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Abstract. Statistical data in the form of RDF Data Cubes is becoming
increasingly valuable as it influences decisions in areas such as health
care, policy and finance. While a growing amount is becoming freely
available through the open data movement, this data is opaque to layper-
sons. Semantic Question Answering (SQA) technologies provide intuitive
access via free-form natural language queries but general SQA systems
cannot process RDF Data Cubes. On the intersection between RDF Data
Cubes and SQA, we create a new subfield of SQA, called RDCQA. We
create an RDQCA benchmark as task 3 of the QALD-6 evaluation chal-
lenge, to stimulate further research and enable quantitative comparison
between RDCQA systems. We design and evaluate the domain indepen-
dent CubeQA algorithm, which is the first RDCQA system and achieves
a global F1 score of 0.43 on the QALD6T3-test benchmark, showing that
RDCQA is feasible.

1 Introduction

Statistical data influences decisions in domains such as health care, policy, gov-
ernmental decision making and finance. The general public is increasingly inter-
ested in accessing such open information [19]. This coincides with the open
data movement and has led to an increased availability of statistical government
data in the form of data cubes. Initiatives that publish those statistics include
OpenSpending1 and World Bank Open Data2. However, this type of data is mul-
tidimensional, numerical and often voluminous, and thus not easily approachable
for laypersons.

While singular data points can be queried using a tabular and faceted brows-
ing interfaces offered by those initiatives, common questions often require [12]
the combination and processing of many different datapoints. This processing
can be performed by specialized tools but they require knowledge of a specific
1 http://openspending.org/.
2 http://data.worldbank.org/.
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vocabulary or a formal query language and are thus also hindering the access
for laypersons. To provide a more intuitive interface, we present the CubeQA
approach.

Our contributions are as follows: (1) To the best of our knowledge, we are
the first to tackle the intersection between Data Cubes, Question Answering
(QA) and RDF, creating a new subfield of QA, which we call RDCQA. (2) We
stimulate further research with the creation of the QALD-6 Task 3 benchmark
(QALD6T3): Statistical Question Answering over RDF datacubes. This enables
quantitative comparison between RDCQA systems, see Sect. 4.2. Moreover, the
introduction of this task has led to the development of another system, QA3

(“QA cube”), and the extension of the SPARQL query builder Sparklis (see
Sect. 5). (3) With the CubeQA algorithm, which achieves a global F1 score of
0.43 on QALD6T3-test (see Sect. 4), we show that RDCQA is feasible.

The rest of the paper is structured as follows: Section 2 introduces the prelim-
inaries. Section 3 defines the CubeQA algorithm. Section 4 presents our bench-
mark and evaluates the CubeQA algorithm. Section 5 summarizes general SQA
approaches and work in progress on RDCQA. We summarize our contributions
in Sect. 6 and present challenges to be addressed by future work.

2 Preliminaries

Unlike common data representations such as tables or relational databases, the
data cube3 formalism adequately represents multidimensional, numerical data.
A data cube is a multidimensional array of cells. Each cell is uniquely identified
by its associated dimension values and contains one or more numeric measure-
ment values. Data cubes are often sparse, i.e., for most combinations of dimen-
sion values there is no cell in the cube. Data cubes, such as in Fig. 2a, allow the
following operations supported by CubeQA:

1. Dicing a data cube creates a subcube by constraining a dimension to a subset
of its values, see Fig. 2b.

2. Slicing a data cube reduces its dimensionality by one by constraining a dimen-
sion to one specific value, see Fig. 2c.

3. Rolling Up a data cube means summarizing measure values along a dimension,
such as a sum, count, or arithmetic mean. A roll-up of Fig. 2c answers Fig. 1.

Definition 1. We define Question Answering (QA) [11] as users (1) asking
questions in natural language (NL) (2) using their own terminology to which
they (3) receive a concise answer. In Semantic Question Answering (SQA), the

How much did the Philippines receive in the years of 2007 to 2008?

