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Abstract. With the success of Open Data a huge amount of tabu-
lar data sources became available that could potentially be mapped
and linked into the Web of (Linked) Data. Most existing approaches
to “semantically label” such tabular data rely on mappings of textual
information to classes, properties, or instances in RDF knowledge bases
in order to link – and eventually transform – tabular data into RDF.
However, as we will illustrate, Open Data tables typically contain a large
portion of numerical columns and/or non-textual headers; therefore solu-
tions that solely focus on textual “cues” are only partially applicable for
mapping such data sources. We propose an approach to find and rank
candidates of semantic labels and context descriptions for a given bag
of numerical values. To this end, we apply a hierarchical clustering over
information taken from DBpedia to build a background knowledge graph
of possible “semantic contexts” for bags of numerical values, over which
we perform a nearest neighbour search to rank the most likely candi-
dates. Our evaluation shows that our approach can assign fine-grained
semantic labels, when there is enough supporting evidence in the back-
ground knowledge graph. In other cases, our approach can nevertheless
assign high level contexts to the data, which could potentially be used
in combination with other approaches to narrow down the search space
of possible labels.

1 Introduction

With the uptake of the Open Data movement a large number of tabular data
sources become freely available comprising a wide range of domains, such as
finance, mobility, tourism, sports, or cultural heritage, just to name a few. The
published data is a rich corpus that could be mapped and linked into the Web
of Data, but RDF and Linked Data still remain too high an entry barrier in
many cases, such that “3-star Open Data” (cf. http://5stardata.info/) in the form
of tabular CSV data remains the predominant data format of choice in the
majority of Open Data portals [19]. Connecting CSV data to the Web of Linked
Data involves typically two steps, that is, (i) transforming tabular data to RDF
and (ii) mapping, i.e. linking the columns (which adhere to different arbitrary
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schemata) and contents (cell values) of such tabular data sources to existing RDF
knowledge bases. While a recent W3C standard [18],1 provides a straightforward
canonical solution for (i), the mapping step (ii) though remains difficult.

Mapping involves to semantically label columns by linking column headers or
cell values to either properties or classes in ontologies or instances in knowledge
bases, and to determine the relationship between columns [17]. For the seman-
tic labelling, most approaches so far rely on mapping textual values [16,20,21];
these work well e.g. for HTML/Web tables which have rich textual descriptions,
as they are published mainly for human consumption. However, in typical Open
Data portals many data sources exist where such textual descriptions (such as
column headers or cell labels) are missing or cannot be mapped straightforwardly
to known concepts or properties using linguistic approaches, particularly when
tables contain many numerical columns for which we cannot establish a semantic
mapping in such manner. Indeed, a major part of the datasets published in Open
Data portals comprise tabular data containing many numerical columns with
missing or non human-readable headers (organisational identifiers, sensor codes,
internal abbreviations for attributes like “population count”, or geo-coding sys-
tems for areas instead of their names, e.g. for districts, etc.) [9]. We verified this
observation by inspecting 1200 tables collected from the European Open Data
portal and the Austrian Government Open Data Portal and attempted to map
the header values using the BabelNet service (http://babelnet.org): on average,
half of the columns in CSV files served on these portals contain numerical values,
only around 20 % of which the header labels could be mapped with the Babel-
Net services to known terms and concepts (cf. more details in our evaluation in
Sect. 6.3). Therefore, the problem of semantically labelling numerical values, i.e.,
identifying the most likely property or classes for instances described by a bag
of numerical values remains open.

Some early attempts focus on specific “known” numerical datatypes, such
as longitude and latitude values [3], or – more generally – on classify-
ing numerical columns using (manually) pre-labelled numeric value sets [11].

Fig. 1. Hierarchical background
knowledge

To the best of our knowledge, so far
no unsupervised approaches have been
devised for semantic labelling of numer-
ical value sets. Additionally, the lat-
ter approach by Ramnandan et al. only
assigns a single predefined semantic label,
corresponding to a “property” per col-
umn. In the context of RDF, we deem
such semantic labelling insufficient in (at
least) two aspects: (a) We do not only
need to map columns to properties, but
to what we will call “contexts”, that is
property-domain pairs. (b) Since, given
the variety and heterogeneity of Open

1 Or, likewise with RDB2RDF direct mapping [2], the basis of [18].

http://babelnet.org
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Data, it is likely we cannot rely on a manually curated, pre-defined set of semantic
labels. Therefore, there is a need to build a hierarchical “background knowledge
graph” of semantic labels in an unsupervised manner, cf. Fig. 1. As an exam-
ple for (a), we do not only want to label a bag of numerical values as height,
but instead we want to identify that the values represent the heights of basket-
ball players who played in the NBA, or that the values represent the heights of
buildings.

