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Abstract. Reconstructing 3D scenes from multiple views has made
impressive strides in recent years, chiefly by correlating isolated feature
points, intensity patterns, or curvilinear structures. In the general setting
– without controlled acquisition, abundant texture, curves and surfaces
following specific models or limiting scene complexity – most methods
produce unorganized point clouds, meshes, or voxel representations, with
some exceptions producing unorganized clouds of 3D curve fragments.
Ideally, many applications require structured representations of curves,
surfaces and their spatial relationships. This paper presents a step in this
direction by formulating an approach that combines 2D image curves into
a collection of 3D curves, with topological connectivity between them
represented as a 3D graph. This results in a 3D drawing, which is com-
plementary to surface representations in the same sense as a 3D scaffold
complements a tent taut over it. We evaluate our results against truth
on synthetic and real datasets.

Keywords: Multiview stereo · 3D reconstruction · 3D curve networks ·
Junctions

1 Introduction

The automated 3D reconstruction of general scenes from multiple views obtained
using conventional cameras, under uncontrolled acquisition, is a paramount goal
of computer vision, ambitious even by modern standards. While a fully complete
working system addressing all the underlying challenges is beyond current tech-
nology, significant progress has been made in the past few years using approaches
that fall into three broad classes, depending on whether one focuses on corre-
lating isolated points, surface patches, or curvilinear structures across views, as
described below.

A vast majority of multiview reconstruction methods rely on correlating iso-
lated interest points across views to produce an unorganized 3D cloud of points.
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Fig. 1. Our approach transforms calibrated views of a scene into a “3D drawing” –
a graph of 3D curves meeting at junctions. Each curve is shown in a different color.
(Please zoom in to examine closely. The 3D model is available as supplementary data.)
(Color figure online)

The interest-point-based approach has been highly successful in reconstruct-
ing large-scale scenes with texture-rich images, in systems such as in Photo-
tourism and recent large-scale 3D reconstruction work [6,15,34,47]. Despite their
manifest usefulness, these methods generally cannot represent smooth, texture-
less regions (due to the sparsity of interest points in image regions with homoge-
neous appearance), or regions that change appearance drastically across views.
This limits their applicability, especially in man-made environments [28] and
objects such as cars [27], non-Lambertian surfaces such as that of the sea, appear-
ance variation due to changing weather [2], and wide baseline [46].

Another approach matches intensity patterns across views using multiview
stereo, producing denser point clouds or mesh reconstructions. Dense multi-
view stereo produces detailed 3D reconstructions of objects imaged under con-
trolled conditions by a large number of precisely calibrated cameras [3,25,40–
43,48]. For general, complex scenes with various kinds of objects and surface
properties, this approach has shown most promise towards obtaining an accu-
rate and dense 3D model of a given scene. Homogeneous areas, such as walls of
a corridor, repeated texture, and areas with view-dependent intensities create
challenges for these methods.

A smaller number of techniques correlate and reconstruct image curvilinear
structure across views, resulting in 3D curvilinear structure. Pipelines based
on straight lines (see [11,20,31] for recent reviews), algebraic and general curve
features [8–10,21,23,29,36] have been proposed, but some lack generality, e.g.,
requiring specific curve models [26]. The 3D Curve Sketch system [7,8,10] oper-
ates on multiple views by pairing curves from two arbitrary “hypothesis views”
at a time via epipolar-geometric consistency. A curve pair reconstructs to a 3D
curve fragment hypothesis, whose reprojection onto several other “confirmation
views” gathers support from subpixel 2D edges. The curve pair hypotheses with
enough support result in an unorganized set of 3D curve fragments, the “3D



72 A. Usumezbas et al.

Fig. 2. 3D drawings for urban planning and industrial design. A process from
professional practice for communicating solution concepts with a blend of computer and
handcrafted renderings [44,50]. New designs are often based off real object references,
mockups or massing models for selecting viewpoints and rough shapes. These can be
modeled manually in, e.g., Google Sketchup (top-left), in some cases from reference
imagery. The desired 2D views are rendered and manually traced into a reference
curve sketch (center-left, bottom-left) easily modifiable to the designer’s vision. The
stylized drawings to be presented to a client are often produced by manually tracing
and painting over the reference sketch (right). Our system can be used to generate
reference 3D curve drawings from video footage of the real site for urban planning,
saving manual interaction, providing initial information such as rough dimensions, and
aiding the selection of pose, editing and tracing. The condensed 3D curve drawings
make room for the artist to overlay his concept and harness imagery as a clean reference,
clear from details to be redesigned.