Fig. 1. The running example used throughout this paper

3 also OLAP cube or hypercube.
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(a) Simplified excerpt of the LinkedSpending RDC Finland Aid Data for Fig. 1. Measure
units are provided by the currency attribute in each cell (omitted for brevity).
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(b) A dice of Fig. 2a created by constraining
the year dimension to 2007 and 2008.

4300 25000

0 0

wateradministration

Sector

Philippines
Recipient
Country

2007
2008Year

(c) A slice of Fig. 2b created by constrain-
ing the Recipient Country dimension to the
Philippines.

Fig. 2. Example of a data cube and its operations.

natural language question is transformed into a formal query on an RDF knowl-
edge base, commonly using SPARQL.

The RDF Data Cube (RDC) Vocabulary models both the schema and the
observations of a data cube to RDF (see Fig. 3a). Each data cube, an instance of
qb:DataSet, has an attached schema, the data structure definition, which speci-
fies the component properties4. A component property is either a dimension, an
attribute or a measure. Measures, of which there has to be at least one, represent
the measured quantities, while the dimensions and the optional attributes pro-
vide context. Because the RDC vocabulary is focused on statistical data, its cells

4 qb:ComponentProperty in Fig. 3a, not to be confused with rdf:Property.

http://purl.org/linked-data/cube#ComponentProperty
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
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(a) Simplified structure of the RDF Data
Cube (RDC) vocabulary, which deter-
mines the triple patterns required for the
SPARQL query. A more detailed explana-
tion of the RDC vocabulary is presented
in [12]. Figure originally published in [13].

SELECT sum(?amount )
FROM : f in land −a id
{
?o a qb : Observation .
?o : amount ?amount .
?o : r e c i p i e n t −country : ph .
?o : re fYear ?y .
f i l t e r ( year (? y )=2007

OR year (? y ) =2008)
}

(b) A SPARQL query answering the run-
ning example (Fig. 1).

Fig. 3. The RDC vocabulary and an exemplary SPARQL query for Fig. 1.

are called observations. Each observation contains a triple that specifies a value
for each component property5.

RDCs allow data cubes to profit from the advantages of Linked Data [3],
such as ontologies, reasoning and interlinking. For example, the dimension value
for recipient country :ph can be linked to dbpedia:Philippines, whose properties
can then be queried from DBpedia [16].

3 CubeQA Algorithm

The CubeQA algorithm converts a natural language question to a SPARQL
query using a linear pipeline. Its first step, preprocessing, indexes the target
datasets, extracts simple constraints and creates the parse tree used by the
following steps. Next, the matching step recursively traverses the parse tree
downwards until it identifies reference candidates at each branch. Starting at
those candidates, the combination step merges those candidates upwards until
it creates a final template in the root of the parse tree. Finally, in the execution
step, the template is converted to a SPARQL query that is executed to generate
the result set containing the answer.

3.1 Preprocessing

Number Normalization. First, numbers are normalized, for example “5 thou-
sand” to “5000”, as the other components do not recognize numbers in words.

Keyphrase Detection. In this step, phrases referring to data cube operations are
detected. These operations are typically referenced by certain keyphrases and
are thus detected using regular expressions during preprocessing, see Table 1.

5 except attributes, which may also apply to the whole data cube.

http://dbpedia.org/resource/Philippines
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Fig. 4. The CubeQA pipeline

Those keyphrases, as well as the following entity recognition and disambiguation
steps, are domain independent, so that CubeQA can be used with any set of
RDCs. Nevertheless, the keyphrase to operation mapping can be extended for a
specialized vocabulary to increase the recall on a particular domain.

