
RDF2Vec: RDF Graph Embeddings
for Data Mining

Petar Ristoski(B) and Heiko Paulheim

Data and Web Science Group, University of Mannheim, Mannheim, Germany
{petar.ristoski,heiko}@informatik.uni-mannheim.de

Abstract. Linked Open Data has been recognized as a valuable source
for background information in data mining. However, most data mining
tools require features in propositional form, i.e., a vector of nominal or
numerical features associated with an instance, while Linked Open Data
sources are graphs by nature. In this paper, we present RDF2Vec, an app-
roach that uses language modeling approaches for unsupervised feature
extraction from sequences of words, and adapts them to RDF graphs.
We generate sequences by leveraging local information from graph sub-
structures, harvested by Weisfeiler-Lehman Subtree RDF Graph Kernels
and graph walks, and learn latent numerical representations of entities in
RDF graphs. Our evaluation shows that such vector representations out-
perform existing techniques for the propositionalization of RDF graphs
on a variety of different predictive machine learning tasks, and that fea-
ture vector representations of general knowledge graphs such as DBpedia
and Wikidata can be easily reused for different tasks.

Keywords: Graph embeddings · Linked open data · Data mining

1 Introduction

Linked Open Data (LOD) [29] has been recognized as a valuable source of back-
ground knowledge in many data mining tasks and knowledge discovery in general
[25]. Augmenting a dataset with features taken from Linked Open Data can, in
many cases, improve the results of a data mining problem at hand, while exter-
nalizing the cost of maintaining that background knowledge [18].

Most data mining algorithms work with a propositional feature vector rep-
resentation of the data, i.e., each instance is represented as a vector of features
〈f1, f2, . . . , fn〉, where the features are either binary (i.e., fi ∈ {true, false}),
numerical (i.e., fi ∈ R), or nominal (i.e., fi ∈ S, where S is a finite set of sym-
bols). LOD, however, comes in the form of graphs, connecting resources with
types and relations, backed by a schema or ontology.

Thus, for accessing LOD with existing data mining tools, transformations
have to be performed, which create propositional features from the graphs in
LOD, i.e., a process called propositionalization [10]. Usually, binary features
(e.g., true if a type or relation exists, false otherwise) or numerical features
c© Springer International Publishing AG 2016
P. Groth et al. (Eds.): ISWC 2016, Part I, LNCS 9981, pp. 498–514, 2016.
DOI: 10.1007/978-3-319-46523-4 30



RDF2Vec: RDF Graph Embeddings for Data Mining 499

(e.g., counting the number of relations of a certain type) are used [20,24]. Other
variants, e.g., counting different graph sub-structures are possible [34].

In this work, we adapt language modeling approaches for latent represen-
tation of entities in RDF graphs. To do so, we first convert the graph into a
set of sequences of entities using two different approaches, i.e., graph walks and
Weisfeiler-Lehman Subtree RDF graph kernels. In the second step, we use those
sequences to train a neural language model, which estimates the likelihood of
a sequence of entities appearing in a graph. Once the training is finished, each
entity in the graph is represented as a vector of latent numerical features.

Projecting such latent representations of entities into a lower dimensional
feature space shows that semantically similar entities appear closer to each other.
We use several RDF graphs and data mining datasets to show that such latent
representation of entities have high relevance for different data mining tasks.

The generation of the entities’ vectors is task and dataset independent, i.e.,
once the vectors are generated, they can be used for any given task and any
arbitrary algorithm, e.g., SVM, Naive Bayes, Random Forests, Neural Networks,
KNN, etc. Also, since all entities are represented in a low dimensional feature
space, building machine learning models becomes more efficient. To foster the
reuse of the created feature sets, we provide the vector representations of DBpe-
dia and Wikidata entities as ready-to-use files for download.

The rest of this paper is structured as follows. In Sect. 2, we give an overview
of related work. In Sect. 3, we introduce our approach, followed by an evaluation
in section Sect. 4. We conclude with a summary and an outlook on future work.

2 Related Work

In the recent past, a few approaches for generating data mining features from
Linked Open Data have been proposed. Many of those approaches are supervised,
i.e., they let the user formulate SPARQL queries, and a fully automatic feature
generation is not possible. LiDDM [8] allows the users to declare SPARQL queries
for retrieving features from LOD that can be used in different machine learning
techniques. Similarly, Cheng et al. [3] propose an approach feature generation
after which requires the user to specify SPARQL queries. A similar approach has
been used in the RapidMiner1 semweb plugin [9], which preprocesses RDF data
in a way that it can be further processed directly in RapidMiner. Mynarz and
Svátek [16] have considered using user specified SPARQL queries in combination
with SPARQL aggregates.

FeGeLOD [20] and its successor, the RapidMiner Linked Open Data Exten-
sion [23], have been the first fully automatic unsupervised approach for enriching
data with features that are derived from LOD. The approach uses six different
unsupervised feature generation strategies, exploring specific or generic relations.
It has been shown that such feature generation strategies can be used in many
data mining tasks [21,23].

1 http://www.rapidminer.com/.

http://www.rapidminer.com/


500 P. Ristoski and H. Paulheim

A similar problem is handled by Kernel functions, which compute the dis-
tance between two data instances by counting common substructures in the
graphs of the instances, i.e. walks, paths and trees. In the past, many graph
kernels have been proposed that are tailored towards specific applications [7], or
towards specific semantic representations [5]. Only a few approaches are general
enough to be applied on any given RDF data, regardless the data mining task.
Lösch et al. [12] introduce two general RDF graph kernels, based on intersec-
tion graphs and intersection trees. Later, the intersection tree path kernel was
simplified by Vries et al. [33]. In another work, Vries et al. [32,34] introduce an
approximation of the state-of-the-art Weisfeiler-Lehman graph kernel algorithm
aimed at improving the computation time of the kernel when applied to RDF.
Furthermore, the kernel implementation allows for explicit calculation of the
instances’ feature vectors, instead of pairwise similarities.

Our work is closely related to the approaches DeepWalk [22] and Deep Graph
Kernels [35]. DeepWalk uses language modeling approaches to learn social repre-
sentations of vertices of graphs by modeling short random-walks on large social
graphs, like BlogCatalog, Flickr, and YouTube. The Deep Graph Kernel app-
roach extends the DeepWalk approach, by modeling graph substructures, like
graphlets, instead of random walks. The approach we propose in this paper dif-
fers from these two approaches in several aspects. First, we adapt the language
modeling approaches on directed labeled RDF graphs, compared to the undi-
rected graphs used in the approaches. Second, we show that task-independent
entity vectors can be generated on large-scale knowledge graphs, which later can
be reused on variety of machine learning tasks on different datasets.

3 Approach

In our approach, we adapt neural language models for RDF graph embeddings.
Such approaches take advantage of the word order in text documents, explicitly
modeling the assumption that closer words in the word sequence are statis-
tically more dependent. In the case of RDF graphs, we consider entities and
relations between entities instead of word sequences. Thus, in order to apply
such approaches on RDF graph data, we first have to transform the graph data
into sequences of entities, which can be considered as sentences. Using those sen-
tences, we can train the same neural language models to represent each entity
in the RDF graph as a vector of numerical values in a latent feature space.

3.1 RDF Graph Sub-structures Extraction

We propose two general approaches for converting graphs into a set of sequences
of entities, i.e., graph walks and Weisfeiler-Lehman Subtree RDF Graph Kernels.