Even if we cannot identify such precise labels, we still want to assign the
most likely contexts the values belong to, e.g. height of a person. To this end,
and in order to achieve (b), we automatically generate a hierarchical background
knowledge base of contexts from DBpedia. Different than previous approaches
that assign a single label to a bag of values, we assign different labels/contexts,
with different confidence values. This way, our approach could potentially be
combined with textual labelling techniques for further label refinement, which is
left for future work. In this particular paper, we focus on the following concrete
contributions:

1. We propose a hierarchical clustering over an RDF knowledge base to build
a background knowledge graph containing information about typical numer-
ical representatives of contexts, i.e., grouped by properties and their shared
domain (subject) pairs, e.g. city temperatures, peoples ages, longitude and
latitudes of cities.

2. We perform a k-nearest neighbours search and aggregate the results of seman-
tically label numerical values at different levels in our knowledge graph.

3. We evaluate our approach by cross-validating over a sample of DBpedia data
generated from the most widely used numeric properties and their associated
domain concepts.

4. We test our approach “in the wild” on tabular data extracted from Open
Data portals and report valuable insights and upcoming challenges which we
have to tackle in order to successfully label data from the Open Data domain.

In the remainder of this paper, after an overview of related works (Sect. 2),
we describe our overall approach (Sect. 3). Next, we present the construction of
the background knowledge graph from DBpedia in Sect. 4, as well as the actual
semantic labelling of a column (i.e., a bag of numeric values) in Sect. 5. Finally,
we present the evaluation results of the efficiency of different background graph
construction strategies and our experiments with attempting to find matching
columns in Open Data, Sect. 6. We conclude with a summary and ideas for future
work (Sect. 7).

2 Related Work

There exists an extensive body of research in the Semantic Web community to
derive semantic labels for attributes in structured data sources (such as columns
in tables) which are used to (i) map the schema of the data source to ontologies
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or existing semantic models or (ii) categorise the content of a data source (e.g. a
table talking about politicians, i.e., in our case mapping the rows of a table into
classes). The majority of these approaches [1,5,11,12,17,20,21] assume well-
formed relational tables, rely on textual information, such as table headers and
string cell values in the data sources, and apply common, text-based entity link-
age techniques for the mapping (see [24] for a good survey). Moreover, typical
approaches for semantic labelling such as [1,20,21] recover the semantics of Web
tables by considering as additional information the, again textual, “surrounding”
(section headers, paragraphs) of the table and leverage a database of class labels
and relationships automatically extracted from the Web. Note, that in contrast
to our concept of “context” of a column, the labels here are one-dimensional.
In summary, the main focus of all these works is on textual relations inside the
tables and in their surroundings. Techniques for recovering numerical relation-
ships are often left for future work. As for used techniques, while these are out
of the scope of our paper, many advanced textual entity recognition and linkage
techniques are implemented in the Babelnet system [10], as we highlighted in
the previous section these techniques are not necessarily applicable to a large
portion of (numerical) Open Data. In contrast, our approach assumes that we
only have a bag of numerical values available, in the worst case lacking any other
rich textual information.

Most closely related to our efforts is the work by Ramnandan et al. [11],
where the authors proposed to semantically label tuples of attribute-value pairs
(textual and numerical). The semantic labelling of numerical values is achieved
by analysing the distribution of the values and compare it to known and labelled
distributions given as input by using statistical hypothesis testing. In contrast
to their approach, we build a knowledge hierarchy and annotate sources not only
with a single label but with a possible type and shared property-object pairs.
Also complementary to our efforts is the work of Cruz et al. [3] which focus on
detecting geolocation information in tables and apply heuristics specifically for
numerical longitude and latitude values.

Outside the area of semantic labeling as such, but as an inspiration for
our approach, the authors of [6,22] developed approaches to detect natural
errors/outliers in RDF knowledge bases and automatically clustered candidate
sets from the RDF knowledge base they want to analyse by grouping numerical
values of a selected property by their types. We use a similar approach to build
our background knowledge: we also group the subjects (and their corresponding
values) by their types. However, we use a more fine-grained notion of “type”, not
only considering named classes but also “subtypes” defined in terms of shared
property-object pairs.

While our present work explicitly focuses on instance sets labeling in the
absence of a schema, previous work that addressed the automatic labeling prob-
lem using different combinations of instance and schema matching are relevant
and will be considered in future extensions of our work [8,13,23].
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3 Approach

Next, we outline the steps of our approach of finding the most likely semantic
label and to determine the context in which a bag of numerical values are derived.
In the following we formally define our notation and state the problem.