Table 1. Data cube operations extracted in the preprocessing step

Element SPARQL Example phrase

Dice Filter 2007 to 2008

Roll-up Aggregate In total

Slice Filter In 2008

Modifier ORDER LIMIT The 5 highest amounts

If a roll-up is not explicitly expressed in the question, a default aggregation
is assumed for some answer types. A SPARQL aggregate rolls up all dimensions
that are not bound by query variables. The roll-up aggregates sum, arithmetic
mean and count are handled differently then minimum and maximum. The for-
mer aggregates return new values, so that they can be mapped to the SPARQL
aggregation keywords SUM, AVG and COUNT. Minimum and maximum, how-
ever, choose a value among the existing ones, which allows identification of a cell
and thus of a different component value. For example, in “Which company has
the highest research spending?”, the user probably asks for the total, which can
be achieved by a roll-up with addition followed by selecting the company with
the highest sum.

Dataset Detection. CubeQA uses a dataset index that is initialized once with
the set of available RDCs. It is implemented as a Lucene index with fields for the
labels, comments and property labels of each RDC. The dataset name alone is
not sufficient because questions (Definition 1) often do not refer to the dataset.
For example, in Fig. 1, the dataset finland-aid is not mentioned but “the Philip-
pines”, “2007” and “2008” will all be found by the index.

Parsing. At the end of the preprocessing step, a syntactic parse tree is generated
for the modified question. This tree structure is traversed for matching nodes as
described in Sect. 3.2.
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3.2 Matching

Our query model starts with the whole RDC. The question is then split into
phrases that are mapped to constraints, which exclude cells from the target
datacube. In order to increase accuracy and resolve ambiguity, however, phrases
of the question are first mapped to potential observation values in the matching
step, based on the following definitions:

Definition 2 (RDF Knowledge Base (KB)). Let U be a set of URIs, U =
I ∪· P ∪· C, where I is are the instances, P the properties and C the classes. Let
L ⊂ Σ∗ be a set of literals, where Σ is the unicode alphabet. We define a KB k
as a set of triples k ⊆ U ×P × (U ∪· L) (we disregard blanknodes). In the context
of this work, the KB contains the triples of a set of RDCs.

Definition 3 (Values). The values of a component property p for an RDC
c and a KB k are defined as: Vp,c,k = {v|∃o : {(o, p, v), (o, qb:dataset, c),
(o, rdf:type, qb:Observation)} ⊂ k}. The numerical values Dp,c,k are the values
representing numbers, converted to double values. The temporal values Tp,c,k are
the union of all values representing dates or years, converted to time intervals
τ(v) : Tp,c,k =

⋃
v∈Vp,c,k

τ(v).

Example: :ph ∈ V{:recipient-country, finland-aid, linkedspending}.

Definition 4 (Scorer). A scorer for a component property p is represented
formally by a partial function dp : Σ∗ → (L ∪ U) × (0, 1], Table 3 shows the three
types of scorers, which are assigned to a property based on its range (see Table 2).
Informally, the scorer of p returns the value with the closest match to a given
phrase and its estimated probability.

Table 2. Component property scorer and answer type assignment. Integers include
datatypes derived by constraint

Range Scorer Answer type

xsd:integer Numeric Countable

xsd:float, xsd:double Numeric Uncountable

xsd:gYear, xsd:date Temporal Temporal

No match String Entity

For the query template, the scorer results are converted to constraints.
A naive approach is to create a value reference for the highest scored prop-
erty of a phrase but this penalizes short phrases and suffers from ambiguity as
it does not take the context of the phrase into account. Accordingly, CubeQA
inserts an intermediate step: the match, which represents the possible references
to component properties and their values.

http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#float
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#gYear
http://www.w3.org/2001/XMLSchema#date
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Table 3. Definitions of the different types of scorers. The String Scorer uses both
the Levenshtein distance, to quickly find candidates, and bigrams, for a more accurate
scoring. All three scorers are partial functions whose result is undefined if no value is
found. Only String Scorers return scores < 1, as they can correct for typographical
errors in the input, while Numeric and Temporal Scorers are either undefined or return
the input number, respectively time interval, with a score of 1. Type casting and
conversion is omitted for brevity, e.g. in Fig. 1 the phrase “Philippines” is equated
to the language tagged label "Philippines"@en and the phrase “2007” to the year
2007^^xsd:gYear.