Curve Sketch”. While the resulting 3D curve segments are visually appealing,
they are fragmented, redundant, and lack explicit inter-curve organization.

The plethora of multiview representations, as documented above, arise
because 3D structures are geometrically and semantically rich [12,32]. A build-
ing, for example, has walls, windows, doorways, roof, chimneys, etc. The struc-
ture can be represented by sample points (i.e., unorganized cloud of points) or a
surface mesh where connectivity among points is captured. This representation,
especially when rendered with surface albedo or texture, is visually appealing.
However, the representation also leaves out a great deal of semantic information:
which points or mesh areas represent a window or a wall? Which two walls are
adjacent? The representation of such components, or parts, requires an explicit
representation of part boundaries such as ridges, as well as where these bound-
aries come together, such as junctions.

The same point can equally arise if objects in the scene were solely defined by
their curve structures. A representation of a building by its ridges may usually
give an appealing impression of its structure, but it fails to identify the walls, i.e.,
which collection of 3D curves bound a wall and what its geometry is. Both surfaces
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and curves are important and needed across the board, e.g., in applications such
as robotics [4], urban planning and industrial design [44,50], Fig. 2.

In general, image curve fragments are attractive because they have good
localization, they have greater invariance than interest points to changes in
illumination, are stable over a greater range of baselines, and are typically
denser than interest points. Furthermore, the reflectance or ridge curves provide
boundary condition for surface reconstruction, while occluding contour varia-
tions across views lead to surfaces [37,39,45]. Recent studies strongly support the
notion that image curves contain much of the image information [17,19,33,38].
Moreover, curves are structurally rich as reflected by their differential geome-
try, a fact which is exploited both in recent computer systems [1,8,10,33] and
perception studies [13,33].

This paper develops the technology to process a series of (intrinsic and extrin-
sically) calibrated multiview images to generate a 3D curve drawing as a graph
of 3D curve segments meeting at junctions. The ultimate goal of this approach
is to integrate the 3D curve drawing with the traditional recovery of surfaces so
that 3D curves bound the 3D curve segments, towards a more semantic repre-
sentation of 3D structures. The 3D curve drawing can also be of independent
value in applications such as fast recognition of general 3D scenery [23], efficient
transmission of general 3D scenes, scene understanding and modeling by rea-
soning at junctions [22], consistent non-photorealistic rendering from video [5],
modeling of branching structures, among others [18,24,30].

The paper is organized as follows. In Sect. 2 we review the 3D curve sketch,
identify three shortcomings and suggest solutions to each, resulting in the
Enhanced Curve Sketch. Since the original 3D curve sketch was built around
a few views at a time, it did not address fundamental issues surrounding inte-
gration of information from numerous views. Section 3 presents as our main
contribution the multiview integration of information both at edge- and curve-
level, which naturally leads to junctions. Section 4 validates the approach using
real and synthetic datasets.

2 Enhanced 3D Curve Sketch

Image curve fragments formed from grouped edges are central to our framework.
Each image V v at view v = 1, . . . , N contains a number of curves γv

i , i =
1, . . . ,Mv. Reconstructed 3D curve fragments are referred as Γ k, k = 1, . . . ,K,
whose reprojection onto view v is γk,v. Indices may be omitted where clear from
context.

