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Abstract. Navigational graph queries are an important class of queries
that can extract implicit binary relations over the nodes of input graphs.
Most of the navigational query languages used in the RDF community,
e.g. property paths in W3C SPARQL 1.1 and nested regular expres-
sions in nSPARQL, are based on the regular expressions. It is known
that regular expressions have limited expressivity; for instance, some nat-
ural queries, like same generation-queries, are not expressible with regu-
lar expressions. To overcome this limitation, in this paper, we present
cfSPARQL, an extension of SPARQL query language equipped with
context-free grammars. The cfSPARQL language is strictly more expres-
sive than property paths and nested expressions. The additional expres-
sivity can be used for modelling graph similarities, graph summarization
and ontology alignment. Despite the increasing expressivity, we show
that cfSPARQL still enjoys a low computational complexity and can be
evaluated efficiently.

1 Introduction

The Resource Description Framework (RDF) [30] recommended by World Wide
Web Consortium (W3C) is a standard graph-oriented model for data interchange
on the Web [6]. RDF has a broad range of applications in the semantic web,
social network, bio-informatics, geographical data, etc. [1]. Typical access to
graph-structured data is its navigational nature [12,16,21]. Navigational queries
on graph databases return binary relations over the nodes of the graph [9]. Many
existing navigational query languages for graphs are based on binary relational
algebra such as XPath (a standard navigational query language for trees [25])
or regular expressions such as RPQ (regular path queries) [24].

SPARQL [32] recommended by W3C has become the standard language for
querying RDF data since 2008 by inheriting classical relational languages such
as SQL. However, SPARQL only provides limited navigational functionalities
for RDF [28,37]. Recently, there are several proposed languages with naviga-
tional capabilities for querying RDF graphs [3–5,7,11,19,26,28,35]. Roughly,
Versa [26] is the first language for RDF with navigational capabilities by using
XPath over the XML serialization of RDF graphs. SPARQLeR proposed by
Kochut et al. [19] extends SPARQL by allowing path variables. SPARQL2L pro-
posed by Anyanwu et al. [7] allows path variables in graph patterns and offers
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good features in nodes and edges such as constraints. PSPARQL proposed by
Alkhateeb et al. [5] extends SPARQL by allowing regular expressions in general
triple patterns with possibly blank nodes and CASPAR further proposed by
Alkhateeb et al. [3,4] allows constraints over regular expressions in PSPARQL
where variables are allowed in regular expressions. nSPARQL proposed by Pérez
et al. [28] extends SPARQL by allowing nested regular expressions in triple pat-
terns. Indeed, nSPARQL is still expressible in SPARQL if the transitive clo-
sure relation is absent [37]. In March 2013, SPARQL 1.1 [33] recommended by
W3C allows property paths which strengthen the navigational capabilities of
SPARQL1.0 [11,35].

However, those regular expression-based extensions of SPARQL are still lim-
ited in representing some more expressive navigational queries which are not
expressed in regular expressions. Let us consider a fictional biomedical ontology
mentioned in [31] (see Fig. 1). We are interested in a navigational query about
those paths that confer similarity (e.g., between Gene(B) and Gene(C)), which
suggests a causal relationship (e.g., between Gene(S) and Phenotype(T)). This
query about similarity arises from the well-known same generation-query [2],
which is proven to be inexpressible in any regular expression. To express the
query, we have to introduce a query embedded with a context-free grammar
(CFG) for expressing the language of {wwT |w is a string}[31] where wT is the
converse of w. For instance, if w = “abcdfe” then wT = “e−1f−1d−1c−1b−1a−1”.
As we know, CFG has more expressive power than any regular expression [18].
Moreover, the context-free grammars can provide a simplified more user-friendly
dialect of Datalog [1] which still allows powerful recursion [18]. Besides, the
context-free graph queries have also practical query evaluation strategies. For
instance, there are some applications in verification [20]. So it is interesting to
introduce a navigational query embedded with context-free grammars to express
more practical queries like the same generation-query.

A proposal of conjunctive context-free path queries (written by Helling’s
CCFPQ) for edge-labeled directed graphs has been presented by Helling [14] by
allowing context-free grammars in path queries. A naive idea to express same
generation-queries is transforming this RDF graph to an edge-labeled directed
graph via navigation axes [28] and then using Helling’s CCFPQ since an RDF
graph can be intuitively taken as an edge-labeled directed graph. However, this
transformation is difficult to capture the full information of this RDF graph since
there exist some slight differences between RDF graphs and edge-labeled directed
graphs, particularly regarding the connectivity [13], thus it could not express
some regular expression-based path queries on RDF graphs. For instance, a
nested regular expression (nre) of the form axis::[e] on RDF graphs in nSPARQL
[28], is always evaluated to the empty set over any edge-labeled directed graph.
That is to say, an nre of the form “axis::[e]” is hardly expressible in Helling’s
CCFPQ.