Definition 1. An RDF graph is a graph G = (V, E), where V is a set of vertices,
and E is a set of directed edges.



RDF2Vec: RDF Graph Embeddings for Data Mining 501

The objective of the conversion functions is for each vertex v ∈ V to generate
a set of sequences Sv, where the first token of each sequence s ∈ Sv is the vertex v
followed by a sequence of tokens, which might be edges, vertices, or any substruc-
ture extracted from the RDF graph, in an order that reflects the relations between
the vertex v and the rest of the tokens, as well as among those tokens.

Graph Walks. In this approach, for a given graph G = (V,E), for each vertex
v ∈ V we generate all graph walks Pv of depth d rooted in the vertex v. To
generate the walks, we use the breadth-first algorithm. In the first iteration, the
algorithm generates paths by exploring the direct outgoing edges of the root node
vr. The paths generated after the first iteration will have the following pattern
vr → e1i, where i ∈ E(vr). In the second iteration, for each of the previously
explored edges the algorithm visits the connected vertices. The paths generated
after the second iteration will follow the following patter vr → e1i → v1i. The
algorithm continues until d iterations are reached. The final set of sequences for
the given graph G is the union of the sequences of all the vertices

⋃
v∈V Pv.

Weisfeiler-Lehman Subtree RDF Graph Kernels. In this approach, we
use the subtree RDF adaptation of the Weisfeiler-Lehman algorithm presented
in [32,34]. The Weisfeiler-Lehman Subtree graph kernel is a state-of-the-art,
efficient kernel for graph comparison [30]. The kernel computes the number of
sub-trees shared between two (or more) graphs by using the Weisfeiler-Lehman
test of graph isomorphism. This algorithm creates labels representing subtrees
in h iterations.

There are two main modifications of the original Weisfeiler-Lehman graph
kernel algorithm in order to be applicable on RDF graphs [34]. First, the RDF
graphs have directed edges, which is reflected in the fact that the neighborhood
of a vertex v contains only the vertices reachable via outgoing edges. Second, as
mentioned in the original algorithm, labels from two iterations can potentially be
different while still representing the same subtree. To make sure that this does
not happen, the authors in [34] have added tracking of the neighboring labels in
the previous iteration, via the multiset of the previous iteration. If the multiset
of the current iteration is identical to that of the previous iteration, the label of
the previous iteration is reused.

The procedure of converting the RDF graph to a set of sequences of tokens
goes as follows: (i) for a given graph G = (V,E), we define the Weisfeiler-Lehman
algorithm parameters, i.e., the number of iterations h and the vertex subgraph
depth d, which defines the subgraph in which the subtrees will be counted for the
given vertex; (ii) after each iteration, for each vertex v ∈ V of the original graph
G, we extract all the paths of depth d within the subgraph of the vertex v on the
relabeled graph. We set the original label of the vertex v as the starting token of
each path, which is then considered as a sequence of tokens. The sequences after
the first iteration will have the following pattern vr → T1 → T1 . . . Td, where Td

is a subtree that appears on depth d in the vertex’s subgraph; (iii) we repeat step
2 until the maximum iterations h are reached. (iv) The final set of sequences is
the union of the sequences of all the vertices in each iteration

⋃h
i=1

⋃
v∈V Pv.



502 P. Ristoski and H. Paulheim

3.2 Neural Language Models – Word2vec

Neural language models have been developed in the NLP field as an alterna-
tive to represent texts as a bag of words, and hence, a binary feature vector,
where each vector index represents one word. While such approaches are simple
and robust, they suffer from several drawbacks, e.g., high dimensionality and
severe data sparsity, which limits the performances of such techniques. To over-
come such limitations, neural language models have been proposed, inducing
low-dimensional, distributed embeddings of words by means of neural networks.
The goal of such approaches is to estimate the likelihood of a specific sequence
of words appearing in a corpus, explicitly modeling the assumption that closer
words in the word sequence are statistically more dependent.

While some of the initially proposed approaches suffered from inefficient
training of the neural network models, with the recent advancements in the field
several efficient approaches has been proposed. One of the most popular and
widely used is the word2vec neural language model [13,14]. Word2vec is a par-
ticularly computationally-efficient two-layer neural net model for learning word
embeddings from raw text. There are two different algorithms, the Continuous
Bag-of-Words model (CBOW) and the Skip-Gram model.

Continuous Bag-of-Words Model. The CBOW model predicts target words
from context words within a given window. The model architecture is shown in
Fig. 1a. The input layer is comprised from all the surrounding words for which the
input vectors are retrieved from the input weight matrix, averaged, and projected
in the projection layer. Then, using the weights from the output weight matrix,
a score for each word in the vocabulary is computed, which is the probability
of the word being a target word. Formally, given a sequence of training words
w1, w2, w3, . . . , wT , and a context window c, the objective of the CBOW model
is to maximize the average log probability:

1
T

T∑

t=1

logp(wt|wt−c . . . wt+c), (1)

where the probability p(wt|wt−c . . . wt+c) is calculated using the softmax
function:

p(wt|wt−c . . . wt+c) =
exp(v̄T v′

wt
)

∑V
w=1 exp(v̄T v′

w)
, (2)

where v′
w is the output vector of the word w, V is the complete vocabulary of

words, and v̄ is the averaged input vector of all the context words:

v̄ =
1
2c

∑

−c≤j≤c,j �=0

vwt+j
(3)

Skip-Gram Model. The skip-gram model does the inverse of the CBOW model
and tries to predict the context words from the target words (Fig. 1b). More
formally, given a sequence of training words w1, w2, w3, . . . , wT , and a context



RDF2Vec: RDF Graph Embeddings for Data Mining 503

a) CBOW architecture b) Skip-gram architecture

Fig. 1. Architecture of the CBOW and Skip-gram model.

window c, the objective of the skip-gram model is to maximize the following
average log probability:

1
T

T∑

t=1

∑

−c≤j≤c,j �=0

logp(wt+j |wt), (4)

where the probability p(wt+j |wt) is calculated using the softmax function:

p(wo|wi) =
exp(v′T

wovwi)
∑V

w=1 exp(v′T
w vwi)

, (5)

where vw and v′
w are the input and the output vector of the word w, and V is

the complete vocabulary of words.
In both cases, calculating the softmax function is computationally inefficient,

as the cost for computing is proportional to the size of the vocabulary. Therefore,
two optimization techniques have been proposed, i.e., hierarchical softmax and
negative sampling [14]. Empirical studies haven shown that in most cases neg-
ative sampling leads to a better performance than hierarchical softmax, which
depends on the selected negative samples, but it has higher runtime.

Once the training is finished, all words (or, in our case, entities) are pro-
jected into a lower-dimensional feature space, and semantically similar words
(or entities) are positioned close to each other.

4 Evaluation

We evaluate our approach on a number of classification and regression tasks,
comparing the results of different feature extraction strategies combined with
different learning algorithms.

4.1 Datasets

We evaluate the approach on two types of RDF graphs: (i) small domain-specific
RDF datasets and (ii) large cross-domain RDF datasets. More details about the
evaluation datasets and how the datasets were generated are presented in [28].