We denote a bag of numerical values annotated by a given label and context
description <l, c> as V<l,c> = {v1, v2, · · · , vn}, with vi ∈ R. Similar to [11], we
define a semantic label l as an attribute of a set of values, which can potentially
appear in different contexts. In this work, the semantic label l is a property
from an ontology. However, this could be generalised. The concept of context
description corresponds to a set of attribute-value pairs which explain/describe
the commonalities of the values in V<l,c>. As such, one can assume that the set
of input values V<l,c> are the result of applying a query over a knowledge base
(V<l,c> = Q(KB) = {v1, v2, · · · , vk}) with the semantic label and the set of
attribute value pairs as filter attributes of the query. For instance, the following
SPARQL query returns the set of values labelled with height and sharing the
attribute-value pair a basketball player :

SELECT ?v WHERE {[a dbo:BasketballPlayer] dbp:height ?v.}

Numerical values for a semantic label can appear in different contexts. For
instance, values can represent the height of a building, mountain or a person.
Even further, we might find values representing the height of basketball players
that played in the NBA. We model this observation in form of a tree for each
label l. The root node in such a tree corresponds to the set of all values which
fulfill the property l. The remaining nodes of the tree represent further semantic
information for this values, i.e., a shared context in the form of attribute-value
pair. Edges in the tree are subset-relations between these values, directed from
the superset to the subset. For instance, considering the semantic label height,
the root node could have child nodes corresponding to the context a mountain
and a person.

The background knowledge can be constructed in an either top-down or
bottom-up approach The former starts with the root node of the graph and
then detects subsets while the latter starts with leaf nodes which are then com-
bined into parent/super nodes. The top-down approach is suitable for building
the context graph from RDF knowledge bases and requires to start with a set
of entities which are described by several attribute-value pairs. Next, we can
group such entities by attributes which have numerical values, and then detect
subgroups of entities with shared attribute-value pairs. We will show in the next
section how we can build the background knowledge graph from an RDF knowl-
edge base.

The bottom-up approach is more suitable for building the background knowl-
edge from a set of CSV files. We first find a set of annotated numerical value
triples {(v1, l1, c1), (v2, l1, c2), · · · , (vn, lm, cn)}, each consisting of a set of numer-
ical values vi, a label lj and a context ci. An input triple (v, l, c) can be extracted
from a numerical column which was either manually or automatically annotated
with semantic labels (e.g. based on the column header). The possible context
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Table 1. Example table

name capacity city country

Ernst Happel... 50865 Vienna Austria

Franz Horr Stadium 13400 Vienna Austria

Red Bull Arena 32000 Salzburg Austria

· · · · · · · · · · · ·

Fig. 2. Resulting tree

information can be modelled from column headers, the author or title of the
table, or shared attributes within the table. For instance, take the example table
in Table 1 and the numerical column capacity, as context we could extract that
the numerical values describe an attribute of entities which are of type foot-
ball stadium. Further, all values share the attribute-value pair country: Austria.
Additionally, we could build a subset of values with the common context city:
Vienna and another subgroup with the context city: Salzburg (cf. Fig. 2). The
resulting background knowledge can be exploited by machine learning algorithms
or statistical methods to predict the most likely label and context for a given
bag of input values. We will outline how we apply a nearest neighbour search
approach to derive the most likely label and context pair for a set of values in
Sect. 5.

4 Background Knowledge Graph Construction
from DBpedia

In this section, we outline our automatic top-down approach to build a back-
ground knowledge base from RDF data. To do so, we execute the following steps:

1. We extract all RDF properties which have numerical values as their objects
and group the subjects by their numerical properties. These properties are
used as labels. We derive the list of RDF properties which have numerical
values as their range; the following SPARQL query could be used, cf. [6],
however, we note that this query does not return results on the live DBpedia
SPARQL endpoint due to timeouts:

SELECT ?p, COUNT(DISTINCT ?o) AS ?cnt
WHERE {?s ?p ?o. FILTER (isNumeric(?o))} GROUP BY ?p

Another approach would be to directly query the vocabularies if we know that
the RDF KB contains OWL vocabulary listing all datatype properties. We
resorted to just filtering triples of the DBpedia dump with numeric objects,
sorting them by property and counting via a script.

2. Next (in another pass/sorting), we collect/group by subjects in the different
property groups the values of the numerical properties l. For “typing” of these
subjects we collect property-object pairs – what we call context – for which
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the object is an RDF resource (an IRI); this includes rdf:type-Class triples,
but also others, e.g. dbo:locatedIn-dbr:Japan.

3. Next, we also extract and materialise the OWL class hierarchy for the Classes.
This can be done directly by extracting the rdfs:subClassOf hierarchy from
the DBpedia ontology for these Classes; we will use this type hierarchy to
further enrich our background graph collecting contexts.