To represent more expressive queries with efficient query evaluation is a
renewed interest topic in the classical topic of graph databases [2]. Hence, in
this paper, we present a context-free extension of path queries and SPARQL
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Fig. 1. A biomedical ontology [31]

queries on RDF graphs which can express both nre and nSPARQL [28]. Fur-
thermore, we study several fundamental properties of the proposed context-free
path queries and context-free SPARQL queries. The main contributions of this
paper can be summarized as follows:

– We present context-free path queries (CFPQ) (including conjunctive context-
free path queries (CCFPQ), union of simple conjunctive context-free path
queries (UCCFPQs), and union of conjunctive context-free path queries
(UCCFPQ) for RDF graphs and find that CFPQ, CCFPQ, and UCCFPQ
have efficient query evaluation where the query evaluation has the polyno-
mial data complexity and the NP-complete combined complexity. Finally, we
implement our CFPQs and evaluate experiments on some popular ontologies.

– We discuss the expressiveness of CFPQs by referring to nested regular expres-
sions (nre). We show that CFPQ, CCFPQ, UCCFPQs, and UCCFPQ exactly
express four fragments of nre, basic nre “nre0”, union-free nre “nre0(N)”,
nesting-free nre “nre0(|)”, and full nre, respectively (see Fig. 2). The query
evaluation of cfSPARQL has the same complexity as SPARQL.

– We propose context-free SPARQL (cfSPARQL) and union of conjunctive
context-free SPARQL (uccfSPARQL) based on CFPQ and UCCFPQ, respec-
tively. It shows that cfSPARQL has the same expressiveness as that of uccf-
SPARQL. Furthermore, we prove that cfSPARQL can strictly express both
SPARQL and nSPARQL (even nSPARQL¬: a variant of nSPARQL by allow-
ing nre with negation “nre¬) (see Fig. 3).

Organization of the Paper. Section 2 recalls nSPARQL and context-free gram-
mar. Section 3 defines CFPQ. Section 4 discusses the expressiveness of CFPQ.
Section 5 presents cfSPARQL and Sect. 6 discusses the relations on nre with
negation. Section 7 evaluates experiments. We conclude in Sect. 8. Due to the
space limitation, all proofs and some further preliminaries are omitted but they
are available in an extended technical report in arXiv.org [36].
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2 Preliminaries

In this section, we introduce the language nSPARQL and context-free grammar.

2.1 The Syntax and Semantics of nSPARQL

In this subsection, we recall the syntax and semantics of nSPARQL, largely
following the excellent expositions [27,28].

RDF Graphs. An RDF statement is a subject-predicate-object structure, called
RDF triple which represents resources and the properties of those resources. For
the sake of simplicity similar to [28], we assume that RDF data is composed only
IRIs1. Formally, let U be an infinite set of IRIs. A triple (s, p, o) ∈ U × U × U
is called an RDF triple. An RDF graph G is a finite set of RDF triples. We use
adom(G) to denote the active domain of G, i.e., the set of all elements from U
occurring in G.

For instance, a biomedical ontology shown in Fig. 1 can be modeled in an
RDF graph named as Gbio where each labeled-edge of the form a

p→ b is directly
translated into a triple (a, p, b).

Paths and Traces. Let G be an RDF graph. A path π = (c1c2 . . . cm) in G is a
non-empty finite sequence of constants from G, where, for every i ∈ {1, . . . , m −
1}, ci and ci+1 exactly occur in the same triple of G (i.e., (ci, c, ci+1), (ci, ci+1, c),
and (c, ci, ci+1) etc.). Note that the precedence between ci and ci+1 in a path is
independent of the positions of ci, ci+1 in a triple.

In nSPARQL, three different navigation axes, namely, next , edge, and node,
and their inverses, i.e., next−1, edge−1, and node−1, are introduced to move
through an RDF triple (s, p, o) [28].

Let Σ = {axis, axis::c|c ∈ U} where axis ∈ {self ,next , edge,node,
next−1, edge−1,node−1}. Let G be an RDF graph. We use Σ(G) to denote the
set of all symbols {axis, axis::c|c ∈ adom(G)} occurring in G.

Let π = (c1 . . . cm) be a path in G. A trace of path π is a string over Σ(G)
written by T (π) = l1 . . . lm−1 where, for all i ∈ {1, . . . , m−1}, (cici+1) is labeled
by li and li is of the form axis, axis::c, axis−1, or axis−1::c [28]. We use Trace(π)
to denote the set of all traces of π.

Note that it is possible that a path has multiple traces since any two nodes
possibly occur in the multiple triples. For example, consider an RDF graph
G = {(a, b, c), (a, c, b)} and given a path π = (abc), both (edge::c)(node::a) and
(next ::c)(node−1::a) are traces of π.