Type Scoring function dp(a)

String (arg maxb∈βp(a)
(ngram(a, b)), maxb∈βp(a)

(ngram(a, b)),

where βp(a) = {b ∈ Vp,c,k|lev(a, b) ≤ 2}, using n-gram
similarity [15] (ngram, n=2) and a Levenshtein-Automaton
[21] (lev)

Numeric (a, 1), if a ∈ [min(Dp,c,k), max(Dp,c,k)], otherwise undefined

Temporal (a, 1), if Tp,c,k ∩ τ(a) �= ∅, otherwise undefined,

Definition 5 (Match). A match m is represented formally by a pair (ρ, γ),
where ρ is the partial property scoring function, ρ : P → (0, 1] and γ is the
partial value scoring function, γ : P → (L ∪ U) × (0, 1].

3.3 Combining Matches to Constraints

The recursive combination process is used because (1) it favours longer phrases
over shorter ones, giving increased coverage of the question and (2) it favours
combination of phrases that are nearby in the question parse tree.

Definition 6 (Constraint). A constraint c is represented by a triple (G,ω, λ),
where:

– G is a set of SPARQL triple patterns and filters as defined in [20]
– ω is an optional order by modifier, ω ∈ ({ASC,DESC} × P ) ∪ {null}
– λ is an optional limit modifier, λ ∈ N

+ ∪ {null}
Constraints are based on three different criteria:

1. A Value Constraint can be applied to any component property to confine
it to an exact value, which can be a string, a number or a URI. It consists of
a single SPARQL triple pattern: cv = ({(?o, p, v), (?o, qb:DataSet, d), (?o, a,
qb:Observation)}, null, null)}, with p ∈ Pandv ∈ L ∪ U .

2. An Interval Constraint confines a value to a numeric or temporal interval.
Accordingly, it can only apply to a component property whose range is an
XSD numeric or temporal data type. It consists of a SPARQL triple pattern
and a filter: ci = ({?o p ?x, filter(?x > x1) AND (?x < x2)},null,null),
with p ∈ P , the lower limit x1 and an upper limit x2. Example:
({?o :refYear ?y, filter(year(?y)>=2007 AND year(?y)<=2008)},null,
null). Closed or half-bounded intervals are defined analogously.

http://www.w3.org/2001/XMLSchema#gYear
http://purl.org/linked-data/cube#Dataset
http://purl.org/linked-data/cube#Observation
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3. Top/Bottom n Constraints place an upper limit on the number of selected
cells. They consist of three parts: The order (ascending or descending), the
limit and the numeric component property whose values imply the order.
Formally, ct = (∅, (DESC, p), n), cb = (∅, (ASC, p), n)

To identify Value Constraints, each component property has a scorer
(Definition 4), which tries to find a value similar to an input phrase. For example,
“How much total aid was given to the regional FLEG programme in Mekong?”,
could refer to a dimension “programme” with a value of “FLEG” and a dimen-
sion “region” with a value of “Mekong”. Equally possible would be a dataset
description of “aid to Mekong” and a dimension “target” with a value of “FLEG
programme”. The other types of constraints are matched in the preprocessing
step because they are identified by certain keyphrases, such as “the 5 highest X”.

In the example question, “How much did the Philippines receive in the year
of 2007?”, there are multiple candidates for the number “2007”. The candidates
can be disambiguated using the property scoring function of the “year” node by
upward combination. As a match only holds the information collected from a
single node in the question parse tree, there is additional information needed to
represent a whole subtree. This extended representation is called a fragment and
holds: (1) multiple matches collected in the recursive merge and (2) constraints
extracted from fitting matches.

Definition 7 (Fragment). Formally, a fragment f is a pair (M,R), where M
is a set of matches (see Definition 5) and R is a set of constraints.

Algorithm 1 describes the process that combines the fragments of a list of
child nodes into the fragment for their parent node.