After grouping the entities by the selected context labels we construct our back-
ground knowledge graph as follows: An abstraction of our graph is depicted on
the left hand side of Fig. 3: the graph consists of multiple trees, each tree corre-
sponding to a property. The root node of such a tree is labelled by the property
and contains the bag (i.e., multiset) of all numerical values of this property.

Fig. 3. background knowledge and prediction

4. The first “layer” of our knowledge graph is the so-called type hierarchy which
represents the rdfs:subClassOf relation for all available types of the triples
for property l from the type hierarchy. Since subjects can be of more than one
type, the sibling nodes in this layer can share values from the same triples. In
order to not keep too fine grained, rare classes, we filter by discarding types
with less than δ instances (e.g., property-class combinations with less than
50 instances).

5. Next, we construct the second layer, termed p-o hierarchy for the identified
non-rdf:type property-object pairs to further refine out context structure,
beyond classes, using a divisive hierarchical clustering approach. We start
with one node/group and split/compute sub-contexts recursively as we move
down the hierarchy, to further refine the type hierarchy. In order to decide how
to split a node, we impose the following requirements for possible candidates:
(a) constrain property-object: we use the same constraint as [6] that sub-

jects in a candidate node share the same property-object pair.



Multi-level Semantic Labelling of Numerical Values 435

(b) constrain size: again, in order to avoid too fine-grained subdivision, the
size of a candidate node has to be larger than 1 % of the parent node size
(or, resp. larger than δ) and smaller than 99 % of the parent node size.

Once the set of possible sub-contexts is computed, we sort the candidates by
their distance to the parent node in descending order. Details on the distance
measures used to compare bags of numerical values are given in Sect. 5.1.
To guarantee a high diversity as well as disjointedness of the sub-contexts
within the hierarchy, we select the candidate with the biggest distance first,
and then subsequently the non-overlapping sub-contexts from the list with
decreasing parent distance. Additionally, the disjointedness requirement also
helps to limit the number of sub groups. We recursively perform the above
steps for the new selected groups. Consequently, shared property-object pairs
of a node on the p-o hierarchy are encoded in the path to the resp. p-o node.

Node type terminology: Regarding terminology, we refer to the exact type of
a context graph node as the lowest type node in the path to a p-o node. For
instance, considering node P3 in our example in Fig. 3, the exact type would
be T2. As a super type, we consider all type nodes on the path between the
exact type node and the p-o node (e.g. T1 would be a super type of node P3).
Eventually, the root type of a node, is the highest type node on the path to the
p-o node (e.g. T1 is the root type of P3).

5 Prediction Approach

We use nearest neighbours classification over our background knowledge graph
to predict the most likely “semantic context” for a given bag of numerical val-
ues. Given an input bag, we compute the distance between the values to all
context nodes in our background knowledge graph and return the resp. contexts
in ascending order of distance. Ideally, the node with the closest distance is the
most likely semantic context/description for the input values. However, obviously
numerical values for different types and properties might share the same value
range and distribution and so we cannot even expect that the correct semantic
description is always the top ranked result. As such, we also provide aggregation
functions for predicates, type and p-o nodes over the top-k results. The idea is
similar to the K-nearest neighbour classification for which the classification of
an object is based on a majority vote over the top-k neighbour contexts.

5.1 Distance Measures

An important part for any prediction algorithm, be it based on machine learning
or statistical methods, is the distance measure to determine how closely related
two items (e.g. feature vectors) are. We consider two distance measures, namely
(i) the euclidean distance between two feature vectors and (ii) the distribution
similarity between two bags of numerical values.
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Euclidean Distance Between Descriptive Features. The first distance
function is the euclidean distance between two numerical n-dimensional feature
vectors. For our use case we consider the following features for the vectors:

– min and max value: The range of minimum and maximum values is an impor-
tant feature which allows us to easily discard “out of scope” labels or contexts.
For instance, the heights of humans might have a maximum range of 213 cm
which distinguishes it from buildings which have much higher max height.

– 5% and 95% quantile: Due to the fact that minimum and maximum values as
features are prone to outliers and errors in the set of values we also consider
quantiles and inter-quantile ranges, e.g., using 5 %- and 95 %-quantile instead
of min and max as features in a feature vector [6].

– Additional descriptive statistics (mean, stddev): Additionally, descriptive fea-
tures such as the mean and the standard deviation of a set of values give
better results for values which are within the same range but follow different
distributions.

Distribution Similarity. Another distance measure is the similarity of two
distributions of numeric values. This approach was already successfully used in
a similar setup by Ramnadan et al. [11]. The authors also showed in their eval-
uation that the Kolmogorov-Smirnov (KS) test performs best for this particular
setup compared to tests such as Welch’s t-test or Mann-Whitney’s U-test.