For instance, in the RDF graph Gbio (see Fig. 1), a path from Gene(B)
to Gene(C) has a trace: (next ::locatedIn)(next−1::linkedTo)(next ::linkedTo)
(next−1::locatedIn).

1 A standard RDF data is composed of IRIs, blank nodes, and literals. For the purposes
of this paper, the distinction between IRIs and literals will not be important.
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Nested Regular Expressions. Nested regular expressions (nre) are defined by
the following formal syntax:

e := axis|axis::c (c ∈ U)|axis::[e]|e/e|e|e|e∗.

Here the nesting nre is of the form axis::[e].
For simplification, we denote some interesting fragments of nre as follows:

– nre0: basic nre, i.e., nre only consisting of “axis”, “/”, and “∗”;
– nre0(|): basic nre by adding the operator “|”;
– nre0(N) to basic nre by adding nesting nre axis::[e].

Patterns. Assume an infinite set V of variables, disjoint from U . A nested
regular expression triple (or nre-triple) is a tuple of the form (?x, e, ?y), where
?x, ?y ∈ V and e is an nre2.

Formally, nSPARQL (graph) patterns are recursively constructed from nre-
triples:

– An nre-triple is an nSPARQL pattern;
– All P1 UNION P2, P1 AND P2, and P1 OPT P2 are nSPARQL patterns if P1

and P2 are nSPARQL patterns;
– P FILTER C if P is an nSPARQL pattern and C is a constraint;
– SELECTS(P ) if P is an nSPARQL pattern and S is a set of variables.

Semantics. Given an RDF graph G and an nre e, the evaluation of e on G,
denoted by �e�G, is a binary relation. More details can be found in [28]. Here,
we recall the semantics of nesting nre of the form axis::[e] as follows:

�axis::[e]�G = {(a, b)|∃ c, d ∈ adom(G), (a, b) ∈ �axis::c�G and (c, d) ∈ �e�G}.

The semantics of nSPARQL patterns is defined in terms of sets of so-called
mappings, which are simply total functions μ : S → U on some finite set S of
variables. We denote the domain S of μ by dom(μ).

Basically, the semantics of an nre-triple (u, e, v) is defined as follows:

�(u, e, v)�G = {μ : {u, v} ∩ V → U |(μ(u), μ(v)) ∈ �e�G}.

Here, for any mapping μ and any constant c ∈ U , we agree that μ(c) equals c
itself.

Let P be an nSPARQL pattern, the semantics of P on G, denoted by �P �G,
is analogously defined as usual following the semantics of SPARQL [27,28].

Query Evaluation. A SPARQL (SELECT) query is an nSPARQL pattern. Given
a RDF graph G, a pattern P , and a mapping μ, the query evaluation problem of
nSPARQL is to decide whether μ is in �P �G. The complexity of query evaluation
problem is PSpace-complete [27].

2 In nSPARQL [28], nre-triples allow a general form (v, e, u) where u, v ∈ U ∪ V . In
this paper, we mainly consider the case u, v ∈ V to simplify our discussion.
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2.2 Context-Free Grammar

In this subsection, we recall context-free grammar. For more details, we refer the
interested readers to some references about formal languages [18].

A context-free grammar (COG) is a 3-tuple G = (N,A,R) 3 where

– N is a finite set of variables (called non-terminals);
– A is a finite set of constants (called terminals);
– R is a finite set of production rules r of the form v → S, where v ∈ N and

S ∈ (N ∪ A)∗ (the asterisk ∗ represents the Kleene star operation). We write
v → ε if ε is the empty string.

A string over N ∪ A can be written to a new string over N ∪ A by applying
production rules. Consider a string avb and a production rule r : v → avb, we
can obtain a new string aavbb by applying this rule r one time and another new
string aaavbbb by applying the rule r twice. Analogously, strings with increasing
length can be obtained in this rule.

Let S, T ∈ (N ∪ A)∗. We write (S G→ T ) if T can be obtained from S by
applying production rules of G within a finite number of times.

The language of grammar G = (N,A,R) w.r.t. start non-terminal v ∈ N is
defined by L(Gv) = {S a finite string over A |v G→ S}.

For example, G = (N,A,R) where N = {v}, A = {a, b}, and R = {v →
ab, v → avb}. Thus L(Gv) = {anbn|n ≥ 1}.

3 Context-Free Path Queries

In this section, we introduce context-free path queries on RDF graphs based
on context-free path queries on directed graphs [14] and nested regular
expressions [28].

3.1 Context-Free Path Queries and Their Extensions

In this subsection, we firstly define conjunctive context-free path queries on RDF
graphs and then present some variants (it also can been seen as extensions).

Conjunctive Context-Free Path Queries. In this paper, we assume that
N ∩ V = ∅ and A ⊆ Σ for all CFG G = (N,A,R).