3.4 Execution

Algorithm 1 combines the fragments of child nodes to create a fragment for the
parent node. When this recursive process reaches the root node, Algorithm2
transforms the fragment that results from the successive combination up to that
point into a template (see Definition 8). All leftover value references whose prop-
erty has not been referenced yet over a certain score threshold are transformed
into additional Value Constraints. Other name and value references are dis-
carded. All constraints, as well as the aggregate, if available, are then used to
construct a SPARQL select query.

Definition 8 (Template). A template t is a tuple (R, a, α), where R is as
defined in Definition 7, a ∈ P is the answer property and α is an optional aggre-
gate function, α(X) ∈ {min(X),max(X),

∑
x∈X x, |X|,∑x∈X

x
|X| ,null}.

Next, the values of the answer properties are requested. If the set of answer prop-
erties is empty, the default measure of the dataset is used as an answer property
to determine the properties. Executing the SPARQL query on the target knowl-
edge base results in the set of answers requested by the user. The algorithm
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Algorithm 1. Fragment Combination
Input: A list of fragments F = {(M1, R1), . . . , (Mn, Rn)}, with Mi = (ρi, γi)
Output: The combined fragment f = (M, R)
R ← ∪n

i=1Ri;
P ′ ← (P \ δ(R)) ∩⋃n

i=1(dom(ρi) ∪⋃x∈dom(γi)
π1(x));

M ← {M1, . . . , Mn}};
foreach p′ ∈ P ′ do

mproperty ← arg max(ρ,γ)∈M′ ρ(p′);
mvalue ← arg max(ρ,γ)∈M′\{mproperty} γ(p′)];
g ←?o p π2(mvalue)(p).;
R ← R ∪ {({g}, null, null)};
M ← M \ {mproperty, mvalue};

return (M, R)

πi(t) is the projection on the i-th element of the tuple t. The domain dom(f) is the
set of all elements for which the (partial) function f is defined. δ(R) is the set of all
component properties that occur in at least one triple pattern in R.

implementation is publicly available under an open license at (link temporar-
ily removed for anonymity). The algorithm implementation is publicly available
under an open license at https://github.com/AKSW/cubeqa.

4 Evaluation

4.1 Research Questions

The goal of the evaluation was to obtain answers to the following research ques-
tions: Q1: Is CubeQA powerful enough to be practically useful on challenging
statistical questions? Q2: Is there a tendency towards either high precision or
recall? Q3: How do other RDCQA systems perform? Q4: What types of errors
occur? How frequently are they? What are the reasons?

4.2 Experimental Setup and Benchmark

As there was no existing benchmark for RDCQA, we created a benchmark based
on a statistical question corpus [12] and included it in the QALD-66 evaluation
challenge. We used the existing corpus and significantly extended it to 100 ques-
tions, forming the training set QALD6T3-train. While keeping a similar struc-
ture, we adapted it to 50 of the, at this time, 983 financial datasets of Linked-
Spending [13]. Chosen are the first 50 datasets that are manually confirmed as
English from a list of all datasets. The list was sorted in descending order by
their proportion of English labels (having at least 100 labels) as determined by
automatic language detection. The datasets contain in total 158 dimensions, 81
measures, 176 attributes, 950149 observations and 16359532 triples (Table 4).
6 http://www.sc.cit-ec.uni-bielefeld.de/qald/.

https://github.com/AKSW/cubeqa
http://www.sc.cit-ec.uni-bielefeld.de/qald/
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Algorithm 2. Fragment to Template Conversion.
Input: A fragment f = {(M, R)}, an optional aggregate function α identified in

preprocessing. The set of expected answer types E is defined in Table 4.
answerType(p) is defined by Table 2.