The initial stage of our framework is built as an extension of the hypothesize-
and-verify 3D Curve Sketch approach [10]. We use the same hypothesis gener-
ation mechanism with a novel verification step performing a finer-level analysis
of image evidence and significantly reducing the fragmentation and redundancy
in the 3D models.

Two image curves γv1
l1

and γv2
l2

are paired from two distinct views v1 and
v2 at a time, the hypothesis views, provided they have sufficient epipolar over-
lap [10]. The verification of these K curve pair hypotheses, represented as ωk,
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k = 1, . . . , K with the corresponding 3D reconstruction denoted as Γ k, gauges
the extent of edge support for the reprojection γk,v of Γ k onto another set of
confirmation views, v = vi3 , . . . , vin . An image edge in view v suports γk,v if it
is sufficiently close in distance and orientation. The total support a hypothesis
ω receives from view v is

Sv
ωk

.=
∫ Lk,v

0

φ(γk,v(s))ds, (1)

where Lk,v is the length of γk,v, and φ(γ(s)) is the extent of edge support at
γ(s). A view is considered a supporting view for ωk if Sv

ωk
> τv. Evidence from

confirmation views is aggregated in the form

Sωk

.=
in∑

v=i3

[
Sv

ωk
> τv

]
Sv

ωk
. (2)

The set of hypotheses ωk whose support Sωk
exceeds a threshold are kept

and the resulting Γ k form the unorganized 3D curves.
Despite these advances, three major shortcomings remain: (i) some 3D curve

fragments are correct for certain portions of the underlying curve and erro-
neous in other parts, due to multiview grouping inconsistencies; (ii) gaps in the
3D model, typically due to unreliable reconstructions near epipolar tangencies,
where epipolar lines are nearly tangent to the curves; and (iii) multiple, redun-
dant 3D structures. We now document each issue and describe our solutions.

Problem 1. Erroneous grouping: inconsistent multiview grouping of edges can
lead to reconstructed curves which are veridical only along some portion, which
are nevertheless wholly admitted, Fig. 3(a). Also, fully-incorrect hypotheses can
accrue support coincidentally, as with repeated patterns or linear structures,
Fig. 3(b). Both issues can be addressed by allowing for selective local recon-
structions: only those portions of the curve receiving adequate edge support from
sufficient views are reconstructed. This ensures that inconsistent 2D groupings
do not produce spurious 3D reconstructions. The shift from cumulative global to
multi-view local support results in greater selectivity and deals with coincidental
alignment of edges with the reconstruction hypotheses.

Problem 2. Gaps: The geometric inaccuracy of curve segment reconstructions
nearly parallel to epipolar lines led [10] to break off curves at epipolar tangencies,
creating 2D gaps leading to gaps in 3D. We observe, however, that while recon-
structions near epipolar tangency are geometrically unreliable, they are topologi-
cally correct in that they connect the reliable portions correctly but with highly
inaccurate geometry. What is needed is to flag curve segments near epipolar tan-
gency reconstructions as geometrically unreliable. We do this by the integration
of support in Eq. 1, giving significantly lower weight to these unreliable portions
instead of fully discarding them, which greatly reduces the presence of gaps in
the resulting reconstruction.
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Fig. 3. (a) Due to a lack of consistency in grouping of edges at the image level, a
correct 3D curve reconstruction, shown here in blue, can be erroneously grouped with
an erroneous reconstruction, shown here in red, leading to partially correct reconstruc-
tions. When such a 3D curve is projected in its entirety to a number of image views,
we only expect the correct portion to gather sustained image evidence, which argues
for a hypothesis verification method that can distinguish between supported segments
and outlier segments; (b) An incorrect hypothesis can at times coincidentally gather
an extremely high degree of support from a limited set of views. The red 3D line
shown here might be an erroneous hypothesis, but because parallel linear structures
are common in man-made environments, such an incorrect hypothesis often gathers
coincidental strong support from a particular view or two. Our hypothesis verification
approach is able to handle such cases by requiring explicit support from a minimum
number of viewpoints simultaneously. (Color figure online)

