ically tested in future work.

The remainder of this paper is structured as follows. Section 2 provides prelim-
inaries. Sections 3 and 4 introduce our algorithms for finding associations and min-
ing frequent association patterns, respectively. Section 5 presents experiments.
Section 6 discusses related work. Section 7 concludes the paper with future work.

2 Preliminaries

We deal with a directed unweighted entity-relation graph G = 〈E,A,R, l〉 char-
acterizing binary relations over entities, where

– E is a set of entities as vertices,
– A is a set of arcs, each arc a ∈ A directed from its tail vertex t(a) ∈ E to its

head vertex h(a) ∈ E,
– R is a set of binary relations on entities, and
– l : A �→ R labels each arc a ∈ A with a relation l(a) ∈ R.

Let C be the set of all classes. For each entity e ∈ E, let T (e) ⊆ C be e’s types,
and we assume that each entity has at least one type, i.e., T (e) �= ∅. Figure 1
shows an entity-relation graph to be used as a running example in this paper.
An RDF graph (i.e., a set of RDF triples) can be regarded as an entity-relation
graph if considering only the triples connecting two entities; T is given by the
rdf:type property. In this paper, we will stick to the above graph notation
rather than RDF because our approach is not specific to RDF but also applies
to other kinds of graph-structured data.
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Fig. 1. An example entity-relation graph, with three query entities in grey.
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Fig. 2. Three associations connecting eq
1, eq

2, and eq
3.

Given a set of n query entities eq
1, . . . , e

q
n ∈ E, an association x connecting

eq
1, . . . , e

q
n is a minimal subgraph of G that contains all of them and is connected;

no proper subgraph of it also has these properties. Therefore, the underlying
graph of x is a tree (i.e., having no parallel edges, loops, or cycles), and the
leaves only come from query entities; otherwise x would not be minimal. For
consistency, eq

1 is always designated as the root of x. Figure 2 illustrates three
associations connecting the three query entities in the running example.

Note that in this paper, the arcs in a path or in a rooted tree are not required
to all go the same direction, since an arc a directed from t(a) to h(a) labeled
with a relation l(a) = r can be equivalently treated as an arc directed from h(a)
to t(a) labeled with a relation r̂ that represents the inverse of r. For the same
reason, later in our algorithms, every arc can be traversed in both directions in
graph search.

The diameter of an association x, denoted by diam(x), is the greatest dis-
tance between any pair of entities in x. Given a diameter constraint λ, a valid
association has a diameter of λ or less. For instance, given λ = 3, Fig. 2 shows all
the valid associations connecting the three query entities in the running exam-
ple; all of them have a diameter of 3. An invalid association has a diameter
larger than λ. We will focus on valid associations because such shorter-distance
associations usually represent stronger connections between entities and thus are
more attractive to users.

An association pattern matched by an association x is a directed graph
obtained by replacing each non-query entity in x with one of its types. For
instance, x1 and x2 in Fig. 2 match z1 in Fig. 3; x1 also matches z2. Since an
association is tree-structured and the leaves only come from query entities, an
association pattern also has these properties, and eq

1 is designated as its root for
consistency.
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Fig. 3. Three association patterns.

3 Association Finding

Given an entity-relation graph G and a diameter constraint λ, we aim to find all
the valid associations connecting a set of n query entities eq

1, . . . , e
q
n. Firstly, we

present a basic algorithm for finding valid associations based on graph search and
path merging. Then, we prune the search space by exploiting distances between
vertices. Finally, to achieve a trade-off between time for computing and space
for materializing distances, we discuss the use of distance oracles.

3.1 A Basic Algorithm

Our basic algorithm is inspired by the following theorem.

Theorem 1. An association x connecting a set of query entities can be decom-
posed into a set of (possibly overlapping) paths of length

⌊

diam(x)+1
2

⌋

or less that
have query entities as their start vertices and have a common end vertex.

For instance, x1 in Fig. 2, with diam(x1) = 3, can be decomposed into three
paths of length

⌊

3+1
2

⌋

= 2 or less: eq
1r1e1, eq

2r3e4r̂2e1, and eq
3r̂4e4r̂2e1; all of them

start from query entities and have e1 as a common end vertex.