Output: A template t = (R′, a, α′)
R′ = R;
P ′ ← (P \ A \ δ(R));
foreach (ρ, γ) ∈ M ′ do

pmax = arg maxp∈(dom(γ)∩P ′)(π2(γ(p));

if (pmax �= null) ∧ (π2(γ(pmax)) ≤ θ) then
R′ ← R′ ∪ ({?o pmax π1(γ(pmax)).}, null, null);

A ← ⋃(ρ,γ)∈M) dom(ρ);

A′ ← {p ∈ A|answerType(p) ∈ E};
if A′ = ∅ then

a ← DEFAULT MEASURE;

else
a ← arg max(ρ,γ)∈M),p∈A′ ρ(p);

return (R′, a, α)

Using the same 50 datasets, the test set QALD6T3-test was created in
the same way, but with slightly less complex questions. The questions, cor-
rect SPARQL queries, correct answers and our evaluation results are available
online.7

QALD6T3 provides several challenges that are supported by the CubeQA
algorithm. These are implied aggregations, intervals, implied or differently ref-
erenced measures and numerical values that are contained in several compo-
nent properties. It also includes questions that require features not provided
by CubeQA, such as SPARQL subqueries. The performance of CubeQA on the
benchmark is measured as follows: Given C the correct set of resources and O
the output of the algorithm, we define precision p = |C|∩|O|

|O| , recall r = |C|∩|O|
|C|

and the F1-score F1 = 2 pr
p+r . The average global F1 score calculates p = 0 for

empty answers.

Results. Of the 100 questions, 82 resulted in a nonempty answer, with an average
precision of 0.401, a recall of 0.324 and an F1 score of 0.392. Expected Answer
Typing positively impacts the performance, as its removal results in a signifi-
cant decrease in all three scores. Due to the cube index, many questions can be
answered even if they do not specify their target dataset. With all the 50 datasets
as candidates, the performance drops even more than without using answer typ-
ing, but the index chooses the dataset correctly for the majority of the questions
(74 of 100). Answering the 100 questions on a PC with an Intel Core i5-3230M
CPU, hosting both the SPARQL endpoint and the system implementation, took

7 https://github.com/AKSW/cubeqa/blob/master/benchmark/.

https://github.com/AKSW/cubeqa/blob/master/benchmark/
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Table 4. Mapping m of a question word to a set of expected answer types E, along
with the frequency of each question word in the benchmark. When the question word is
unknown or not found, or the unspecific “what” is used, all 6 answer types are possible.

Question word Expected answer type f

What Uncountable, countable, count, temporal, location, entity 35

How much Uncountable 33

Which Temporal, location, entity 19

How many Countable, count 6

When Temporal 4

None, other Uncountable, countable, count, temporal, location, entity 3

Total 100

87.45 s, 63.29 s and 63.33 s on three consecutive runs with preexisting index
structures.8 Table 5 shows the runtime distributions for the core tasks. With-
out preexisting index structures, the runs took 228.11 s, 228.77 s and 224.73 s,
respectively.

4.3 Research Question Summary

A brief summary of the initial research questions is as follows: Q1: CubeQA is
sufficiently powerful to be applied on challenging questions over statistical data
and we believe it will be a strong baseline for future research. Q2: Precision
is higher than recall, similar to general SQA systems, on QALD6T3-train but
similar on QALD6T3-test. Q3: CubeQA achieves a global F1 score of 44 %,
surpassed by QA3 with 53 %, using a template-base algorithm. Q4: The most
common cause for problems is ambiguity, followed by the lexical gap and query
structure.

4.4 Discussion

Comparison. We believe that CubeQA will be a strong baseline in this new
research subfield. As QALD6T3 was launched prior to submitting this publica-
tion to attract further research, two additional systems emerged: the yet unpub-
lished QA3 RDCQA system and the Sparklis [8] query builder (see Table 6).
A query builder lets the user construct queries visually by selecting and combin-
ing SPARQL features and knowledge base resources. It enables users to create
SPARQL queries and, if they build those queries correctly, achieves high accu-
racies. As such it occupies a middle ground, both in accuracy and usability,
between RDCQA and manually creating SPARQL queries. QA3 achieves a 9 %

8 The higher initial time is assumed to be caused by cache warmup both in the system
and the SPARQL endpoint.
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Table 5. Runtimes and error causes.

task t(ms)