Problem 3. Redundancy: A 2D curve can pair up with dozens of curves from
other views, all pointing to the same reconstruction, leading to redundant pair-
wise reconstructions as partially overlapping 3D curve segments, each localized
slightly differently. Our solution is to detect and reconcile redundant recon-
structions. Since redundancy changes as one traverses a 3D curve, we reconcile
redundancy at the local level: each 3D edge is in one-to-one correspondence
with a 2D edge of its primary hypothesis view (i.e., the first view from which
it was reconstructed), hence 3D edges can be grouped in a one-to-one manner,

Fig. 4. (a) Redundant 3D curve reconstructions (orange, green and blue) can arise
from a single 2D image curve in the primary hypothesis view. If the redundant curves
are put in one-to-one correspondence and averaged, the resulting curve is shown in (b)
in purple. Our robust averaging approach, on the other hand, is able to get rid of that
bump by eliminating outlier segments, producing the purple curve shown in (c). (Color
figure online)
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Fig. 5. A visual comparison of: (left) the curve sketch results [10], with (right) the
results of our enhanced curve sketch algorithm presented in Sect. 2. Notice the sig-
nificant reduction in both outliers and duplicate reconstructions, without sacrificing
coverage.

all corresponding to a common 3D source. These are robustly averaged by data-
driven outlier removal, where a Gaussian distribution is fit on all pairwise dis-
tances between corresponding samples, discarding samples farther than 2σ from
the average, Fig. 4. Robust averaging improves localization accuracy, removes
redundancy, and elongates shorter curve subsegments into longer 3D curves.

3 From 3D Curve Sketch to 3D Drawing

Despite the visible improvements of the Enhanced 3D Curve Sketch of Sect. 2,
Fig. 5, curves are broken in many places, and there remains redundant overlap.
The sketch representation as unorganized clouds of 3D curves are not able to
capture the fine-level geometry or spatial organization of 3D curves, e.g. by
using junction points to characterize proximity and neighborhood relations. The
underlying cause of these issues is lack of integration across multiple views.
The robust averaging approach of Sect. 2 is one step, anchored on one primary
hypothesis view, but integrates evidence within that view only; a scene curve can
be visible from multiple hypothesis view pairs, and some redundancy remains.

This lack of multiview integration is responsible for three problems observed
in the enhanced curve sketch, Fig. 10: (i) localization inaccuracies, Fig. 10b, due
to use of partial information; (ii) reconstruction redundancy, which lends to
multiple curves with partial overlap, all arising from the same 3D structure,
but remaining distinct, see Fig. 10c; (iii) excessive breaking because each curve
segment arises from one curve in one initial view independently.

Multiview Local Consistency Network: The key idea underlying integration
of reconstructions across views is the detection of a common image structure
supporting two reconstruction hypotheses. Two 3D local curve segments depict
the same single underlying 3D object feature if they are supported by the same
2D image edge structures. Since the identification of common image structure
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(a)

(b)

(c)

Fig. 6. The four bottlenecks of Fig. 10 are resolved by integration of information/cues
from all views. (a) The shared edge supporting edges, which are marked with circles,
create the purple links between the corresponding samples of the 3D curves. These
purple bonds will then be used to pull the redundant segments together and reorganize
the 3D model into a clean 3D graph. Observe how the determination of common image
support can identify portions of the green and blue curves as identical while differen-
tiating the red one as distinct. A real example for a bundle of related curves is shown
in (b) and the links among their edges in (c). (Color figure online)

can vary along the curve, it must necessarily be a local process, operating at
the level of a 3D local edge and not a 3D curve. Two 3D edge elements (edgels)
depict the same 3D structure if they receive support from the same 2D edgels in
a sufficient number of views, so 3D-2D links between a 2D edgel to the 3D edgel
it supports must be kept. Typically, they share supporting image edges in many
views; and the number of shared supporting edgels is the measure of strength
for a 3D-3D link between them.