504 P. Ristoski and H. Paulheim

Small RDF Datasets. These datasets are derived from existing RDF datasets,
where the value of a certain property is used as a classification target:

– The AIFB dataset describes the AIFB research institute in terms of its staff,
research groups, and publications. In [1], the dataset was first used to predict
the affiliation (i.e., research group) for people in the dataset. The dataset
contains 178 members of five research groups, however, the smallest group
contains only four people, which is removed from the dataset, leaving four
classes.

– The MUTAG dataset is distributed as an example dataset for the DL-Learner
toolkit2. It contains information about 340 complex molecules that are poten-
tially carcinogenic, which is given by the isMutagenic property. The molecules
can be classified as “mutagenic” or “not mutagenic”.

– The BGS dataset was created by the British Geological Survey and describes
geological measurements in Great Britain3. It was used in [33] to predict the
lithogenesis property of named rock units. The dataset contains 146 named
rock units with a lithogenesis, from which we use the two largest classes.

Large RDF Datasets. As large cross-domain datasets we use DBpedia [11]
and Wikidata [31].

We use the English version of the 2015-10 DBpedia dataset, which contains
4, 641, 890 instances and 1, 369 mapping-based properties. In our evaluation we
only consider object properties, and ignore datatype properties and literals.

For the Wikidata dataset we use the simplified and derived RDF dumps from
2016-03-284. The dataset contains 17, 340, 659 entities in total. As for the DBpe-
dia dataset, we only consider object properties, and ignore the data properties
and literals.

We use the entity embeddings on five different datasets from different domains,
for the tasks of classification and regression. Those five datasets are used to pro-
vide classification/regression targets for the large RDF datasets (see Table 1).

– The Cities dataset contains a list of cities and their quality of living, as cap-
tured by Mercer5. We use the dataset both for regression and classification.

– The Metacritic Movies dataset is retrieved from Metacritic.com6, which con-
tains an average rating of all time reviews for a list of movies [26]. The initial
dataset contained around 10, 000 movies, from which we selected 1, 000 movies
from the top of the list, and 1, 000 movies from the bottom of the list. We use
the dataset both for regression and classification.

– Similarly, the Metacritic Albums dataset is retrieved from Metacritic.com7,
which contains an average rating of all time reviews for a list of albums [27].

2 http://dl-learner.org.
3 http://data.bgs.ac.uk/.
4 http://tools.wmflabs.org/wikidata-exports/rdf/index.php?content=dump

download.php\&dump=20160328.
5 https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html.
6 http://www.metacritic.com/browse/movies/score/metascore/all.
7 http://www.metacritic.com/browse/albums/score/metascore/all.

http://dl-learner.org
http://data.bgs.ac.uk/
http://tools.wmflabs.org/wikidata-exports/rdf/index.php?content=dump_download.php&dump=20160328
http://tools.wmflabs.org/wikidata-exports/rdf/index.php?content=dump_download.php&dump=20160328
https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
http://www.metacritic.com/browse/movies/score/metascore/all
http://www.metacritic.com/browse/albums/score/metascore/all


RDF2Vec: RDF Graph Embeddings for Data Mining 505

Table 1. Datasets overview. For each dataset, we depict the number of instances, the
machine learning tasks in which the dataset is used (C stands for classification, and R
stands for regression) and the source of the dataset

Dataset # instances ML task Original source

Cities 212 R/C (c = 3) Mercer

Metacritic Albums 1600 R/C (c = 2) Metacritic

Metacritic Movies 2000 R/C (c = 2) Metacritic

AAUP 960 R/C (c = 3) JSE

Forbes 1585 R/C (c = 3) Forbes

AIFB 176 C (c = 4) AIFB

MUTAG 340 C (c = 2) MUTAG

BGS 146 C (c = 2) BGS

– The AAUP (American Association of University Professors) dataset contains
a list of universities, including eight target variables describing the salary
of different staff at the universities8. We use the average salary as a target
variable both for regression and classification, discretizing the target variable
into “high”, “medium” and “low”, using equal frequency binning.

– The Forbes dataset contains a list of companies including several features of
the companies, which was generated from the Forbes list of leading companies
20159. The target is to predict the company’s market value as a regression
task. To use it for the task of classification we discretize the target variable
into “high”, “medium”, and “low”, using equal frequency binning.

4.2 Experimental Setup

The first step of our approach is to convert the RDF graphs into a set of
sequences. For each of the small RDF datasets, we first build two corpora of
sequences, i.e., the set of sequences generated from graph walks with depth 8
(marked as W2V), and set of sequences generated from Weisfeiler-Lehman sub-
tree kernels (marked as K2V). For the Weisfeiler-Lehman algorithm, we use 4
iterations and depth of 2, and after each iteration we extract all walks for each
entity with the same depth. We use the corpora of sequences to build both
CBOW and Skip-Gram models with the following parameters: window size = 5;
number of iterations = 10; negative sampling for optimization; negative sam-
ples = 25; with average input vector for CBOW. We experiment with 200 and
500 dimensions for the entities’ vectors. The remaining parameters have the
default value as proposed in [14].

As the number of generated walks increases exponentially [34] with the
graph traversal depth, calculating Weisfeiler-Lehman subtrees RDF kernels, or
all graph walks with a given depth d for all of the entities in the large RDF graph

8 http://www.amstat.org/publications/jse/jse data archive.htm.
9 http://www.forbes.com/global2000/list/.

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.forbes.com/global2000/list/


506 P. Ristoski and H. Paulheim

quickly becomes unmanageable. Therefore, to extract the entities embeddings for
the large RDF datasets, we use only random graph walks entity sequences. More
precisely, we follow the approach presented in [22] to generate limited number
of random walks for each entity. For DBpedia, we experiment with 500 walks
per entity with depth of 4 and 8, while for Wikidata, we use only 200 walks per
entity with depth of 4. Additionally, for each entity in DBpedia and Wikidata,
we include all the walks of depth 2, i.e., direct outgoing relations. We use the
corpora of sequences to build both CBOW and Skip-Gram models with the fol-
lowing parameters: window size = 5; number of iterations = 5; negative sampling
for optimization; negative samples = 25; with average input vector for CBOW.
We experiment with 200 and 500 dimensions for the entities’ vectors. All the
models, as well as the code, are publicly available10.

We compare our approach to several baselines. For generating the data min-
ing features, we use three strategies that take into account the direct relations
to other resources in the graph [20], and two strategies for features derived from
graph sub-structures [34]:

– Features derived from specific relations. In the experiments we use the rela-
tions rdf:type (types), and dcterms:subject (categories) for datasets linked to
DBpedia.

– Features derived from generic relations, i.e., we generate a feature for each
incoming (rel in) or outgoing relation (rel out) of an entity, ignoring the value
or target entity of the relation.

– Features derived from generic relations-values, i.e., we generate feature for each
incoming (rel-vals in) or outgoing relation (rel-vals out) of an entity including
the value of the relation.

– Kernels that count substructures in the RDF graph around the instance node.
These substructures are explicitly generated and represented as sparse feature
vectors.

• The Weisfeiler-Lehman (WL) graph kernel for RDF [34] counts full sub-
trees in the subgraph around the instance node. This kernel has two para-
meters, the subgraph depth d and the number of iterations h (which deter-
mines the depth of the subtrees). We use two pairs of settings, d = 1, h = 2
and d = 2, h = 3.

• The Intersection Tree Path kernel for RDF [34] counts the walks in the
subtree that spans from the instance node. Only the walks that go through
the instance node are considered. We will therefore refer to it as the root
Walk Count (WC) kernel. The root WC kernel has one parameter: the
length of the paths l, for which we test 2 and 3.