Proof. Let p be a longest path in x, having a length of diam(x). Let e′ be an
entity in the middle of p, i.e., the two paths p1 and p2 connecting the start and
end vertex of p to e′ have a length of

⌊

diam(x)+1
2

⌋

or
⌊

diam(x)+1
2

⌋

− 1. Then for

every leaf e of x, the path connecting e to e′ must have a length of
⌊

diam(x)+1
2

⌋

or less; otherwise we can merge such a path with p1 or p2 to obtain a path longer
than diam(x), which contradicts that the diameter of x is diam(x). Therefore,
x can be decomposed into a set of paths of length

⌊

diam(x)+1
2

⌋

or less, each
connecting a leaf of x (which is a query entity) to e′.

Following this theorem, we develop Algorithm 1 for finding all the valid
associations by searching for and merging paths. Specifically, all the paths of
length

⌊

λ+1
2

⌋

or less starting from each query entity are found by searching G
in a breadth-first manner (line 3–4). For instance, when λ = 3, starting from eq

1

in Fig. 1, four paths of length 1 and four paths of length 2 are found:

P1 = {eq
1r1e1, eq

1r1e2, eq
1r̂5e2, eq

1r6e3,

eq
1r1e1r2e4, eq

1r1e2r2e5, eq
1r̂5e2r2e5, eq

1r6e3r̂7e6} .
(1)
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Algorithm 1. A Basic Algorithm for Association Finding
Data: An entity-relation graph G, a set of n query entities eq

1, . . . , e
q
n, and a

diameter constraint λ.
Result: A set of valid associations connecting eq

1, . . . , e
q
n.

1 X = ∅ ; /* a set of associations */

2 codes = ∅ ; /* a set of canonical codes for associations */

3 for i = 1 to n do
4 Pi = the set of all paths of length

⌊
λ+1
2

⌋
or less starting from eq

i found by
searching G in a breadth-first manner;

5 foreach 〈p1, . . . , pn〉 ∈ (P1 × · · · × Pn) do
6 if p1, . . . , pn have a common end vertex then
7 Merge p1, . . . , pn to form a connected subgraph x of G;
8 if x is minimal then

/* x is minimal if its underlying graph is a tree, and the

leaves only come from eq
1, . . . , e

q
n. */

9 if diam(x) ≤ λ then
10 code(x) = the canonical code of x;
11 if code(x) /∈ codes then
12 Add code(x) to codes;
13 Add x to X;

14 return X

Then, all possible combinations of such paths are examined (line 5–13); each com-
bination consists of one path starting from each query entity, i.e., one from P1,
one from P2, . . . , one from Pn. If all the paths in a combination have a com-
mon end vertex (e.g., eq

1r1e1, eq
2r3e4r̂2e1, and eq

3r̂4e4r̂2e1 in Fig. 1), they will be
merged into a subgraph x of G (e.g., x1 in Fig. 2) that is potentially a valid
association to be found (line 6–7). However, before adding x to the results X
(line 13), it has to satisfy three requirements.

Firstly, x should be minimal; that is, its underlying graph is a tree, and the
leaves only come from query entities (line 8). These tests can be carried out
within a single depth-first search of x.

Secondly, x should be valid, i.e., diam(x) ≤ λ (line 9). This test is needed
because when λ is odd, it is possible that x is formed by merging paths of length
⌊

λ+1
2

⌋

= λ+1
2 so that diam(x) = λ + 1 > λ.

Thirdly, the same association should not be added to X multiple times. For
instance, x1 in Fig. 2 can be formed twice by merging the paths in two different
combinations: one with e1 as a common end vertex and the other with e4. To
avoid such duplicates, we generate a canonical code for x (line 10), denoted by
code(x), so that two associations will have the same canonical code if and only
if they are isomorphic to each other, i.e., they have the same set of entities as
vertices and there is a bijection between their arcs that preserves adjacency and
arc labels. If it is the first time code(x) is seen, x will be added to X (line 11–13).

There have been various ways of defining and generating canonical codes for
trees [11], assuming a total order (�) on each set of sibling vertices. We adopt
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the following recursive definition, and implement � by the alphabetical order of
entity identifiers (e.g., URIs).

– For a tree T with a single vertex e, we define

code(T ) = e$ , (2)

where $ is a special symbol not in the alphabet for naming entities and
relations.

– For a tree T with more than one vertex, assuming its root is e and the arcs
connecting e to its children e1, . . . , ek (subject to e1 � · · · � ek) are labeled
with relations r1, . . . , rk, respectively, we define

code(T ) = er1code(T1) · · · rkcode(Tk)$ , (3)

where T1, . . . , Tk are the subtrees rooted at e1, . . . , ek, respectively.