Definition 1. Let G = (N,A,R) be a CFG and m a positive integer. A con-
junctive context-free path query (CCFPQ) is of the form q(?x, ?y)4, where,

q(?x, ?y) :=
m∧

i=1

αi, (1)

where
3 We deviate from the usual definition of context-free grammar by not including a

special start non-terminal following [14].
4 In this paper, we simply write a conjunctive query as a Datalog rule.
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– αi is a triple pattern either of the form (?x, ?y, ?z) or of the form v(?x, ?y);
– {?x, ?y} ⊆ vars(q) where vars(q) denotes a collection of all variables occurring

in the body of q;
– {v1, . . . , vm} ⊆ N .

We regard the name of query q(?x, ?y) as q and call the right of Eq. (1) as the
body of q.

Remark 1. In our CCFPQ, we allow a triple pattern of the form (?x, ?y, ?z) to
characterize those queries w.r.t. ternary relationships such as nre-triple patterns
of nSPARQL [28] to be discussed in Sect. 4. The formula v(?x, ?y) is used to
capture context-free path queries [14].

We say a simple conjunctive context-free path query (written by CCFPQs)
if only the form v(?x, ?y) is allowed in the body of a CCFPQ. We also say a
context-free path query (written by CFPQ) if m = 1 in the body of a CCFPQs.

Semantically, let G = (N,A,R) be a CFG and G an RDF graph, given a
CCFPQ q(?x, ?y) of the form (1), �q(?x, ?y)�G is defined as follows:

{μ|{?x,?y}|dom(μ) = vars(q) and ∀ i = 1, . . . ,m, μ|vars(αi) ∈ �αi�G}, (2)

where the semantics of v(?x, ?y) over G is defined as follows:

�v(?x, ?y)�G = {μ|dom(μ) = {?x, ?y} and
∃π = (μ(?x)c1 . . . cmμ(?y)) a path in G,Trace(π) ∩ L(Gv) �= ∅}.

Intuitively, �v(?x, ?y)�G returns all pairs connected by a path in G which
contains a trace belonging to the language generated from this CFG starting at
non-terminal v.

Example 1. Let G = (N,A,R) be a CFG where N = {u, v}, A = {next ::
locatedIn,next−1::locatedIn,next ::linkedTo,next−1::linkedTo}, and P = {v →
(next ::locatedIn)u (next−1::locatedIn), u → (next−1::linkedTo)u (next ::
linkedTo), u → ε}. Consider a CFPQ q be of the form v(?x, ?y). The query
q represents the relationship of similarity (between two genes) since L(Gv) =
{(next−1::locatedIn)n(next−1::linkedTo)(next ::linkedTo)(next ::locatedIn)n|n ≥
1}. Consider the RDF graph Gbio in Fig. 1, �q(?x, ?y)�Gbio = {(?x =
Gene(B), ?y = Gene(C))}. Clearly, the query q returns all pairs with similarity.

Query Evaluation. Let G = (N,A,R) be a CFG and G an RDF graph. Given
a CCFPQ q(?x, ?y) and a tuple μ = (?x = a, ?y = b), the query evaluation
problem is to decide whether μ ∈ �q(?x, ?y)�G, that is, whether the tuple μ
is in the result of the query q on the RDF graph G. There are two kinds of
computational complexity in the query evaluation problem [1,2]:

– the data complexity refers to the complexity w.r.t. the size of the RDF graph
G, given a fixed query q; and

– the combined complexity refers to the complexity w.r.t. the size of query q and
the RDF graph G.
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A CFG G = (N,A,R) is said to be in norm form if all of its production
rules are of the form v → uw, v → a, or v → ε where v, u, w ∈ N and a ∈ A.
Note that this norm form deviates from the usual Chomsky Normal Form [22]
where the start non-terminals are absent. Indeed, every CFG is equivalent to a
CFG in norm form, that is, for every CFG G, there exists some CFG G′ in norm
form constructed from G in polynominal time such that L(Gv) = L(G′

v) for every
v ∈ N [14].

Let G be an RDF graph and G = (N,A,R) a CFG. Given a non-terminal
v ∈ N , let Rv(G) be the context-free relation of G w.r.t. v can be defined as
follows:

Rv(G) := {(a, b)|∃π = (ac1 . . . cmb) a path in G,Trace(π) ∩ L(Gv) �= ∅}. (3)

Conveniently, the query evaluation of CCFPQ over an RDF graph can be
reduced into the conjunctive first-order query over the context-free relations.
Based on the conjunctive context-free recognizer for graphs presented in [14], we
directly obtain a conjunctive context-free recognizer (see Algorithm 1) for RDF
graphs by adding a convertor to transform an RDF graph into an edge-labeled
directed graph (see Algorithm 2).