We perform two learning tasks, i.e., classification and regression. For classifi-
cation tasks, we use Naive Bayes, k-Nearest Neighbors (k = 3), C4.5 decision tree,
and Support Vector Machines. For the SVM classifier we optimize the parame-
ter C in the range {10−3, 10−2, 0.1, 1, 10, 102, 103}. For regression, we use Linear
Regression, M5Rules, and k-Nearest Neighbors (k = 3). We measure accuracy for

10 http://data.dws.informatik.uni-mannheim.de/rdf2vec/.

http://data.dws.informatik.uni-mannheim.de/rdf2vec/


RDF2Vec: RDF Graph Embeddings for Data Mining 507

Table 2. Classification results on the small RDF datasets. The best results are marked
in bold. Experiments marked with “\” did not finish within ten days, or have run out
of memory

Strategy/

dataset

AIFB MUTAG BGS

NB KNN SVM C4.5 NB KNN SVM C4.5 NB KNN SVM C4.5

rel in 16.99 47.19 50.70 50.62 \ \ \ \ 61.76 54.67 63.76 63.76

rel out 45.07 45.56 50.70 51.76 41.18 54.41 62.94 62.06 54.76 69.05 72.70 69.33

rel in & out 25.59 51.24 50.80 51.80 \ \ \ \ 54.76 67.00 72.00 70.00

rel-vals in 73.24 54.54 81.86 80.75 \ \ \ \ 79.48 83.52 86.50 68.57

rel-vals out 86.86 55.69 82.39 71.73 62.35 62.06 73.53 62.94 84.95 65.29 83.10 73.38

rel-vals in & out 87.42 57.91 88.57 85.82 \ \ \ \ 84.95 70.81 85.80 72.67

WL 1 2 85.69 53.30 92.68 71.08 91.12 62.06 92.59 93.29 85.48 63.62 82.14 75.29

WL 2 2 85.65 65.95 83.43 89.25 70.59 62.06 94.29 93.47 90.33 85.57 91.05 87.67

WC 2 86.24 60.27 75.03 71.05 90.94 62.06 91.76 93.82 84.81 69.00 83.57 76.90

WC 3 86.83 64.18 82.97 71.05 92.00 72.56 86.47 93.82 85.00 67.00 78.71 76.90

W2V CBOW 200 70.00 69.97 79.48 65.33 74.71 72.35 80.29 74.41 56.14 74.00 74.71 67.38

W2V CBOW 500 69.97 69.44 82.88 73.40 75.59 70.59 82.06 72.06 55.43 73.95 74.05 65.86

W2V SG 200 76.76 71.67 87.39 65.36 70.00 71.76 77.94 68.53 66.95 69.10 75.29 71.24

W2V SG 500 76.67 76.18 89.55 71.05 72.35 72.65 78.24 68.24 68.38 71.19 78.10 63.00

K2V CBOW 200 85.16 84.48 87.48 76.08 78.82 69.41 86.47 68.53 93.14 95.57 94.71 88.19

K2V CBOW 500 90.98 88.17 86.83 76.18 80.59 70.88 90.88 66.76 93.48 95.67 94.82 87.26

K2V SG 200 85.65 87.96 90.82 75.26 78.53 69.29 95.88 66.00 91.19 93.24 95.95 87.05

K2V SG 500 88.73 88.66 93.41 69.90 82.06 70.29 96.18 66.18 91.81 93.19 96.33 80.76

classification tasks, and root mean squared error (RMSE) for regression tasks.
The results are calculated using stratfied 10-fold cross validation.

The strategies for creating propositional features from Linked Open Data
are implemented in the RapidMiner LOD extension11 [21,23]. The experiments,
including the feature generation and the evaluation, were performed using the
RapidMiner data analytics platform.12 The RapidMiner processes and the com-
plete results can be found online.13

4.3 Results

The results for the task of classification on the small RDF datasets are given in
Table 2. From the results we can observe that the K2V approach outperforms
all the other approaches. More precisely, using the skip-gram feature vectors
of size 500 in an SVM model provides the best results on all three datasets.
The W2V approach on all three datasets performs closely to the standard graph
substructure feature generation strategies, but it does not outperform them. K2V
outperforms W2V because it is able to capture more complex substructures in
the graph, like sub-trees, while W2V focuses only on graph paths.

11 http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension.
12 https://rapidminer.com/.
13 http://data.dws.informatik.uni-mannheim.de/rmlod/LOD ML Datasets/.

http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
https://rapidminer.com/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/


508 P. Ristoski and H. Paulheim

a) DBpedia vectors b) Wikidata vectors

Fig. 2. Two-dimensional PCA projection of the 500-dimensional Skip-gram vectors of
countries and their capital cities.

The results for the task of classification on the five different datasets using
the DBpedia and Wikidata entities’ vectors are given in Table 3, and the results
for the task of regression on the 5 different dataset using the DBpedia and
Wikidata entities’ vectors are given in Table 4. We can observe that the latent
vectors extracted from DBpedia and Wikidata outperform all of the standard
feature generation approaches. In general, the DBpedia vectors work better than
the Wikidata vectors, where the skip-gram vectors with size 200 or 500 built on
graph walks of depth 8 on most of the datasets lead to the best performances.
An exception is the AAUP dataset, where the Wikidata skip-gram 500 vectors
outperform the other approaches.

On both tasks, we can observe that the skip-gram vectors perform better
than the CBOW vectors. Also, the vectors with higher dimensionality and paths
with bigger depth on most of the datasets lead to a better representation of the
entities and better performances. However, for the variety of tasks at hand, there
is no universal approach, i.e., embedding model and a machine learning method,
that consistently outperforms the others.

4.4 Semantics of Vector Representations

To analyze the semantics of the vector representations, we employ Principal
Component Analysis (PCA) to project the entities’ feature vectors into a two
dimensional feature space. We selected seven countries and their capital cities,
and visualized their vectors as shown in Fig. 2. Figure 2a shows the correspond-
ing DBpedia vectors, and Fig. 2b shows the corresponding Wikidata vectors.
The figure illustrates the ability of the model to automatically organize enti-
ties of different types, and preserve the relationship between different entities.
For example, we can see that there is a clear separation between the countries
and the cities, and the relation “capital” between each pair of country and the



RDF2Vec: RDF Graph Embeddings for Data Mining 509

T
a
b
le

3
.

C
la

ss
ifi

ca
ti

o
n

re
su

lt
s.