Such a code can be generated for x via a depth-first search of x. For instance,
for x1 in Fig. 2 with eq

1 always designated as its root, assuming eq
2 � eq

3, we have

code(x1) = eq
1r1e1r2e4r̂3e

q
2$r4e

q
3$$$$. (4)

Let Δ be the maximum of the degrees of vertices in G. In the algorithm, the
number of paths that can be found from a query entity is bounded by O(Δ�λ+1

2 ).
Given n query entities, there are O(Δ�λ+1

2 n) combinations of paths to examine;
in practice we can index paths by their end vertices to significantly improve
the performance. The time for checking one combination of paths for the three
requirements of a valid association is linear with its size, which is bounded by
O(nλ). Overall, the algorithm takes O(Δ�λ+1

2 nnλ) time, but n and λ are both
very small in practice.

3.2 Distance-Based Search Space Pruning

To improve the performance of Algorithm 1, we notice that some paths found in
graph search will not be merged into any valid association. For instance, when
λ = 3, among the eight paths in P1 as shown in Eq. (1), eq

1r6e3 and eq
1r6e3r̂7e6

eventually do not take part in any valid association in Fig. 2. If we can prune
the search space to exclude such paths, graph search will end earlier (line 4) and
there will be much fewer combinations of paths to be examined (line 5–13), so
that the performance of the algorithm can be improved.

We prune the search space by exploiting distances between entities in the
entity-relation graph G. Let dist return the distance between two entities in G.
For instance, in Fig. 1, we have dist(eq

1, e3) = 1 and dist(eq
2, e3) = 4. When

searching G for the set of paths Pi starting from a query entity eq
i and arriving

at an entity e via a path peq
i e from eq

i to e, the search space may then be pruned
depending on the distances between e and other query entities, i.e., dist(eq

j , e)
for j �= i.
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Specifically, if dist(eq
j , e) >

⌊

λ+1
2

⌋

for any other query entity eq
j (j �= i),

peq
i e can be excluded from Pi safely (i.e., not affecting the final results X) because

it will not take part in any valid association since Pj is not likely to contain a
path from eq

j to e of length
⌊

λ+1
2

⌋

or less. For instance, given λ = 3, when
searching the graph in Fig. 1 starting from eq

1 and arriving at e3 via the path
eq
1r6e3, this path will be excluded from P1 because dist(eq

2, e3) = 4 > 2 =
⌊

3+1
2

⌋

.
Further, let ln(p) be the length of a path p. If ln(peq

i e)+dist(eq
j , e) > 2

⌊

λ+1
2

⌋

for any other query entity eq
j (j �= i), which implies dist(eq

j , e) >
⌊

λ+1
2

⌋

since
ln(peq

i e) ≤ ⌊

λ+1
2

⌋

, we can safely exclude from Pi not only peq
i e but also all the

paths that extend peq
i e (i.e., having peq

i e as a prefix); in other words, the entire
branch of search stemming from peq

i e can be pruned. For instance, given λ = 3,
when searching the graph in Fig. 1 starting from eq

1 and arriving at e3 via the path
eq
1r6e3, we will not only exclude this path from P1 but also prune the branch of

search stemming from it because ln(eq
1r6e3)+dist(eq

2, e3) = 1+4 = 5 > 2
⌊

3+1
2

⌋

;
as a result, the path eq

1r6e3r̂7e6 will be implicitly excluded from P1. We prove the
safeness by showing that any path peq

i e′ from eq
i to an entity e′ that extends peq

i e

will not take part in any valid association. Specifically, peq
i e′ is composed of peq

i e

from eq
i to e and pee′ from e to e′. If it can be merged with some path peq

j e′ ∈ Pj

(j �= i) from eq
j to e′ into a valid association, we will have ln(peq

j e′) ≤ ⌊

λ+1
2

⌋

and

2
⌊

λ + 1
2

⌋

=
⌊

λ + 1
2

⌋

+
⌊

λ + 1
2

⌋

≥ ln(peq
i e′) + ln(peq

j e′)

= ln(peq
i e) + ln(pee′) + ln(peq

j e′)

≥ ln(peq
i e) + dist(eq

j , e) ,

(5)

which contradicts ln(peq
i e) + dist(eq

j , e) > 2
⌊

λ+1
2

⌋

.