Algorithm 1. Conjunctive context-free recognizer for RDF
Input: G: an RDF graph; G = (N, A, R): a CFG in norm form; v ∈ N .
Output: {(v, a, b)|(a, b) ∈ Rv(G)}
1: Θ:={(v, a, a)|(a ∈ adom(G)) ∧ (v → ε ∈ P )}
2: ∪{(v, a, b)|((a, l, b) ∈ Convertor(G)) ∧ (v → l) ∈ P}
3: Θnew := Θ
4: while Θnew �= ∅ do
5: pick and remove a (v, a, b) from Θnew

6: for all (u, a′, a) ∈ Θ do
7: for all v′ → uv ∈ R ∧ ((v′, a′, b) �∈ Θ) do
8: Θnew:=Θnew ∪ {(v′, a′, b)}
9: Θ:=Θ ∪ {(v′, a′, b)}

10: end for
11: end for
12: for all (u, b, b′) ∈ Θ do
13: for all u′ → vu ∈ R ∧ ((u′, a, b′) �∈ Θ) do
14: Θnew:=Θnew ∪ {(u′, a, b′)}
15: Θ:=Θ ∪ {(u′, a, b′)}
16: end for
17: end for
18: end while
19: return Θ

Given a path π and a context-free grammar G, Algorithm 1 is sound and
complete to decide whether the path π in RDF graphs has a trace generated
from the grammar G.
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Algorithm 2. RDF convertor
Input: G: an RDF graph
Output: Convertor(G) = (V, E)
1: V:=adom(G)
2: E :={(c, self , c), (c, self ::c, c)|c ∈ adom(G)}
3: Gnew := G
4: while Gnew �= ∅ do
5: pick and remove a triple (s, p, o) from Gnew

6: E :=E ∪ {(s,next ::p, o), (s,next , o), (o,next−1::p, s), (o,next−1, s),
(s, edge::o, p), (s, edge, p), (p, edge−1::o, s), (p, edge−1, s),
(p,node::s, o), (p,node, o), (o,node−1::s, p), (o,node−1, p)}

7: end while
8: return Convertor(G)

Proposition 1. Let G be an RDF graph and G = (N,A,R) a CFG in norm
form. For every v ∈ N , let Θ be the result computed in Algorithm1, (v, a, b) ∈ Θ
if and only if (a, b) ∈ Rv(G).

Moreover, we can easily observe the worst-case complexity of Algorithm 1
since the complexity of Algorithm 2 is O(|G|).
Proposition 2. Let G be an RDF graph and G = (N,A,R) a CFG. Algorithm1
applied to G and G has a worst-case complexity of O((|N ||G|)3).

As a result, we can conclude the following proposition.

Proposition 3. The followings hold:

1. The query evaluation of CCFPQ has polynomial data complexity;
2. The query evaluation of CCFPQ has NP-complete combined complexity.

Union of CCFPQ. An extension of CCFPQ capturing more expressive power
such as disjunctive capability is introducing the union of CCFPQ. For instance,
given a gene (e.g., Gene(B)) in the biomedical ontology (see Fig. 1), we wonder
to find those genes which are relevant to this gene, that is, those genes either
are similar to it (e.g., Gene(C)) or belong to the same pathway (e.g., Gene(S)).

A union of conjunctive context-free path query (UCCFPQ) is of the form

q(?x, ?y) :=
m∨

i=1

qi(?x, ?y), (4)

where qi(?x, ?y) is a CCFPQ for all i = 1, . . . , m.
Analogously, we can define union of simple conjunctive context-free path

query written by UCCFPQs.
Semantically, let G be an RDF graph, we define

�q(?x, ?y)�G =
m⋃

i=1

�qi(?x, ?y)�G, (5)

where �qi(?x, ?y)�G is defined as the semantics of CCFPQ for all i = 1, . . . ,m.
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In Example 1, based on G = (N,A,R), we construct a CFG G′ = (N ′, A′, R′)
where N ′ = N ∪ {s}, A = A ∪ {next ::belongsTo,next−1::belongsTo}, and
R′ = R ∪ {s → (next ::belongsTo)s(next−1::belongsTo)}. Consider a UCCFPQ
q(?x, ?y) := v(?x, ?y) ∨ s(?x, ?y), �q(?x, ?y)�Gbio = {(?x = Gene(B), ?y =
Gene(C)), (?x = Gene(B), ?y = Gene(S))}. That is, �q(?x, ?y)�Gbio returns all
pairs where the first gene is relevant to the latter.

Note that the query evaluation of UCCFPQ has the same complexity as that
of the evaluating of CCFPQ since we can simply evaluate a number (linear in
the size of a UCCFPQ) of CCFPQs in isolation [2].

4 Expressivity of (U)(C)CFPQ

In this section, we investigate the expressivity of (U)(C)CFPQ by referring to
nested regular expressions [28] and fragments of nre.