T
h
e

fi
rs

t
n
u
m

b
er

re
p
re

se
n
ts

th
e

d
im

en
si

o
n
a
li
ty

o
f

th
e

v
ec

to
rs

,
w

h
il
e

th
e

se
co

n
d

n
u
m

b
er

re
p
re

se
n
t

th
e

va
lu

e
fo

r
th

e
d
ep

th
p
a
ra

m
et

er
.
T

h
e

b
es

t
re

su
lt

s
a
re

m
a
rk

ed
in

b
o
ld

.
E

x
p
er

im
en

ts
m

a
rk

ed
w

it
h

“
\”

d
id

n
o
t

fi
n
is

h
w

it
h
in

te
n

d
ay

s,
o
r

h
av

e
ru

n
o
u
t

o
f
m

em
o
ry

S
tr
a
te

g
y
/
d
a
ta

se
t

C
it
ie
s

M
e
ta

c
ri
ti
c
M

o
v
ie
s

M
e
ta

c
ri
ti
c
A
lb

u
m

s
A
A
U
P

F
o
rb

e
s

N
B

K
N
N

S
V
M

C
4
.5

N
B

K
N
N

S
V
M

C
4
.5

N
B

K
N
N

S
V
M

C
4
.5

N
B

K
N
N

S
V
M

C
4
.5

N
B

K
N
N

S
V
M

C
4
.5

T
y
p
e
s

5
5
.7
1

5
6
.1
7

6
3
.2
1

5
9
.0
5

6
8
.0
0

5
7
.6
0

7
1
.4
0

7
0
.0
0

6
6
.5
0

5
0
.7
5

6
2
.3
1

5
4
.4
4

4
1
.0
0

8
5
.6
2

9
1
.6
7

9
2
.7
8

5
5
.0
8

7
5
.8
4

7
5
.6
7

7
5
.8
5

C
a
te

g
o
ri
e
s

5
5
.7
4

4
9
.9
8

6
2
.3
9

5
6
.1
7

7
5
.2
5

6
2
.7
0

7
6
.3
5

6
9
.5
0

6
7
.4
0

5
4
.1
3

6
4
.5
0

5
6
.6
2

4
8
.0
0

8
5
.8
3

9
0
.7
8

9
1
.8
7

6
0
.3
8

7
6
.1
1

7
5
.7
0

7
5
.7
0

re
l
in

6
0
.4
1

5
8
.4
6

7
1
.7
0

6
0
.3
5

5
2
.7
5

4
9
.9
0

6
0
.3
5

6
0
.1
0

5
1
.1
3

6
2
.1
9

6
5
.2
5

6
0
.7
5

4
5
.6
3

8
5
.9
4

9
0
.6
2

9
2
.8
1

5
0
.2
4

7
6
.4
9

7
5
.1
6

7
6
.1
0

re
l
o
u
t

4
7
.6
2

6
0
.0
0

6
6
.0
4

5
6
.7
1

5
2
.9
0

5
8
.4
5

6
6
.4
0

6
2
.7
0

5
8
.7
5

6
3
.7
5

6
2
.2
5

6
4
.5
0

4
1
.1
5

8
5
.8
3

8
9
.5
8

9
1
.3
5

6
4
.7
3

7
5
.8
4

7
5
.7
3

7
5
.9
2

re
l
in

&
o
u
t

5
9
.4
4

5
8
.5
7

6
6
.0
4

5
6
.4
7

5
2
.9
5

5
9
.3
0

6
7
.7
5

6
2
.5
5

5
8
.6
9

6
4
.5
0

6
7
.3
8

6
1
.5
6

4
2
.7
1

8
5
.9
4

8
9
.6
7

9
2
.5
0

2
2
.2
7

7
5
.9
6

7
6
.3
4

7
5
.9
8

re
l-
v
a
ls

in
\

\
\

\
5
0
.6
0

5
0
.0
0

5
0
.6
0

5
0
.0
0

5
0
.8
8

5
0
.0
0

5
0
.8
1

5
0
.0
0

5
4
.0
6

8
4
.6
9

8
9
.5
1

\
1
4
.9
5

7
6
.1
5

7
6
.9
7

7
5
.7
3

re
l-
v
a
ls

o
u
t

5
3
.7
9

3
5
.9
1

5
5
.6
6

6
4
.1
3

7
8
.5
0

5
4
.7
8

7
8
.7
1

\
7
4
.0
6

5
2
.5
6

7
6
.9
9

\
5
7
.8
1

8
5
.7
3

9
1
.4
6

9
1
.7
8

6
7
.0
9

7
5
.6
1

7
5
.7
4

7
6
.7
4

re
l-
v
a
ls

in
&

o
u
t

\
\

\
\

7
7
.9
0

5
5
.7
5

7
7
.8
2

\
7
4
.2
5

5
1
.2
5

7
5
.8
5

\
6
3
.4
4

8
4
.6
9

9
1
.5
6

\
6
7
.2
0

7
5
.8
8

7
5
.9
6

7
6
.7
5

W
L

1
2

7
0
.9
8

4
9
.3
1

6
5
.3
4

7
5
.2
9

7
5
.4
5

6
6
.9
0

7
9
.3
0

7
0
.8
0

7
3
.6
3

6
4
.6
9

7
6
.2
5

6
2
.0
0

5
8
.3
3

9
1
.0
4

9
1
.4
6

9
2
.4
0

6
4
.1
7

7
5
.7
1

7
5
.1
0

7
6
.5
9

W
L

2
3

6
5
.4
8

5
3
.2
9

6
9
.9
0

6
9
.3
1

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

W
C

2
7
2
.7
1

4
7
.3
9

6
6
.4
8

7
5
.1
3

7
5
.3
9

6
5
.8
9

7
4
.9
3

6
9
.0
8

7
2
.0
0

6
0
.6
3

7
6
.8
8

6
3
.6
9

5
7
.2
9

9
0
.6
3

9
3
.4
4

9
2
.6
0

6
4
.2
3

7
5
.7
7

7
6
.2
2

7
6
.4
7

W
C

3
6
5
.5
2

5
2
.3
6

6
7
.9
5

6
5
.1
5

7
4
.2
5

5
5
.3
0

7
8
.4
0

\
7
2
.8
1

5
2
.8
7

7
7
.9
4

\
5
7
.1
9

9
0
.7
3

9
0
.9
4

9
2
.6
0

6
4
.0
4

7
5
.6
5

7
6
.2
2

7
6
.5
9

D
B
2
v
e
c
C
B
O
W

2
0
0

4
5
9
.3
2

6
8
.8
4

7
7
.3
9

6
4
.3
2

6
5
.6
0

7
9
.7
4

8
2
.9
0

7
4
.3
3

7
0
.7
2