Kolmogorov-Smirnov (KS) distance: The KS test is a non-parametric test which
quantifies the distance between two empirical distribution functions with the
advantage of making no assumptions about the distribution of the data. As a
distance measure between two samples, the KS test computes the KS-statistic D
for two given cumulative distribution functions F1 and F2 in the following way:

D = sup
x

|F1(x) − F2(x)| (1)

where sup is the supremum of the distances. If two samples are equally dis-
tributed, i.e., the two bags hold the same numeric values, then the statistic D
converges to 0.

5.2 Aggregation Function

As in the K-nearest neighbour classification, we also aggregate the top-k nearest
neighbours by their properties, types and property object pairs. This allows us
to classify the input values at several levels:

Before we apply the specific voting function, we aggregate the neighbours for
the following different levels:

– property level: aggregation of the top-k neighbours by their properties
– exact type level: aggregation of the top-k neighbours by their exact type
– root type level: aggregation of the top-k neighbours by their root type
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– all types level: aggregation of the top-k neighbours by each of their types
(including the exact and all super types)

– p-o level: aggregation of the top-k neighbours by each of their p-o nodes

We consider the following two aggregation functions:

– Majority vote: This is the standard method for the K-nearest neighbour clas-
sification for which the input values are classified based on a majority vote
over the k nearest neighbours. Therefore, given an aggregation level, we rank
the aggregated results (e.g. properties) based on the appearance in the top-
k neighbours. Consider the right part of Fig. 3 in which we illustrate such a
ranking process. For instance, the property aggregation would rank p1 higher
than p2 since p1 appears three times in comparison to p2 which only appears
2 times.

– Aggregated distance: Our second aggregation function, we rank the aggregated
results not by the number of their appearances, but compute the average
distance. For instance, we would compute the distance for p1 in Fig. 3 by
averaging the distance of node P3, P2 and T1.

In addition to the aggregation of properties, types and property-object pairs,
we can also perform a nested level aggregation. For instance, we could aggregate
first on the property level and then inside each property on the type level. An
example for the nested aggregation based on the majority vote is depict in Fig. 3;
the most likely type for p1 would be t1 with 2 votes, followed by t2 and t3.

6 Evaluation and Experiments

We have implemented a prototype system in Python to evaluate our approach
with different functions. As a dataset to construct our background knowledge
we use the DBpedia 3.9 dump.2 The aim of our evaluation is twofold: We first
automatically evaluate the accuracy of our prediction functions with different
setups of the background knowledge in a controlled environment by splitting the
DBpedia data into a test and training dataset. Secondly, we manually test our
approach over Open Data CSV files to gain first insights for future directions,
whether there is a chance to label tabular columns outside of DBpedia.

6.1 Background Knowledge Construction

We selected 50 of the the most frequently used numerical DBpedia proper-
ties to build our background knowledge for both evaluation scenarios:3 we
excluded properties which clearly indicate internal DBpedia ids only, such as
dbo:wikiPageRevisionID as well as properties which are not directly in the root
2 http://downloads.dbpedia.org/3.9/en/mappingbased properties en.nt.bz2, last

accessed 2016-04-28.
3 The full list of properties is online at http://data.wu.ac.at/iswc2016 numlabels/

properties.html.

http://downloads.dbpedia.org/3.9/en/mappingbased_properties_en.nt.bz2
http://data.wu.ac.at/iswc2016_numlabels/properties.html
http://data.wu.ac.at/iswc2016_numlabels/properties.html
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path of the http://dbpedia.org/ontology/ prefix. Figure 4 plots in the left figure the
5 % to 95 % inter-quantile ranges of our selected properties (in logarithmic scale)
and in the right figure the total number of numeric values for each property. The
range plot visualises the overlap of numerical values for our different properties
and the quantiles are used to smoothen the ranges and eliminate possible out-
liers. About 60 % of the properties have values within the range 0–1000 and about
90 % within 0–2000.4 The shortest range has the property dbp:displacement
(inter-quantile range of 0.0058) and the maximum range of 2.56 billion has the
property dbp:areaTotal. Regarding the total number of values, the longest bar,
with 421k values, corresponds to the dbp:years property and the shortest to
dbp:width (9.6k values).

Fig. 4. 5 %–95 % inter-quantile ranges and number of values of training properties

We built three versions of our background knowledge graph to better under-
stand the impact of the three different distance functions. One function is based
on the Kolmogorov - Smirnov distribution test, and two based on the euclidean
distance over feature vectors. The first type of vector uses the minimum and
maximum of the values as features while the other uses the 5 % and 95 % quan-
tile as features. We add to both vectors the mean and standard deviation as
additional dimensions. Table 2 gives an overview of our three knowledge bases
together with the number of nodes, the construction time of the background
knowledge graph and the average prediction time for a given set of values (based
on our evaluation runs).