3.3 Distance Computation

The above pruning strategy requires knowing distances between entities. When
the entity-relation graph is large, e.g., consisting of millions of vertices and bil-
lions of arcs, obtaining distances will be nontrivial. On the one hand, online
computing distances would be time-consuming and lead to unacceptable latency.
On the other hand, materializing offline computed distances between all pairs of
entities would be a challenge. To achieve a trade-off between time for computing
and space for materializing distances, we turn to distance oracles [16].

A distance oracle is a data structure that, after preprocessing a graph, allows
for fast distance computation. Specifically, the graph is offline processed to com-
pute certain information (e.g., distances between each vertex and some landmark
vertices) to be materialized in a distance oracle; its size is usually much smaller
than the size of materializing distances between all pairs of vertices. By using a
distance oracle, computing the distance between two vertices can be reasonably
fast, though not as fast as looking up a materialized distance.
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There are two types of distance oracles: exact and approximate. Given two
vertices between which the distance is d, an exact distance oracle will return d,
whereas an approximate distance oracle will return a value that is in the range
of [d, αd + β] where α ≥ 1 and β ≥ 0, which is said to have stretch (α, β).
Different approximate distance oracles have different trade-offs between stretch,
size, and time. Practical approximate distance oracles usually have stretch α = 2
or α = 3. However, such a distance oracle is not particularly useful for small-
world graphs in which distances between vertices are typically very small [16].
As we will see in Sect. 5.1, some widely used entity-relation graphs are exactly
small-world graphs. Therefore, we choose to implement a state-of-the-art exact
distance oracle [1], to be used in distance-based pruning.

4 Frequent Association Pattern Mining

Having found a possibly large group of associations, we aim to identify its notable
subgroup(s) that match a common conceptual structure, i.e., a frequent associa-
tion pattern, to provide a high-level abstract of major results. Specifically, given
a group of associations X, the frequency of an association pattern z, denoted
by fX(z), is the number of associations in X that match z. Given a thresh-
old τ ∈ [0, 1], we aim to find all the frequent association patterns z for which
fX(z)
|X| ≥ τ . Note that existing solutions to frequent tree pattern mining [11] do

not apply here because their resulting subtrees may not contain all the query
entities. In the following, we firstly present a basic algorithm. Then we improve
its performance by partitioning X.

4.1 A Basic Algorithm

The idea is to firstly, for each association in X, enumerate all the association
patterns it matches; for instance, x1 in Fig. 2 matches z1 and z2 in Fig. 3. Then
we calculate the frequency of each association pattern and identify frequent
ones; to this end, the main problem is to judge whether two association patterns
enumerated for different associations are isomorphic to each other. Since an
association pattern is tree-structured, we intend to generate a canonical code
for each enumerated association pattern by reusing the way of defining and
generating canonical codes presented in Sect. 3.1, and then count the occurrence
of each canonical code as the frequency of the corresponding association pattern.

Recall that in Sect. 3.1, the definition of canonical code relies on a predefined
total order (�) on each set of sibling vertices; there, we implement � by the
alphabetical order of entity identifiers, considering that sibling vertices in an
association are always different entities with different identifiers. However, if
sibling entities in an association have a common type, the corresponding sibling
vertices in an association pattern will represent the same class; for instance, in
Fig. 3, the two children of eq

1 in z3 both represent C1. Hence, the alphabetical
order of entity and class identifiers fails to give a total order on such a set of
sibling vertices. If we still use this order and break ties arbitrarily, different
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canonical codes may be generated for isomorphic association patterns, leading
to incorrect calculation of frequency. For instance, the canonical code for z3 in
Fig. 3 could be

eq
1r1C1r2e

q
2$$r1C1r2e

q
3$$$

or eq
1r1C1r2e

q
3$$r1C1r2e

q
2$$$ ,

(6)

depending on how to order the two children of eq
1.