We discuss the relations between variants of UCCFPQ and variants of
(nested) regular expressions and obtain the following results:

1. nre0-triples can be expressed in CFPQ;
2. nre0(N)-triples can be expressed in CCFPQ;
3. nre0(|)-triples can be expressed in UCCFPQs;
4. nre-triples can be expressed in UCCFPQ.

1. nre0 in CFPQ. The following proposition shows that CFPQ can express
nre0-triples.

Proposition 4. For every nre0-triple (?x, e, ?y), there exist some CFG G =
(N,A,R) and some CFPQ q(?x, ?y) such that for every RDF graph G, we have
�(?x, e, ?y)�G = �q(?x, ?y)�G.

2. nre0(N) in CCFPQ. Let G be a CFG. A CCFPQ q(?x, ?y) is in nested norm
form if the following holds:

q(?x, ?y) := ((?x′, ?y′, ?z′) ∧ v(?x, ?y)) ∧ q1(?u, ?w), (6)

where

– {?x, ?y} ∩ {?x′, ?y′, ?z′} �= ∅;
– {?x′, ?y′, ?z′} ∩ {?u, ?w} �= ∅;
– q1(?u, ?w) is a CCFPQ.

Note that (?x′, ?y′, ?z′) is used to express a nested nre of the form axis::[e] and
v(?x, ?y) is necessary to express a nested nre of the form self ::[e].

The following proposition shows that CCFPQ can express nre0(N)-triples.

Proposition 5. For every nre0(N)-triple (?x, e, ?y), there exist a CFG G =
(N,A,R) and a CCFPQ q(?x, ?y) in nested norm form (6) such that for every
RDF graph G, we have �(?x, e, ?y)�G = �q(?x, ?y)�G.
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3. nre0(|) in UCCFPQs. Let e be an nre. We say e is in union norm form if e
is of the following form e1|e2| . . . |em where ei is an nre0(N) for all i = 1, . . . , m.

We can conclude that each nre-triple is equivalent to an nre in union norm
form.

Proposition 6. For every nre-triple (?x, e, ?y), there exists some e′ in union
norm form such that �(?x, e, ?y)�G = �(?x, e′, ?y)�G for every RDF graph G.

The following proposition shows that UCCFPQs can express nre0(|).
Proposition 7. For every nre0(|)-triple (?x, e, ?y), there exists some CFG G =
(N,A,R) and some UCCFPQs q(?x, ?y) in nested norm form such that for every
RDF graph G, we have �(?x, e, ?y)�G = �q(?x, ?y)�G.

4. nre in UCCFPQ. By Propositions 5 and 7, we can conclude that

Proposition 8. For every nre-triple (?x, e, ?y), there exists some CFG G =
(N,A,R) and some UCCFPQ q(?x, ?y) in nested norm form such that for every
RDF graph G, we have �(?x, e, ?y)�G = �q(?x, ?y)�G.

However, those results above in this subsection are not vice versa since the
context-free language is not expressible in any nre.

Proposition 9. CFPQ is not expressible in any nre.

5 Context-Free SPARQL

In this section, we introduce an extension language context-free SPARQL
(for short, cfSPARQL) of SPARQL by using context-free triple patterns, plus
SPARQL basic operators UNION,AND,OPT,FILTER, and SELECT and its
expressiveness.

A context-free triple pattern (cftp) is of the form (?x,q, ?y) where q(?x, ?y)
is a CFPQ. Analogously, we can define union of conjunctive context-free triple
pattern (for short, uccftp) by using UCCFPQ.

cfSPARQL and Query Evaluation. Formally, cfSPARQL (graph) patterns
are then recursively constructed from context-free triple patterns:

– A cftp is a cfSPARQL pattern;
– A triple pattern of the form (?x, ?y, ?z) is a cfSPARQL pattern;
– All P1 UNION P2, P1 AND P2, and P1 OPT P2 are cfSPARQL patterns if

P1, P2 are cfSPARQL patterns;
– P FILTER C if P is a cfSPARQL pattern and C is a contraint;
– SELECTS(P ) if P is a cfSPARQL pattern and S is a set of variables.

Remark 2. In cfSPARQL, we allow triple patterns of form (?x, ?y, ?z) (see Item
2), which can express any SPARQL triple pattern together with FILTER [38],
to ensure that SPARQL is still expressible in cfSPARQL while SPARQL is not
expressible in nSPARQL since any triple pattern (?x, ?y, ?z) is not expressible
in nSPARQL [28]. Our generalization of nSPARQL inherits the power of queries
without more cost and maintains the coherence between CFPQ and “nested”
nre of the form axis::[e]. Moreover, this extension in cfSPARQL coincides with
our proposed CCFPQ where triple patterns of the form (?x, ?y, ?z) are allowed.
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Semantically, let P be a cfSPARQL pattern and G an RDF graph,
�(?x,q, ?y)�G is defined as �q(?x, ?y)�G and other expressive cfSPARQL pat-
terns are defined as normal [27,28].