In addition we added our average prediction times for the different setups.
However, please note that we did not optimize our system wrt. runtimes.

Table 2. Setup of our three background knowledge graphs

ID Distance measure Nodes Build time Avg. pred. time

KS Kolmogorov-Smirnov test 11431 30 m 2.5 s

FV1 (min, max, mean, std) 11432 24 m 2.3 s

FV2 (5-q, 95-q, mean, std) 11432 38 m 4.6 s

4 Note, that around 30% of the properties have values in the range of 1000–2000 and
mainly describe years.

http://dbpedia.org/ontology/
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In future work we plan the improvement of these prediction times in order
to provide our algorithm as a live service. All evaluation are conducted on a
machine with 30 GB of RAM.

6.2 Model Evaluation

Our first experiment is designed to obtain the performance characteristics of our
prediction for different distance functions.

Test and training data selection: To get an unbiased assessment we randomly
assigned 20 % of the subjects for each property as test data and the remaining
subjects are used to build the knowledge bases. The test data is further processed
to find suitable test groups. To build those test-groups, we proceed in a similar
manner as for the construction of the background knowledge base. That is, we
analogously built type hierarchy and p-o hierarchy for per property, however, this
time without imposing any constraints and creating all possible test contexts and
sub-contexts. Eventually, we randomly select the leaf nodes of this “test context
graph” and the respective numerical value bags as test data. This process ensures
that we select context nodes which are not necessarily contained 1-to-1 in the
background knowledge graph.

Evaluating Distance Functions. Our first evaluation aims to (i) test the
impact of the distance function for the prediction and (ii) to select the best
setup for further tests. We set up an initial experiment by randomly selecting a
maximum of 50 leave nodes from each property tree in our test dataset; resulting
in 1787 test nodes.

Table 3. Accuracy in % for different distance functions

FV1 FV2 KS

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

exact 2.5 8.2 8.2 2.5 8.2 8.2 12.3 41.8 47.9

prop 45.4 60.3 60.3 45.4 60.3 60.3 57.1 74.1 79.8

type 11.3 24.9 24.9 11.3 24.9 24.9 16.1 43.9 56.0

stype 24.9 41.1 41.1 24.9 41.1 41.1 35.8 58.6 67.5

To initially measure the accuracy of the top-k neighbours, we introduce the
following evaluation measures:

– exact: the top-k neighbours contain the correct node in the graph, that is, the
test node and predicted node share the same property, type and p-o pairs.

– prop: the top-k neighbours contain the correct property/label
– type: the top-k neighbours contain the correct type
– stype: the top-k neighbours contain the correct super type of the test node
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The results in Table 3 show the accuracy for different metrics for the
top-k neighbours, with the best results marked bold. We can clearly see that
the Kolmogorov-Smirnov based distance function (KS) outperforms for all met-
rics the feature vectors based functions in terms of prediction accuracy. The
initial results show that our approach already predicts the correct property of
the input values in the top-10 neighbours for 79 % of all test and the right type
in 56 % of the cases. Based on the clear results, we decided to use the predic-
tion approach based on Kolmogorov-Smirnov distance function in the remaining
evaluation.

Large-Scale Model Validation: The next experiment focuses on the evalu-
ation of the different aggregation functions and levels. We randomly sampled
33657 test nodes by selecting a maximum of 20 % of the leave nodes for each
property in our test data set. The test data is ∼18 times larger than in the
previous experiment and 3 times the size of our training nodes. In addition, only
9 % of the test context nodes are contained 1-to-1. This allows us to study our
approach for input data for which we have only partial evidences available. We
evaluate the accuracy for the different levels by measuring if the top-k aggre-
gated results contain the correct property, type, parent types or any p-o context
of the test instance.

Table 4 summarises the accuracy (in %) over 33k test instances for two aggre-
gation functions over the top-k nearest neighbours. Overall, the results show a
high prediction accuracy of over 92 % across all different levels for the top-10
aggregated results using the top-50 closest neighbours. For the root-type pre-
diction, we observe the highest accuracy within the top-5 aggregated results.
Regarding test nodes for which we have only partial information available, our
approach can still predict the correct property, (parent) type and even some
of the shared p-o pairs. Our results also show that doubling the number of
neighbours significantly improves the prediction accuracy by up to 15 %. Con-
sidering the two aggregation functions, we see that ranking the results based on
majority votes performs slightly better than using the average distance, with the

Table 4. Accuracy in % for different aggregation levels and functions (maj. = majority
vote, avg. = average distance)

Top-k prop type all-types root-type p-o level

Neigh. Agg. results Maj. Avg. Maj. Avg. Maj. Avg. Maj. Avg. Maj. Avg.