To obtain a unique canonical code, a less efficient solution is to generate
codes in all possible orders and choose the lexicographically smallest one [11].
Differently, we propose a more efficient solution that directly generates a unique
code by implementing � in a different way that exploits query entities. Specifi-
cally, instead of directly ordering sibling vertices by their identifiers (which may
represent the same class), for each sibling vertex v that is not a query entity, we
choose a query entity as its proxy to be ordered by entity identifiers, which is the
one with the alphabetically smallest entity identifier in the subtree rooted at v.
Since subtrees rooted at sibling vertices contain different sets of query entities,
the proxies chosen are different. This successfully gives a total order on each
set of sibling vertices, and thus ensures a unique canonical code for isomorphic
association patterns. For instance, assuming eq

2 alphabetically precedes eq
3, the

unique canonical code for z3 in Fig. 3 will be

eq
1r1C1r2e

q
2$$r1C1r2e

q
3$$$

but not eq
1r1C1r2e

q
3$$r1C1r2e

q
2$$$ ,

(7)

because the proxy for the upper child of eq
1 in Fig. 3 is eq

2, which alphabetically
precedes eq

3, the proxy for the lower child of eq
1. Proxies for all the vertices in an

association pattern z can be found within a single depth-first search of z.
The size of an association is bounded by O(nλ). Let γ be the maximum num-

ber of types that an entity can have. An association can match O(γnλ) associa-
tion patterns, and thus O(|X|γnλ) canonical codes will be generated. Generating
one canonical code takes O(nλ) time, plus O(nλ) time for finding proxies. Over-
all, the algorithm takes O(|X|γnλnλ) time to generate all the canonical codes
to be counted, but γ, n, λ are all very small in practice.

4.2 Partitioning-Based Performance Improvement

Enumerating association patterns and generating canonical codes for them can
be time-consuming. To improve the performance, we aim to divide X into mutu-
ally disjoint partitions, and ensure that only the associations in the same par-
tition can match a common association pattern. Then, when mining frequent
association patterns, we can ignore partitions containing fewer than τ |X| asso-
ciations, without spending time processing association patterns they match.

We observe that two associations can match a common association pattern
only if they: (a) consist of the same number of vertices, and (b) have the same set
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of arc labels (i.e., relations). We divide X based on a combination of these two
metrics. For instance, x1 and x2 in Fig. 2 will be put in the same partition because
both of them consist of five vertices and their arc labels are both {r1, r2, r3, r4},
whereas x3 is in a different partition because its arc labels are {r2, r3, r4, r5}.

5 Experiments

We tested the performance of the proposed algorithms on an E3-1226 v3 with
24GB memory for JVM. Entity-relation graphs and entities’ types were stored
in memory. Distance oracles were stored in a MySQL database on disk.

5.1 Datasets and Test Queries

Datasets. Experiments were conducted on two widely used RDF datasets.

– LinkedMDB1 provided RDF data about movies and related entities like actors
and directors. After filtering out RDF triples involving literals or rdf:type, an
entity-relation graph was obtained, consisting of 1,327,069 entities as vertices
and 2,132,796 arcs. Entities’ types were derived from RDF triples involving
rdf:type.

– DBpedia2 provided encyclopedic RDF data extracted from Wikipedia.
After filtering out RDF triples involving literals, an entity-relation graph
was obtained from the Mapping-based Properties dataset, consisting of
4,337,485 entities as vertices and 15,007,564 arcs. Entities’ types were derived
from the Mapping-based Types dataset.

For entities having no type information, owl:Thing was added to be their type.
To characterize the two entity-relation graphs, we randomly selected

10,000 pairs of entities from each graph, and tested whether they were con-
nected by paths and if so, calculated the distance between them. As shown in
Table 1, in LinkedMDB, most pairs of entities (77.20 %) were connected, and
their average and median distances were 6.61 and 7, respectively, showing the
small-world effect, which was even more pronounced on DBpedia. The results
revealed two findings.

Table 1. Distance between entities

% of connected entities Distance between connected entities

Average Median

LinkedMDB 77.20 % 6.61 7

DBpedia 96.41 % 5.06 5

1 http://www.cs.toronto.edu/∼oktie/linkedmdb/linkedmdb-latest-dump.zip.
2 http://wiki.dbpedia.org/Downloads2015-04.

http://www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-latest-dump.zip
http://wiki.dbpedia.org/Downloads2015-04
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– An exact (not approximate) distance oracle was needed for effective distance-
based pruning on such small-world graphs as discussed in Sect. 3.3.

– The diameter constraint had to be set to a small value (≤ 4), because larger
values would require searching almost the entire entity-relation graph, and
could find too many paths and associations to fit in memory.

Test Queries. Test queries were constructed under different settings of diam-
eter constraint (λ) and number of query entities (n). For each combination of
λ ∈ {2, 4} and n ∈ {2, 3, 4, 5}, we randomly selected 1,000 sets of n query entities
from each of the two entity-relation graphs as test queries.