Formally, we define the Multiview Local geometric consistency Network
(MLN) as pointwise alignments φij between two 3D curves Γ i and Γ j : let Γ i(si)
and Γ j(sj) be two points in two 3D curves, and define

Sij
.= {v : γi,v(si) and γj,v(sj) share local support}. (3)

Then the a kernel function φ defines a consistency link between these two points,
weighted by the extent of multiview image support φij(si, sj)

.= |Sij |. When the
curves are sampled, φ becomes an adjacency matrix of a graph representing links
between individual curve samples. The implementation goes through each image
edgel which votes for a 3D curve point that has received support from it (see
the supplementary material for details) (Fig. 6).

Multiview Curve-Level Consistency Network: The identification of 3D
edges sharing 2D edges leads to high recall operating point with many false
links due to accidental alignment of edge support. False positives can be reduced
without affecting high recall by employing a notion of curve context for each 3D
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Fig. 7. The correspondence between 3D edge samples is skewed along a curve, which
is a direct indication that these links cannot be used as-is when averaging and fusing
redundant curve reconstructions. Instead, each point is assumed to be in correspon-
dence with the point closest to it on another overlapping curve, during the iterative
averaging step. Observe that corrections can be partial along related curves.

edgel: a link between two 3D edgels based on a supporting 2D edgel is more
effective if the respective neighbors of the underlying 3D edge on the underlying
3D curve are also linked.

The curve context idea requires establishing new pairwise links between 3D
curves using MLN, when there are a sufficient number of links with φij > τε

between their constituent 3D edges (in our implementation, τε = 3 and we
require 5 such edges or more). The linking of 3D curves is represented by the
Multiview Curve-level Consistency network (MCCN), a graph whose nodes are
the 3D curves Γ j and the edges represent the presence of high-weight 3D edge
links between these 3D curves. The mccn graph allows for a clustering of 3D
curves by finding connected components; and once a link is established between
two curves, there is a high likelihood of their edges corresponding in a regularized
fashion, thus fewer common supporting 2D edges are required to establish a
link between all their constituent 3D edges. This fact is used to perform gap
filling, since even no edge support is acceptable to fill in small gaps and create
a continuous and regularized correspondence if both neighbors of the gap are
connected (see pseudocode in Supplementary Materials for details). The two
stages in tandem, i.e., high recall linking of 3D edges and use of curve context to
reduce false positives leads to high recall and high precision, i.e., all the 3D edges
which need to be related are related and very few outlier connections remain.

Integrating Information Across Related Edges: The identification of a
bundle of curves as arising from the same 3D source implies that we can improve
the geometric accuracy of this bundle by allowing them to converge to a common
solution. While this might appear straightforward, 3D edges are not consistently
distributed along related curves, yielding a skew in the correspondence of related
samples, Fig. 7, sometimes not a one-to-one correspondence, Fig. 8a. This argues
for averaging 3D curves and not 3D edge samples, which in turn requires finding
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Fig. 8. (a) A schematic of sample correspondence along two related 3D curves, showing
skewed correspondences that may not be one-to-one. (b) A sketch of how two curves
are integrated. Bottom row: a real case.

a more regularized alignment between the 3D curves, without gaps; we find each
curve samples’s closest point on the other curve.

When post averaging a sample with its closest points on related curves, the
order of resulting averaged samples is not clear. The order should be inferred
from the underlying curves, but this information can be conflicting, unless the
distance between two curves is substantially smaller than the sampling distance
along the curves. This requires first updating each curve’s geometry separately
and iteratively, without merging curves until after convergence, Fig. 8d. This also
improves the correspondence of samples at each iteration, as the closest points
are continuously updated.