25 1 59.3 34.5 64.7 57.8 64.7 57.8 66.4 69.2 20.4 24.9

5 87.9 82.9 91.4 85.3 91.4 85.3 94.7 94.7 75.8 66.2

10 98.5 98.5 94.7 94.7 94.7 94.7 94.7 94.7 83.8 74.0

50 1 57.4 23.7 66.4 37.6 66.4 37.6 66.7 70.7 20.4 24.9

5 98.4 83.7 93.2 65.4 93.2 65.4 96.3 96.3 75.8 66.2

10 99.3 99.3 96.3 96.1 96.3 96.1 96.3 96.3 83.8 74.0
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biggest impact for the p-o level aggregation. Interestingly, inspecting the top-1
aggregated results using the 50 nearest neighbours, we see that the root-type
accuracy is lower than the all types accuracy. This is a false negative classi-
fication which can happen if there exists more than k results with equal votes
or average distances. In such case, we rank the results in alphabetical order and
return only the top-k, leading to a cutoff of possible correct results.

Looking at the top-10 of the aggregated results, we correctly predicated
99.5 % of the properties, 96.3 % of the exact and parent types and 92 % of the p-o
pairs. These results are encouraging to use our approach for labelling numerical
columns in tabular data, especially since we can also partially label values for
which we do not have full evidences in our background knowledge graph.

6.3 Semantic Labelling of Numerical Columns in Open Data Tables

Eventually, we study how our approach performs for numerical columns in Open
Data tables. We have to emphasise upfront, that this experiment is of rather
exploratory than quantitative nature, since - due to the heterogeneity of data
typically published in Open Data portals vs. DBpedia, we could not expect a
lot of exact matches.

To conduct our experiment, we downloaded and parsed in total 1343 CSV files
from two Open Data portals, namely the Austrian Open Government Data portal
(AT5) and the European Open Data portal (EU6). We used the standard Python
CSV parser to analyse the tables for missing header rows and performed a simple
datatype detection to identify numerical columns. In order to get insights into the
descriptiveness of these headers we tried to map header labels to BabelNet [10] in
a non-restrictive manner: we performed a simple preprocessing on the headers
(splitting on underscores and camel case) and retrieved all possible mappings
from the BabelNet API.

Table 5 shows some basic statistics of the CSV tables in the two portals.
An interesting observation is that the AT portal has an average number of 20
columns per table with an average of 8 numerical columns, while the EU portal
has larger tables with an average of 4 out of 20 columns being numerical. Regard-
ing the descriptiveness of possible column headers, we observed that 28 % of the
tables have missing header rows. Eventually, we extracted headers from 7714
out of around 10K numerical columns and used the BabelNet service to retrieve
possible mappings. We received only 1472 columns mappings to BabelNet con-
cepts or instances, confirming our assumption that many headers in Open Data
CSV files cannot easily be semantically mapped.

Exploratory Experiments: We used the numerical columns from our CSV
corpus as input for our system and manually study select columns to gain first
insights. Initially, we ranked the columns by their average distance over the 50

5 http://data.gv.at/.
6 http://open-data.europa.eu/.

http://data.gv.at/
http://open-data.europa.eu/
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Table 5. Header mapping of CSVs in Open Data portals

Portal Tables cols num.cols w/o Header Num. H Mapped

AT 968 13 8 154 6,482 1,323

EU 357 20 4 223 1,233 349

nearest neighbours and inspected the top-100 columns for each portal. We share
the interesting results for tables and columns online.7

Our first observation observation is related to the time coverage of numerical
values and the difference between Open Data and DBpedia. For instance, the
Austrian Open Data portal hosts tables as specific as numbers of cars per brands
per district in Vienna, or current (every 15 min) weather data from different
weather stations in Austria. We do not expect matches for such specific numbers
or even for temperature values if they are given in the form of timelines. In
contrast, DBpedia typically has numeric values only for “current” or “latest” for
many properties, taking population numbers of settlements as an example. Still,
we are curious to see what the method would return and partially could explore
interesting findings.

Another observation is that our knowledge base does not cover some of the
domains and attributes of the numerical Open Data columns. For instance, many
columns describe “counts” or “statistics”. Examples for such count columns are
the number of registered car model per district, the count of tourists grouped
by their nationality, month of year and country/region they visit or the count of
valid or invalid votes for an election. Examples for statistics are election results
or the percentage of registered people for different age groups and districts in
a city. For instance, take the 14th ranked Column#148 which describes elec-
tion results divided by different regions, with a non-descriptive header UNG. (we
assume this means “invalid votes”). The second-ranked property is population-
Total which is arguable a related labelling, since election results are basically
sub-populations of different regions. Looking at the results of the type aggrega-
tion for this column, we find five times the type Settlement within the first ten
neighbours, which further indicates that the values rise from (sub-)populations.
Similarly, Column#19 holds counts of car models grouped by regions which our
algorithm again labelled as population. This shows clearly that to label Open
Data columns we need a very broad coverage of numerical domains in our back-
ground knowledge.