5.2 Association Finding

Algorithms. Three algorithms for association finding were tested:

– BSC: the basic algorithm described in Sect. 3.1, which can be regarded as
an extension of the existing bi-directional BFS algorithm for finding paths
between two entities [10],

– PRN: the improved algorithm using distance-based search space pruning
described in Sects. 3.2 and 3.3, and

– PRN-1: a variant of PRN that would not try to prune the search space at the
last level of search, and thus might exclude fewer paths than PRN but could
reduce the number of distance computations, achieving a different trade-off.

In PRN and PRN-1, the distance between two vertices would be cached in
memory after being computed for the first time. However, to avoid distorting
the results of performance tests, the cache would be cleared after every single
run of an algorithm on a test query.

Results. We ran each algorithm five times on each test query, and took the
median running time. Then we calculated the average running time per query
used by each algorithm on all the test queries under each setting of λ and n.

As shown in Fig. 4 on a logarithmic scale, when λ = 2, all the three algorithms
were very fast on both datasets, using not more than 4ms per query. PRN and

Fig. 4. Running time of association finding under λ = 2.
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Fig. 5. Running time of association finding under λ = 4.

Table 2. Number of distance computations

Dataset Algorithm λ = 2 λ = 4

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

LinkedMDB PRN 2.0 3.0 4.0 5.0 3,055.3 1,525.6 836.0 144.5

PRN-1 2.0 3.0 4.0 5.0 2.9 4.0 4.8 5.7

DBpedia PRN 2.2 3.0 4.0 5.0 32,530.2 24,061.5 19,057.1 15,346.5

PRN-1 2.0 3.0 4.0 5.0 5.7 8.9 9.1 13.0

PRN-1 were relatively slow because the search space was very small when λ = 2,
so that distance computation for pruning took more time than it saved.

Distance-based pruning proved to be effective when the search space became
large. As shown in Fig. 5 on a logarithmic scale, when λ = 4, PRN-1 used
not more than 34ms per query, being 55 %–548 % faster than BSC on Linked-
MDB, and 40 %–712 % faster on DBpedia. The difference rose when increasing n
because given a larger number of query entities (i.e., n), more distances could
be exploited in graph search and the search space would be more likely to be
pruned.

PRN was slower than BSC and PRN-1 because, compared with PRN-1, it
also tried to prune the search space at the last level of search, which required
computing distances between much more pairs of entities, as shown in Table 2.
However, each of those computations could exclude at most one path, as opposed
to a possibly large branch of search stemming from a path when pruning at earlier
levels of search, thereby being cost-ineffective.

5.3 Frequent Association Pattern Mining

Approaches. Two algorithms for frequent association pattern mining were
tested:

– BSC: the basic algorithm described in Sect. 4.1, whose running time was inde-
pendent of the relative frequency threshold (τ), and

– PRT: the improved algorithm using partitions described in Sect. 4.2, with τ =
5% or τ = 25%.
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Fig. 6. Running time of frequent association pattern mining under λ = 4.

Results. We ran each algorithm five times on each test query that resulted in
at least two associations when λ = 4, and took the median running time. Then
we calculated the average running time per query used by each algorithm on all
the test queries resulting in the same number of associations.

As shown in Fig. 6 on a log-log scale, all the algorithms were reasonably fast
on both datasets for 10,000 or fewer associations, using not more than 21ms
and 65ms per query on LinkedMDB and DBpedia, respectively. For larger sets
of associations on DBpedia, hundreds or thousands of milliseconds was used.
Actually, the reported running time had the potential to be reduced by easily
parallelizing the algorithms, e.g., enumerating association patterns for different
associations in parallel, and generating canonical codes for different association
patterns in parallel.

When the number of associations was small, the difference between BSC and
PRT was not significant. On most queries resulting in 5,000 or more associations
on DBpedia, PRT was 13 %–722 % faster than BSC when τ = 25%, showing the
effectiveness of using partitions. However, PRT was slower than BSC on some
queries particularly when τ = 5% because only very small partitions could be
occasionally ignored so that computing partitions took more time than it saved.

5.4 Discussion

In the experiments, we found two limitations of our approach.
Firstly, to find associations, although PRN-1 was very fast when λ ∈ {2, 4},

using not more than 34ms per query on two fairly large datasets, it frequently
used the memory up when we tried to increase λ to 6. That was due to the small-
world effect; there were indeed quite many associations to find when λ = 6. If
some of such long-distance associations were believed to be useful according to
a certain ranking criterion, graph search could leverage the criterion to prune
the search space and return not all but top-ranked associations. However, that
would be a different research problem having its own applications [13].