SPARQL 25489

scoring 23326

index lookup 16070

parsing 5066

detectors 466

answer typing 13

total 61673

(a) Runtimes of the core tasks on QALD6T3-
train with preexisting cache structures. SPARQL
querying, scoring and index lookup are intersect-
ing and not all tasks are measured, so that the
times do not add up to the total.

error cause n

ambiguity 30

lexical gap 18

query structure 17

unknown 1

no error 34

total errors 66

(b) Categorization of errors from
the different benchmark questions
(at most one error per question),
including the categories automat-
ically excluded before the evalua-
tion.

higher f-score than CubeQA but due to its purely template-base approach, it is
unclear how it performs on open domain questions.

Limitations. CubeQA does not support query structures that require SPARQL
subqueries, express negations of facts or unions of concepts. Ambiguities and
lexical gaps are hard challenges that are not solved yet [14]. Nevertheless, they
occur in almost every question and must be adressed by every SQA system to
avoid massive penalties to precision and recall. Table 5 categorizes the different
errors that prevented CubeQA from returning a correct result to a question.

The most common cause is ambiguity, which mainly results from a high num-
ber of similar resources or equal numbers in the observation values. In benchmark
question 86, “How much was budgeted for general services for the Office of the
President of Sierra Leone in 2013?”, two different properties contain the literal
“Office of the President”. Because only the property value and not the property
name is referenced, the algorithm cannot determine which property is correct.
SQA systems like TBSL [26] resolve ambiguity by template scoring, so that the
user chooses among the top n, where candidate combinations are ranked high-
est that maximize textual and semantic relatedness between the candidates [22].
But this approach is not applicable to RDCQA because of the RDC meta model,
where component properties are not directly connected.

Instead, CubeQA relies on references consisting of a name reference as well
as a value reference, as in “the year 2008”, where the name-value pair with the
maximal score product of the name reference and the value reference is chosen. In
case such a two-part reference does not occur, it is alleviated by giving temporal
dimensions priority to others. For example, “2008” gets mapped to the year, if
it exists, rather than the more improbable measurement value.
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Table 6. QALD-6T3 performance of, indicated by average precision (over defined
values), recall, and global F1-score, rounded to 2 decimal places. The training set is
used for evaluation, as it contains 100 harder questions compared to 50 in the test
set. The correct target RDC was predefined for the training set, as the cube index is
evaluated separately, with 74 of 100 correct choices.

Algorithm Benchmark ∅p ∅r ∅F1

CubeQA Train 0.40 0.32 0.32

QA3 Test 0.59 0.62 0.53

CubeQA Test 0.49 0.41 0.44

Sparklis Test 0.96 0.94 0.95

The second most common cause the lexical gap, where a reference could not
be mapped to an entity due to the differences in surface forms. It is caused,
among others, by different capitalization, typing errors, word transpositions
(“extended amount”, “amount extended”) and different word forms (“commit-
ted”, “commitments”). Another issue with the lexical gap is that a measurement
can be referenced using a quantity reference (“amount”), a unit (“How many
dollars are given”), or the type (“aid”), of which only the first one guarantees
a match. Thus, CubeQA matches the range of a property as well as a its label.
The RDC vocabulary provides sdmx-attribute:unitMeasure to specify units of
measurement, but it does not support multiple measures so that the fallback has
the same effect. In case of future vocabulary specification updates, we plan to
integrate measurement units into our approach.

All of those, except typing errors, occur in the benchmark. As these men-
tioned causes occur in document retrieval and Web search as well, full text
indexes have been developed that robustly handle those problems. The employed
Lucene index cannot overcome the lexical gap in some cases, which are not recog-
nized by the stemmer and where the edit distance is too large for the fuzzy index
as well. Sometimes a concept is implicitly required but there is no explicit refer-
ence at all. Implicit references are part of future work and include aggregates.