We also aggregate the results across columns to identify the “domain” of a
table using the top-10 results of our all-types level aggregation and manu-
ally inspected some results. Again, we ranked the tables based on their average
distances across all their numerical columns. For instance, consider the second

7 http://data.wu.ac.at/iswc2016 numlabels/.
8 http://data.wu.ac.at/iswc2016 numlabels/submission/col14.html.
9 http://data.wu.ac.at/iswc2016 numlabels/submission/col1.html.

http://data.wu.ac.at/iswc2016_numlabels/
http://data.wu.ac.at/iswc2016_numlabels/submission/col14.html
http://data.wu.ac.at/iswc2016_numlabels/submission/col1.html
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ranked Table#210 which consists of multiple columns which describe population
counts for different districts. Aggregating and ranking the types across these
columns results in the types Town and PopulatedPlace which proved to be right.

Discussion of Findings: While the findings did not yet provide, clear and con-
vincing matches, we could collect valuable insights from this results on challenges
to be tackled in future work:

– Dealing with timeline data: To correctly handle timeline data, we first need
to be able to detect the time dependency and than regroup or transform the
table.

– Domain specific background knowledge: Open Data contains many tabular
data which is similar in itself, but not necessarily matching DBpedia cate-
gories and values reported there, e.g. reports for spendings/budget election
results, tourism or population demographics. Our results highlight the limited
coverage of DBpedia, which was also observed in the work from Ritze et al.
[14]. Therefore, we have to gradually enrich the background knowledge graph
from categories learned from Open Data tables themselves.

– Aggregating column scores: While single columns provided partially bad recog-
nition, in some cases combined recognition of columns revealed interesting
combinations.

– Combine with existing complementary approaches: Lastly, while we deliber-
ately left it out of scope in this paper, linguistic cues could and probably
should be used in combination with our numerical methods as an additional
cue to gradually improve labelling/matching capabilities, as we explore and
collect more Open Data sources.

7 Conclusions and Future Work

To the best of our knowledge, this is the first work addressing semantic labelling
of numerical values by applying k-nearest neighbours search over a background
knowledge graph, which is constructed in an unsupervised manner using hierar-
chical clustering. Our evaluation shows that we can assign fine-grained semantic
labels when there is enough supporting evidence in our background knowledge
graph. In other cases, our approach can nevertheless assign high level contexts
to the data. Given a bag of numerical values, we correctly identified in 99.5 %
of the test cases the properties, in 96.3 % the exact or parent type, and in 92 %
the shared property-object pairs. Despite the simplicity of our solution, we can
confirm that a knowledge base can be harnessed to perform automatic semantic
labelling of datasets with promising results.

The obtained results are encouraging for labelling numerical columns in tab-
ular data. A first feasibility evaluation using numerical columns in Open Data
CSV files showed that further research is needed to extend our knowledge graph
to cater for the specifics of the Open Data domain, such as addressing timeliness.
10 http://data.wu.ac.at/iswc2016 numlabels/submission/tab2.html.

http://data.wu.ac.at/iswc2016_numlabels/submission/tab2.html
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In future work, we plan to extend our background knowledge, using more prop-
erties from DBpedia and combining it with knowledge from other RDF datasets,
such as WikiData or eurostats. To achieve better results in such combined datasets
the handling of units of measurement and the time dimension is a vital exten-
sion of our system [23]. Complementary, we will focus on building the background
knowledge in a bottom-up approach from information extracted out of CSV files
as outlined in this work. We will also investigate performance optimization tech-
niques, since our prediction time increases linearly with the number of context
nodes. For example, we will explore range indices or pre-filtering to reduce the
search space in the context graph. Another direction is to exploit our system in
combination with other approaches for labelling tables based on textual header;
e.g., [8] nicely complements our approach: Halevy et al. group together semanti-
cally related attributes and relate them to corresponding classes.

We believe that our approach can provide important clues about the context
of numerical values which can be exploited in other domains, e.g., as input for
ontology alignment between two different RDF datasets [7,15] or as input for
computing the relatedness between tables such as used in [4].

Acknowledgments. This work has been supported by the Austrian Research Pro-
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agement. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650,
pp. 148–163. Springer, Heidelberg (2012)

10. Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012)

11. Ramnandan, S.K., Mittal, A., Knoblock, C.A., Szekely, P.: Assigning seman-
tic labels to data sources. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C.,
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