7
1
.8
6

7
6
.3
6

6
7
.2
4

7
3
.3
6

8
9
.6
5

2
9
.0
0

9
2
.4
5

8
9
.3
8

8
0
.9
4

7
6
.8
3

8
4
.8
1

D
B
2
v
e
c
C
B
O
W

5
0
0

4
5
9
.3
2

7
1
.3
4

7
6
.3
7

6
6
.3
4

6
5
.6
5

7
9
.4
9

8
2
.7
5

7
3
.8
7

6
9
.7
1

7
1
.9
3

7
5
.4
1

6
5
.6
5

7
2
.7
1

8
9
.6
5

2
9
.1
1

9
2
.0
1

8
9
.0
2

8
0
.8
2

7
6
.9
5

8
5
.1
7

D
B
2
v
e
c
S
G

2
0
0

4
6
0
.3
4

7
1
.8
2

7
6
.3
7

6
5
.3
7

6
5
.2
5

8
0
.4
4

8
3
.2
5

7
3
.8
7

6
8
.9
5

7
3
.8
9

7
6
.1
1

6
7
.8
7

7
1
.2
0

8
9
.6
5

2
8
.9
0

9
2
.1
2

8
8
.7
8

8
0
.8
2

7
7
.9
2

8
5
.7
7

D
B
2
v
e
c
S
G

5
0
0

4
5
8
.3
4

7
2
.8
4

7
6
.8
7

6
7
.8
4

6
5
.4
5

8
0
.1
4

8
3
.6

5
7
2
.8
2

7
0
.4
1

7
4
.3
4

7
8
.4
4

6
7
.4
9

7
1
.1
9

8
9
.6
5

2
8
.9
0

9
2
.2
3

8
8
.3
0

8
0
.9
4

7
7
.2
5

8
4
.8
1

D
B
2
v
e
c
C
B
O
W

2
0
0

8
6
9
.2
6

6
9
.8
7

6
7
.3
2

6
3
.1
3

5
7
.8
3

7
0
.0
8

6
5
.2
5

6
7
.4
7

6
7
.9
1

6
4
.4
4

7
2
.4
2

6
5
.3
9

6
8
.1
8

8
5
.3
3

2
8
.9
0

9
0
.5
0

7
7
.3
5

8
0
.3
4

2
8
.9
0

8
5
.1
7

D
B
2
v
e
c
C
B
O
W

5
0
0

8
6
2
.2
6

6
9
.8
7

7
6
.8
4

6
3
.2
1

5
8
.7
8

6
9
.8
2

6
9
.4
6

6
7
.6
7

6
7
.5
3

6
5
.8
3

7
4
.2
6

6
3
.4
2

6
2
.9
0

8
5
.2
2

2
9
.1
1

9
0
.6
1

8
9
.8
6

8
0
.3
4

7
8
.6
5

8
4
.8
1

D
B
2
v
e
c
S
G

2
0
0

8
7
3
.3
2

7
5
.8
9

7
8
.9
2

6
0
.7
4

7
9
.9
4

7
9
.4
9

8
3
.3
0

7
5
.1
3

7
7
.2
5

7
6
.8
7

7
9
.7

2
6
9
.1
4

7
8
.5
3

8
5
.1
2

2
9
.2
2

9
1
.0
4

9
0
.1

0
8
0
.5
8

7
8
.9
6

8
4
.6
8

D
B
2
v
e
c
S
G

5
0
0

8
8
9
.7

3
6
9
.1
6

8
4
.1
9

7
2
.2
5

8
0
.2
4

7
8
.6
8

8
2
.8
0

7
2
.4
2

7
3
.5
7

7
6
.3
0

7
8
.2
0

6
8
.7
0

7
5
.0
7

9
4
.4

8
2
9
.1
1

9
4
.1
5

8
8
.5
3

8
0
.5
8

7
7
.7
9

8
6
.3
8

W
D
2
v
e
c
C
B
O
W

2
0
0

4
6
8
.7
6

5
7
.7
1

7
5
.5
6

6
1
.3
7

5
1
.4
9

5
2
.2
0

5
1
.6
4

4
9
.0
1

5
0
.8
6

5
0
.2
9

5
1
.4
4

5
0
.0
9

5
0
.5
4

9
0
.1
8

8
9
.6
3

8
8
.8
3

4
9
.8
4

8
1
.0
8

7
6
.7
7

7
9
.1
4

W
D
2
v
e
c
C
B
O
W

5
0
0

4
6
8
.2
4

5
7
.7
5

8
5
.5
6

6
4
.5
4

4
9
.2
2

4
8
.5
6

5
1
.0
4

5
0
.9
8

5
3
.0
8

5
0
.0
3

5
2
.3
3

5
3
.2
8

4
8
.4
5

9
0
.3
9

8
9
.7
4

8
8
.3
1

5
1
.9
5

8
0
.7
4

7
8
.1
8

8
0
.3
2

W
D
2
v
e
c
S
G

2
0
0

4
7
2
.5
8

5
7
.5
3

7
5
.4
8

5
2
.3
2

6
9
.5
3

7
0
.1
4

7
5
.3
9

6
7
.0
0

6
0
.3
2

6
2
.0
3

6
4
.7
6

5
8
.5
4

6
0
.8
7

9
0
.5
0

8
9
.6
3

8
9
.9
8

6
5
.4
5

8
1
.1
7

7
7
.7
4

7
7
.0
3

W
D
2
v
e
c
S
G

5
0
0

4
8
3
.2
0

6
0
.7
2

7
9
.8
7

6
1
.6
7

7
1
.1
0

7
0
.1
9

7
6
.3
0

6
7
.3
1

5
5
.3
1

5
8
.9
2

6
3
.4
2

5
6
.6
3

5
5
.8
5

9
0
.6
0

8
9
.6
3

8
7
.6
9

5
8
.9
5

8
1
.1
7

7
9
.0
0

7
9
.5
6



510 P. Ristoski and H. Paulheim
T
a
b
le

4
.
R

eg
re

ss
io

n
re

su
lt

s.
T

h
e

fi
rs

t
n
u
m

b
er

re
p
re

se
n
ts

th
e

d
im

en
si

o
n
a
li
ty

o
f
th

e
v
ec

to
rs

,
w

h
il
e

th
e

se
co

n
d

n
u
m

b
er

re
p
re

se
n
t

th
e

va
lu

e
fo

r
th

e
d
ep

th
p
a
ra

m
et

er
.
T

h
e

b
es

t
re

su
lt

s
a
re

m
a
rk

ed
in

b
o
ld

.
E

x
p
er

im
en

ts
th

a
t

d
id

n
o
t

fi
n
is

h
w

it
h
in

te
n

d
ay

s,
o
r

th
a
t

h
av

e
ru

n
o
u
t

o
f

m
em

o
ry

a
re

m
a
rk

ed
w

it
h

“
\”