Proposition 10. SPARQL is expressible in cfSPARQL but not vice versa.

A cfSPARQL query is a pattern.
We can define union of conjunctive context-free SPARQL query (for short,

uccfSPARQL) by using uccftp in the analogous way.
At the end of this subsection, we discuss the complexity of evaluation problem

of uccfSPARQL queries.
For a given RDF graph G, a uccftp P , and a mapping μ, the query evaluation

problem is to decide whether μ is in �P �G.

Proposition 11. The evaluation problem of uccfSPARQL queries has the same
complexity as the evaluation problem of SPARQL queries.

As a direct result of Proposition 8, we can conclude

Corollary 1. nSPARQL is expressible in uccfSPARQL but not vice versa.

On the Expressiveness of cfSPARQL. In this subsection, we show that cfS-
PARQL has the same expressiveness as uccfSPARQL. In other words, cfSPARQL
is enough to express UCCFPQ on RDF graphs.

Since every cfSPARQL pattern is a uccfSPARQL pattern, we merely show
that uccfSPARQL is expressible in cfSPARQL.

Proposition 12. For every uccfSPARQL pattern P , there exists some cfS-
PARQL pattern Q such that �P �G = �Q�G for any RDF graph G.

6 Relations on (Nested) Regular Expressions with
Negation

In this section, we discuss both the relation between UCCFPQ and nested regular
expressions with negation and the relation between cfSPARQL and variants of
nSPARQL.
Nested Regular Expressions with Negation. A nested regular expression
with negation (nre¬) is an extension of nre by adding two new operators “differ-
ence (e1 − e2)” and “negation (ec)” [37].

Semantically, let e, e1, e2 be three nre¬s and G an RDF graph,

– �e1 − e2�G = {(a, b) ∈ �e1�G|(a, b) �∈ �e2�G};
– �ec�G = {(a, b) ∈ adom(G) × adom(G)|(a, b) �∈ �e�G}.

Analogously, an nre¬-triple pattern is of the form (?x, e, ?y) where e is an
nre¬. Clearly, nre¬-triple pattern is non-monotone.

Since nre is monotone, nre is strictly subsumed in nre¬ [37]. Though property
paths in SPARQL 1.1 [29,33] are not expressible in nre since property paths allow
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the negation of IRIs, property paths can be still expressible in the following
subfragment of nre¬: let c, c1, . . . , cn+m ∈ U ,

e :=next ::c|e/e|self ::[e]|e∗|e+|next−1::[e]|
(next ::c1| . . . |next ::cn|next−1::cn+1| . . . |next−1::cn+m)c.

Note that e+ can be expressible as the expression e∗ − self .

Proposition 13. uccftp is not expressible in any nre¬-triple pattern.

Due to the non-monotonicity of nre¬, we have that nre¬ is beyond the expres-
siveness of any union of conjunctive context-free triple patterns even the star-free
nre¬ (for short, sf-nre¬) where the Kleene star (∗) is not allowed in nre¬.

Proposition 14. sf-nre¬-triple pattern is not expressible in any uccftp.

In short, nre¬-triple pattern and uccftp cannot express each other. Indeed,
negation could make the evaluation problem hard even allowing a limited form
of negation such as property paths [23].
cfSPARQL Can Express nSPARQL¬. Following nSPARQL, we can anal-
ogously construct the language nSPARQL¬ which is built on nre¬, by adding
SPARQL operators UNION,AND,OPT,FILTER, and SELECT.

Though uccftps cannot express nre¬-triple patterns by Proposition 13,
cfSPARQL can express nSPARQL¬ since nSPARQL¬ is still expressible in
nSPARQL [37].

Corollary 2. nSPARQL¬ is expressible in cfSPARQL.

6.1 Overview

Finally, Figs. 2 and 3 provide the implication of the results on RDF graphs for
the general relations between variants of CFPQ and nre and the general rela-
tions between cfSPARQL and nSPARQL where L1 → L2 denotes that L1 is
expressible in L2 and L1 ↔ L2 denotes that L1 → L2 and L2 → L1. Analo-
gously, nSPARQLsf is an extension of SPARQL by allowing star-free nre¬-triple
patterns.

7 Implementation and Evaluation

In this section, we have implemented the two algorithms for CFPQs without any
optimization. Two context-free path queries over RDF graphs were evaluated and
we found some results which cannot be captured by any regular expression-based
path queries from RDF graphs.