5 Related Work

SQA in general is an active and established area of research with too many sys-
tems to cite individually but surveys [2,6,9,14,17] give a qualitative overview
of the field. Also, evaluation campaigns present quantitative comparisons with
benchmarks on either general tasks like QALD [5] or specialized tasks like
BioASQ [25]. RDCQA has not existed until recently, but non-semantic QA is
implemented by Wolfram—Alpha, which queries several structured sources using
the computational platform Mathematica [27], but the source code and algorithm
are not published. We inspired the RDCQA sub-field by discussing RDCs in rela-
tion to SQA and by categorizing of a statistical question corpus [12]. Next, we

http://purl.org/linked-data/sdmx/2009/attribute#unitMeasure
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developed CubeQA and QALD6-T3 to stimulate further research, which led to
the development of QA3 and Sparklis (see Sect. 4.4).

CubeQA uses time intervals for handling dates, similar to the system in [24]
that uses the Clinical Narrative Temporal Relation Ontology (CNTRO) to incor-
porate the time dimension in answering clinical questions. The ontology is based
on Allen’s Interval Based Temporal Logic [1] but it represents time points as
well. The framework includes a reasoner for time inference, for example based
on the transitivity of the before and after relations. The time dimension is used
there to identify the direction of possible causality between different events.

Furthermore, CubeQA generates query templates recursively, which is simi-
larly employed by Intui2 [7], which uses DBpedia and is based on synfragments,
minimal parse subtrees of a question, that are combined based on syntactic and
semantic characteristics to create the final query.

The motivation to develop RDCQA algorithms and their benefit rises with
the quantity, quality and significance of available RDCs. On the flipside, we
expect that the emergence and improvement of RDCQA algorithms increases
the value of RDCs. Because of this interdependence, we summarize efforts to
improve the quality of, create and publish RDF in general and RDCs in partic-
ular: RDCs are usually created by transforming databases or other structured
data sources using either custom software or mapping languages like R2RML9

and SML [23]. Eurostat—Linked Data10 transforms tabular data of Eurostat11,
providing statistics for comparing the European countries and regions. Linked-
Spending [13] uses the OpenSpending JSON API to provide finance data from
countries around the world. The most widely used statistical data format is
SDMX (Statistical Data and Metadata eXchange), which can be transformed
to RDCs using SDMX-ML [4]. A systematic review of Linked Data quality [28]
provides a qualitative analysis over established approaches, tools and metrics.

6 Conclusions and Future Work

We introduce RDCQA and design the CubeQA algorithm, provide a benchmark
based on real data, and evaluate the results. In future work, we plan to continue
contributing to the yearly QALD evaluation campaign by providing progressively
more challenging benchmarks. The next iteration of CubeQA will answer ques-
tions that require the consolidation of several RDCs. We will also investigate how
to integrate RDCQA techniques with SQA frameworks, such as OpenQA [18], so
that all-purpose systems can also answer questions on RDCs. On the flipside, we
also plan to integrate general SQA into RDCQA, to answer questions on RDCs
that require world knowledge. We also identified the following improvements:

– Implement selection filters as logical formula of constraints instead of flat sets,
including negations and unions.

9 https://www.w3.org/TR/r2rml.
10 http://eurostat.linked-statistics.org/.
11 http://ec.europa.eu/eurostat.

https://www.w3.org/TR/r2rml
http://eurostat.linked-statistics.org/
http://ec.europa.eu/eurostat
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– Support SPARQL subqueries to handle nested information dependencies.
– Support languages other than English using language detection components

as well as fitting parsers, indexes and preprocessing templates.
– Incorporate measurement units if the RDC vocabulary adds support for them

for multiple measures. For elaborate phrase patterns, like “How many people
live in” for “population”, there are pattern libraries like BOA [10] which need
to be adapted to statistical data by retraining on a comprehensive statistical
question corpus.

Overall, we believe to have opened a novel research subfield within SQA, which
will increase in importance due to the rise of both the volume of statistical data
and the usage of QA approaches in everyday life.

Acknowledgment. This work was supported by a grant from the EU H2020 Frame-
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