S
tr
a
te
g
y
/
d
a
ta

se
t

C
it
ie
s

M
e
ta

c
ri
ti
c
M

o
v
ie
s

M
e
ta

c
ri
ti
c
A
lb
u
m
s

A
A
U
P

F
o
rb

e
s

L
R

K
N
N

M
5

L
R

K
N
N

M
5

L
R

K
N
N

M
5

L
R

K
N
N

M
5

L
R

K
N
N

M
5

T
y
p
e
s

2
4
.3
0

2
2
.1
6

1
8
.7
9

7
7
.8
0

3
0
.6
8

2
2
.1
6

1
6
.4
5

1
8
.3
6

1
3
.9
5

9
.8
3

3
4
.9
5

6
.2
8

2
9
.2
2

2
1
.0
7

1
8
.3
2

C
a
te
g
o
ri
e
s

1
8
.8
8

2
2
.6
8

2
2
.3
2

8
4
.5
7

2
3
.8
7

2
2
.5
0

1
6
.7
3

1
6
.6
4

1
3
.9
5

8
.0
8

3
4
.9
4

6
.1
6

1
9
.1
6

2
1
.4
8

1
8
.3
9

re
l
in

4
9
.8
7

1
8
.5
3

1
9
.2
1

2
2
.6
0

4
1
.4
0

2
2
.5
6

1
3
.5
0

2
2
.0
6

1
3
.4
3

9
.6
9

3
4
.9
8

6
.5
6

2
7
.5
6

2
0
.9
3

1
8
.6
0

re
l
o
u
t

4
9
.8
7

1
8
.5
3

1
9
.2
1

2
1
.4
5

2
4
.4
2

2
0
.7
4

1
3
.3
2

1
4
.5
9

1
3
.0
6

8
.8
2

3
4
.9
5

6
.3
2

2
1
.7
3

2
1
.1
1

1
8
.9
7

re
l
in

&
o
u
t

4
0
.8
0

1
8
.2
1

1
8
.8
0

2
1
.4
5

2
4
.4
2

2
0
.7
4

1
3
.3
3

1
4
.5
2

1
2
.9
1

1
2
.9
7

3
4
.9
5

6
.3
6

2
6
.4
4

2
0
.9
8

1
9
.5
4

re
l-
v
a
ls

in
\

\
\

2
1
.4
6

2
4
.1
9

2
0
.4
3

1
3
.9
4

2
3
.0
5

1
3
.9
5

\
3
4
.9
6

6
.2
7

\
2
0
.8
6

1
9
.3
1

re
l-
v
a
ls

o
u
t

2
0
.9
3

2
3
.8
7

2
0
.9
7

2
5
.9
9

3
2
.1
8

2
2
.9
3

\
1
5
.2
8

1
3
.3
4

\
3
4
.9
5

6
.1
8

\
2
0
.4
8

1
8
.3
7

re
l-
v
a
ls

in
&

o
u
t

\
\

\
\

2
5
.3
7

2
0
.9
6

\
1
5
.4
7

1
3
.3
3

\
3
4
.9
4

6
.1
8

\
2
0
.2
0

1
8
.2
0

W
L

1
2

2
0
.2
1

2
4
.6
0

2
0
.8
5

\
2
1
.6
2

1
9
.8
4

\
1
3
.9
9

1
2
.8
1

\
3
4
.9
6

6
.2
7

\
1
9
.8
1

1
9
.4
9

W
L

2
3

1
7
.7
9

2
0
.4
2

1
7
.0
4

\
\

\
\

\
\

\
\

\
\

\
\

W
C

2
2
0
.3
3

2
5
.9
5

1
9
.5
5

\
2
2
.8
0

2
2
.9
9

\
1
4
.5
4

1
2
.8
7

9
.1
2

3
4
.9
5

6
.2
4

\
2
0
.4
5

1
9
.2
6

W
C

3
1
9
.5
1

3
3
.1
6

1
9
.0
5

\
2
3
.8
6

1
9
.1
9

\
1
9
.5
1

1
3
.0
2

\
3
5
.3
9

6
.3
1

\
2
0
.5
8

1
9
.0
4

D
B
2
v
e
c
C
B
O
W

2
0
0
4

1
4
.3
7

1
2
.5
5

1
4
.3
3

1
5
.9
0

1
7
.4
6

1
5
.8
9

1
1
.7
9

1
2
.4
5

1
1
.5
9

1
2
.1
3

4
5
.7
6

1
2
.0
0

1
8
.3
2

2
6
.1
9

1
7
.4
3

D
B
2
v
e
c
C
B
O
W

5
0
0
4

1
4
.9
9

1
2
.4
6

1
4
.6
6

1
5
.9
0

1
7
.4
5

1
5
.7
3

1
1
.4
9

1
2
.6
0

1
1
.4
8

1
2
.4
4

4
5
.6
7

1
2
.3
0

1
8
.2
3

2
6
.2
7

1
7
.6
2

D
B
2
v
e
c
S
G

2
0
0
4

1
3
.3
8

1
2
.5
4

1
5
.1
3

1
5
.8
1

1
7
.0
7

1
5
.8
4

1
1
.3
0

1
2
.3
6

1
1
.4
2

1
2
.1
3

4
5
.7
2

1
2
.1
0

1
7
.6
3

2
6
.1
3

1
7
.8
5

D
B
2
v
e
c
S
G

5
0
0
4

1
4
.7
3

1
3
.2
5

1
6
.8
0

1
5
.6
6

1
7
.1
4

1
5
.6
7

1
1
.2
0

1
2
.1
1

1
1
.2
8

1
2
.0
9

4
5
.7
6

1
1
.9
3

1
8
.2
3

2
6
.0
9

1
7
.7
4

D
B
2
v
e
c
C
B
O
W

2
0
0
8

1
6
.1
7

1
7
.1
4

1
7
.5
6

2
1
.5
5

2
3
.7
5

2
1
.4
6

1
3
.3
5

1
5
.4
1

1
3
.4
3

6
.4
7

5
5
.7
6

6
.4
7

2
4
.1
7

2
6
.4
8

2
2
.6
1

D
B
2
v
e
c
C
B
O
W

5
0
0
8

1
8
.1
3

1
7
.1
9

1
8
.5
0

2
0
.7
7

2
3
.6
7

2
0
.6
9

1
3
.2
0

1
5
.1
4

1
3
.2
5

6
.5
4

5
5
.3
3

6
.5
5

2
1
.1
6

2
5
.9
0

2
0
.3
3

D
B
2
v
e
c
S
G

2
0
0
8

1
2
.8
5

1
4
.9
5

1
2
.9
2

1
5
.1
5

1
7
.1
3

1
5
.1

2
1
0
.9
0

1
1
.4
3

1
0
.9
0

6
.2
2

5
6
.9
5

6
.2
5

1
8
.6
6

2
1
.2
0

1
8
.5
7

D
B
2
v
e
c
S
G

5
0
0
8

1
1
.9
2

1
2
.6
7

1
0
.1

9
1
5
.4
5

1
7
.8
0

1
5
.5
0

1
0
.8

9
1
1
.7
2

1
0
.9
7

6
.2
6

5
6
.9
5

6
.2
9

1
8
.3
5

2
1
.0
4

1
6
.6

1

W
D
2
v
e
c
C
B
O
W

2
0
0
4

2
0
.1
5

1
7
.5
2

2
0
.0
2

2
3
.5
4

2
5
.9
0

2
3
.3
9

1
4
.7
3

1
6
.1
2

1
4
.5
5

1
6
.8
0

4
2
.6
1

6
.6
0

2
7
.4
8

2
2
.6
0

2
1
.7
7

W
D
2
v
e
c
C
B
O
W

5
0
0
4

2
3
.7
6

1
8
.3
3

2
0
.3
9

2
4
.1
4

2
2
.1
8

2
4
.5
6

1
4
.0
9

1
6
.0
9

1
4
.0
0

1
3
.0
8

4
2
.8
9

6
.0
8

5
0
.2
3

2
1
.9
2

2
6
.6
6

W
D
2
v
e
c
S
G

2
0
0
4

2
0
.4
7

1
8
.6
9

2
0
.7
2

1
9
.7
2

2
1
.4
4

1
9
.1
0

1
3
.5
1

1
3
.9
1

1
3
.6
7

6
.8
6

4
2
.8
2

6
.5
2

2
3
.6
9

2
1
.5
9

2
0
.4
9

W
D
2
v
e
c
S
G

5
0
0
4

2
2
.2
5

1
9
.4
1

1
9
.2
3

2
5
.9
9

2
1
.2
6

1
9
.1
9

1
3
.2
3

1
4
.9
6

1
3
.2
5

8
.2
7

4
2
.8
4

6
.0

5
2
1
.9
8

2
1
.7
3

2
1
.5
8



RDF2Vec: RDF Graph Embeddings for Data Mining 511

corresponding capital city is preserved. Furthermore, we can observe that more
similar entities are positioned closer to each other, e.g., we can see that the
countries that are part of the EU are closer to each other, and the same applies
for the Asian countries.

4.5 Features Increase Rate

Finally, we conduct a scalability experiment, where we examine how the number
of instances affects the number of generated features by each feature generation
strategy. For this purpose we use the Metacritic Movies dataset. We start with
a random sample of 100 instances, and in each next step we add 200 (or 300)
unused instances, until the complete dataset is used, i.e., 2, 000 instances. The
number of generated features for each sub-sample of the dataset using each of
the feature generation strategies is shown in Fig. 3.