Secondly, to mine frequent association patterns, associations were partitioned
so that it was possible to avoid enumerating association patterns for some asso-
ciations and generating canonical codes for them. However, to put an association
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into the right partition according to the number of its vertices and the set of its
arc labels, the running time was linear with its size, being asymptotically equiv-
alent to the time for generating its canonical code. Therefore, partitioning could
not fundamentally improve the performance of the mining algorithm, and did
not appear to be consistently superior to the basic algorithm in the experiment.
One possibly essential improvement would be to integrate frequent association
pattern mining into association finding. For instance, it would be interesting to
combine our approach with the techniques in [19].

6 Related Work

Numerous research efforts have been made to find associations between two enti-
ties, and they define association in different ways [3,7,15]. In a seminal work [3],
four types of associations are discussed. Among others, an association between
two entities can be a path in an entity-relation graph that connects the two enti-
ties. Although recent attempts propose to merge certain paths to better explain
relatedness between two entities [7,15], the path-based straightforward defini-
tion is adopted by most of the subsequent researches, which mainly focus on
two problems: how to efficiently find all the paths of a limited length between
two entities [10], and how to help users explore such a possibly very large set of
paths [2,5,6,8,20]. Concerning the latter problem, one line of work studies the
ranking of paths to show users more important paths earlier [2,5]. Complemen-
tary to that, other solutions allow users to filter paths by specifying keywords
appearing on the paths [20], relations and classes of entities contained in the
paths [8], or frequent patterns of the paths [6].

Different from the above efforts, in this work we aim to find associations
between multiple (i.e., two or more) entities in an entity-relation graph. It goes
beyond simply finding paths between all pairs of entities [9], but requires con-
solidating those paths into concise structures. For instance, in [4,12,17], their
goal is to find an optimal association between multiple entities that is a subgraph
connecting those entities via a limited number of other entities and maximizing a
“goodness” function. In [13], the goal is to find top-k minimum-cost Steiner trees
connecting those entities. Differently, we deal with unweighted graphs because
we aim to find not top-ranked associations but all the associations having a lim-
ited diameter, and then identify their frequent patterns to provide a conceptual
abstract of them. This extends our previous work on mining frequent patterns
of paths connecting two entities [6], and complements the existing approaches
to ranking associations between multiple entities [4,12,13,17].

Compared with a recent work on mining frequent patterns of associations con-
necting multiple entities in an entity-relation graph [19], our work has made two
technical advances. Firstly, in [19], associations are efficiently found by merging
paths of a limited length that are materialized in an index. However, it has two
limitations: (a) the size of that index increases exponentially with the length of
path, and may not be affordable for large datasets and long paths, and (b) when
a larger diameter constraint is given, the index may have to be rebuilt to include
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longer paths. By comparison, to achieve a trade-off between time for computing
and space for materializing, we materialize not paths but only a distance oracle
which has a fixed, affordable size; using that, paths not taking part in any valid
association can be efficiently pruned. Besides, once a distance oracle is built, it
can work with arbitrarily large diameter constraints. Secondly, in [19], an asso-
ciation pattern (which is tree-structured) is formed by merging path patterns.
That may result in structurally isomorphic association patterns that trivially
differ in the designation of root. We eliminate such duplicates by defining and
generating a canonical code for each pattern.

7 Conclusion

We have presented efficient algorithms for finding associations connecting a set
of query entities in graph-structured data, and mining their frequent association
patterns to summarize major results for exploration. Experiment results show
that our algorithms are reasonably fast on large, real datasets. They can find
applications in many areas where finding associations is a common information
need. The novel idea of using a distance oracle to compute distances for pruning
the search space may also benefit the study of other research problems such as
semantic search and query processing over graph-structured data.

As discussed at the end of the experiments, to further improve the per-
formance of our algorithms, one promising direction is to incorporate ranking
criteria (if any) into graph search, and to embed frequent association pattern
mining in association finding. This will be our future work. Besides, we have
found that sometimes a large number of frequent association patterns can be
found, some of which have overlapping meanings and some are not so meaning-
ful to users. It inspires us to consider selecting appropriate ones from all the
frequent association patterns, to help users effectively explore associations.
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