The experiments were performed under Windows 7 on a Intel i5-760, 2.80GHz
CPU system with 6GB memory. The program was written in Java 7 with maxi-
mum 2GB heap space allocated for JVM. Ten popular ontologies like foaf, wine,
and pizza were used for testing.
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UCCFPQ nre¬

CCFPQ nre UCCFPQs

nre0(N) CFPQ nre0(|)

nre0

Fig. 2. Known relations between vari-
ants of CFPQ and variants of nre

cfSPARQL uccfSPARQL

nSPARQL¬

nSPARQL

SPARQL

nSPARQLsf

Fig. 3. Known relations between vari-
ants of cfSPARQL and variants of
nSPARQL

Table 1. The evaluation results of Q1 and Q2

Ontology # triples Query 1 Query 2

Time (ms) # results Time (ms) # results

protege 41 468 509 5 0

funding 144 499 296 125 77

skos 254 1044 810 16 1

foaf 454 5027 1929 1154 324

generation 319 6091 2164 13 0

univ-bench 306 20981 2540 532 228

travel 327 13971 2499 281 151

people+pets 703 82081 9472 247 120

biomedical-measure-primitive 459 420604 15156 1068851 9178

atom-primitive 561 515285 15454 4711499 13940

pizza 1980 3233587 56195 255853 4694

wine 2012 4075319 66572 273 79

Query 1. Consider a CFG G1 = (N,A,R) where N = {S}, A =
{next−1::subClassOf,next ::subClassOf,next−1::type,next ::type}, and R = {S →
(next−1::subClassOf)S (next ::subClassOf), S →
(next−1::type)S (next ::type), S → ε}. The query Q1 based on the grammar G1

can return all pairs of concepts or individuals at the same layer of the hier-
archy of RDF graphs. Table 1 shows the experimental results of Q1 over the
testing ontologies. Note that #results denotes that number of pairs of concepts
or individuals corresponding to Q1.

Taking the ontology foaf, for example, the query Q1 over foaf returns pairs of
concepts like (foaf:Document, foaf:Person), which shows that the two concepts,
Document and Person, are at the same layer of the hierarchy of foaf, where the
top concept (owl:Thing) is at the first layer.
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Query 2. Similarly, consider a CFG G2 = (N,A,R) where N =
{S,B}, A = {next−1::subClassOf,next ::subClassOf}, and R = {S → BS,B →
(next ::subClassOf)B (next−1::subClassOf), B → B(next−1::subClassOf)B →
(next ::subClassOf)(next−1::subClassOf), S → ε}. The query Q2 based on
the grammar G2 can return all pairs of concepts which are at adjacent
two layers of the hierarchy of RDF graphs. We also take the ontology
foaf, for example, the query Q2 over foaf returns pairs of concepts like
(foaf:Person, foaf:PersonalProfileDocument), which denotes that Person is at
higher layer than PersonalProfileDocument, since PersonalProfileDocument is
a subclass of Document. Table 1 shows the experimental results of Q2 over the
testing ontologies.

8 Conclusions

In this paper, we have proposed context-free path queries (including some vari-
ants) to navigate through an RDF graph and the context-free SPARQL query
language for RDF built on context-free path queries by adding the standard
SPARQL operators. Some investigation about some fundamental properties of
those context-free path queries and their context-free SPARQL query languages
has been presented. We proved that CFPQ, CCFPQ, UCCFPQs, and UCCFPQ
strictly express basic nested regular expression (nre0), nre0(N), nre0(|), and nre,
respectively. Moreover, uccfSPARQL has the same expressiveness as cfSPARQL;
and both SPARQL and nSPARQL are expressible in cfSPARQL. Furthermore,
we looked at the relationship between context-free path queries and nested regu-
lar expressions with negation (which can express property paths in SPARQL1.1)
and the relationship between cfSPARQL queries and nSPARQL queries with
negation (nSPARQL¬). We found that neither CFPQ nor nre¬ can express each
other while nSPARQL¬ is still expressible in cfSPARQL. Finally, we discussed
the query evaluation problem of CFPQ and cfSPARQL on RDF graphs. The
query evaluation of UCCFPQ maintains the polynomial time data complex-
ity and NP-complete combined complexity the same as conjunctive first-order
queries and the query evaluation of cfSPARQL maintains the complexity as the
same as SPARQL. These results provide a starting point for further research on
expressiveness of navigational languages for RDF graphs and the relationships
among regular path queries, nested regular path queries, and context-free path
queries on RDF graphs.

There are a number of practical open problems. In this paper, we restrict that
RDF data does not contain blank nodes as the same treatment in nSPARQL.
We have to admit that blank nodes do make RDF data more expressive since
a blank node in RDF is taken as an existentially quantified variable [17]. An
interesting future work is to extend our proposed (U)(C)CFPQ for general RDF
data with blank nodes by allowing path variables which are already valid in some
extensions of SPARQL such as SPARQ2L [7], SPARQLeR [19], PSPARQL [5],
and CPSPARQL [3,4], which are popular in querying general RDF data with
blank nodes.
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