From the chart, we can observe that the number of generated features sharply
increases when adding more samples in the datasets, especially for the strategies
based on graph substructures. However, the number of features remains the same
when using the RDF2Vec approach, independently of the number of samples in
the data. Thus, by design, it scales to larger datasets without increasing the
dimensionality of the dataset.

5 Conclusion

In this paper, we have presented RDF2Vec, an approach for learning latent
numerical representations of entities in RDF graphs. In this approach, we first
convert the RDF graphs in a set of sequences using two strategies, Weisfeiler-
Lehman Subtree RDF Graph Kernels and graph walks, which are then used to

Fig. 3. Features increase rate per strategy (log scale)



512 P. Ristoski and H. Paulheim

build neural language models. The evaluation shows that such entity represen-
tations could be used in two different machine learning tasks, outperforming
standard feature generation approaches.

So far we have considered only simple machine learning tasks, i.e., classifi-
cation and regression, but in the future work we would extend the number of
applications. For example, the latent representation of the entities could be used
for building content-based recommender systems [4]. The approach could also be
used for link predictions, type prediction, graph completion and error detection
in knowledge graphs [19], as shown in [15,17]. Furthermore, we could use this
approach for the task of measuring semantic relatedness between two entities,
which is the basis for numerous tasks in information retrieval, natural language
processing, and Web-based knowledge extractions [6]. To do so, we could easily
calculate the relatedness between two entities as the probability of one entity
being the context of the other entity, using the softmax function given in Eqs. 2
and 5, using the input and output weight matrix of the neural model. Simi-
larly, the approach can be extended for entity summarization, which is also an
important task when consuming and visualizing large quantities of data [2].

Acknowledgments. The work presented in this paper has been partly funded by the
German Research Foundation (DFG) under grant number PA 2373/1-1 (Mine@LOD).

References

1. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In:
Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58–71.
Springer, Heidelberg (2007)

2. Cheng, G., Tran, T., Qu, Y.: RELIN: relatedness and informativeness-based cen-
trality for entity summarization. In: Aroyo, L., et al. (eds.) ISWC 2011, Part I.
LNCS, vol. 7031, pp. 114–129. Springer, Heidelberg (2011)

3. Cheng, W., Kasneci, G., Graepel, T., Stern, D., Herbrich, R.: Automated feature
generation from structured knowledge. In: CIKM (2011)

4. Di Noia, T., Ostuni, V.C.: Recommender systems and linked open data. In: Faber,
W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 88–113. Springer,
Heidelberg (2015)

5. Fanizzi, N., d’Amato, C.: A declarative kernel for ALC concept descriptions. In:
Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS
(LNAI), vol. 4203, pp. 322–331. Springer, Heidelberg (2006)

6. Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE:
keyphrase overlap relatedness for entity disambiguation. In: Proceedings of the
21st ACM International Conference on Information and Knowledge Management,
pp. 545–554. ACM (2012)

7. Huang, Y., Tresp, V., Nickel, M., Kriegel, H.P.: A scalable approach for statistical
learning in semantic graphs. Semant. Web 5, 5–22 (2014)

8. Kappara, V.N.P., Ichise, R., Vyas, O.: LiDDM: a data mining system for linked
data. In: LDOW (2011)

9. Khan, M.A., Grimnes, G.A., Dengel, A.: Two pre-processing operators for
improved learning from semanticweb data. In: RCOMM (2010)



RDF2Vec: RDF Graph Embeddings for Data Mining 513

10. Kramer, S., Lavrač, N., Flach, P.: Propositionalization approaches to relational
data mining. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 262–
291. Springer, Berlin (2001)

11. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale,
multilingual knowledge base extracted from Wikipedia. Semant. Web J. (2013)

12. Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for RDF data. In: Simperl,
E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS,
vol. 7295, pp. 134–148. Springer, Heidelberg (2012)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

15. Minervini, P., Fanizzi, N., d’Amato, C., Esposito, F.: Scalable learning of entity
and predicate embeddings for knowledge graph completion. In: 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA), pp.
162–167. IEEE (2015)

16. Mynarz, J., Svátek, V.: Towards a benchmark for LOD-enhanced knowledge dis-
covery from structured data. In: The Second International Workshop on Knowledge
Discovery and Data Mining Meets Linked Open Data (2013)

17. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs: from multi-relational link prediction to automated
knowledge graph construction. arXiv preprint arXiv:1503.00759 (2015)

18. Paulheim, H.: Exploiting linked open data as background knowledge in data min-
ing. In: Workshop on Data Mining on Linked Open Data (2013)

19. Paulheim, H.: Knowlegde graph refinement: a survey of approaches and evaluation
methods. Semant. Web J. 1–20 (2016, Preprint)

20. Paulheim, H., Fümkranz, J.: Unsupervised generation of data mining features from
linked open data. In: Proceedings of the 2nd International Conference on Web
Intelligence, Mining and Semantics, p. 31. ACM (2012)

21. Paulheim, H., Ristoski, P., Mitichkin, E., Bizer, C.: Data mining with background
knowledge from the web. In: RapidMiner World 2014 Proceedings, pp.1-14. Shaker,
Aachen (2014)

22. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

23. Ristoski, P., Bizer, C., Paulheim, H.: Mining the web of linked data with rapid-
miner. Web Semant.: Sci. Serv. Agents World Wide Web 35, 142–151 (2015)

24. Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for cre-
ating features from linked open data. In: Linked Data for Knowledge Discovery
(2014)

25. Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery:
a comprehensive survey. Web Semant.: Sci. Serv. Agents World Wide Web 36,
1–22 (2016)

26. Ristoski, P., Paulheim, H., Svátek, V., Zeman, V.: The linked data mining challenge
2015. In: KNOW@LOD (2015)

27. Ristoski, P., Paulheim, H., Svátek, V., Zeman, V.: The linked data mining challenge
2016. In: KNOWLOD (2016)

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1503.00759


514 P. Ristoski and H. Paulheim

28. Ristoski, P., de Vries, G.K.D., Paulheim, H.: A collection of benchmark datasets for
systematic evaluations of machine learning on the semantic web. In: International
Semantic Web Conference. Springer, Berlin (2016, to appear)

29. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014, Part
I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014)

30. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

31. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

32. de Vries, G.K.D.: A fast approximation of the Weisfeiler-Lehman graph kernel for
RDF data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML
PKDD 2013, Part I. LNCS, vol. 8188, pp. 606–621. Springer, Heidelberg (2013)

33. de Vries, G.K.D., de Rooij, S.: A fast and simple graph kernel for RDF. In: DMLOD
(2013)

34. de Vries, G.K.D., de Rooij, S.: Substructure counting graph kernels for machine
learning from RDF data. Web Semant.: Sci. Serv. Agents World Wide Web 35,
71–84 (2015)

35. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1365–1374. ACM (2015)


	RDF2Vec: RDF Graph Embeddings for Data Mining
	1 Introduction
	2 Related Work
	3 Approach
	3.1 RDF Graph Sub-structures Extraction
	3.2 Neural Language Models -- Word2vec

	4 Evaluation
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Results
	4.4 Semantics of Vector Representations
	4.5 Features Increase Rate

	5 Conclusion
	References