At each stage, the iterative averaging process simply replaces each 3D edge
sample with the average of all closest points on curves related to it, Fig. 8b–d.
This can be formulated as evolving all 3D curves by averaging along the mccn
using closest points. Formally, each Γ i is evolved according to

∂Γ i

∂t
(s) = α avg

(i,j)∈L
(Γ i,Γ j)∈ mccn

{Γ j(r) : Γ j(r) = cpj(Γ i(s))}, (4)

where cpi(p) is the closest point in Γ i to p and L is the link set defined as
follows: Let the set Sij of so-called strong local links between curves Γ i and
Γ j be

Sij
.= {(s, t) : φij(s, t) ≥ τε, φij ∈ MLN(Γ 1, . . . ,Γ K)}. (5)
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Then the set L of the mccn is defined as

L
.= {(i, j) : |Sij | ≥ τsl}. (6)

In practice, the averaging is robust and α is chosen such that in one step we
move to the average.

3D Curve Drawing Graph: Once all related curves have converged, they can
be merged into single curves, separated by junctions where 3 or more curves
meet. The order along the resulting curve is also dictated by closest points: The
immediate neighbors of any averaged 3D edge are the two closest 3D edges to it
among all converged 3D edges in a given mccn cluster.

This where junctions naturally arise: as two distinct curves may merge along
one portion they may diverge at one point, leaving two remaining, non-related
subsegments behind, Fig. 8e. This is a junction node relating three or more curve
segments, and its detection is done using the merging primitives, whose complete
set are shown in Fig. 9. The intuition is this: a complex merging problem along
the full length of two 3D curves actually consists of smaller, simpler and inde-
pendent merging operations between different segments of each curve. A full
merging problem between two complete curves can be expressed as a permuta-
tion of any number of simpler merging primitives. These primitives were worked
out systematically to serve as the basic building blocks capable of constructing
all possible configurations of our merging problem.

After iterative averaging, all resulting curves in any given cluster are
processed in a pairwise fashion using these primitives: initialize the 3D graph
with the longest curve in the cluster, and merge every curve in the cluster one
by one into this graph. At each step, any number of these merging primitives
arise and are handled appropriately. This process outputs the Multiview Curve
Drawing Graph (MDG), which consists of multiple disconnected 3D graphs, one

Fig. 9. The complete set of merging primitives, which were systematically worked out
to cover all possible merging topologies between a pair of curves whose overlap regions
are calculated beforehand. We claim that any configuration of overlap between two
curves can be broken down into a series of these primitives along the length of one
of the curves. The 5th primitive is representative of a bridge situation, where the
connection at either end of the yellow curve can be any one of the first four cases
shown, and 6th primitive is representative of a situation where only one end of the
yellow curve connects to multiple existing curves, but not necessarily just two. (Color
figure online)
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Fig. 10. (a) The four main issues with the enhanced curve sketch: (b) localization
errors along the camera principal axis, which cause loss in accuracy if not corrected,
(c) redundant reconstructions due to a lack of integration across different views, (d)
the reconstruction of a single long curve as multiple, disconnected (but perhaps over-
lapping) short curve segments, and (e) the lack of connectivity among distinct 3D
curves which naturally form junctions. (f) shows the 3D drawing reconstructed from
this enhanced curve sketch, as described in Sect. 3. Observe how each of the four bottle-
necks have been resolved. Additional results are evaluated visually and quantitatively,
and are reported in Sect. 4 as well as Supplementary Materials.

for each 3D curve cluster in the MCCN. The nodes of each graph are the junc-
tions (with curve endpoints) and the links are curve fragment geometries. This
structure is the final 3D curve drawing.

4 Experiments and Evaluation

We have devised a number of large real and synthetic multiview datasets, avail-
able at multiview-3d-drawing.sourceforge.net.

The Barcelona Pavilion Dataset: a realistic synthetic dataset we created for
validating the present approach with control over illumination, geometry and
cameras. It consists of: 3D models composing a large, mostly man-made, scene
professionally composed by eMirage studios using the 3D modeling software
Blender; ground-truth cameras fly-by’s around chairs with varied reflectance
models and cluttered background; (iii) ground-truth videos realistically rendered
with high quality ray tracing under 3 extreme illumination conditions (morning,
afternoon, and night); (iv) ground-truth 3D curve geometry obtained by man-
ually tracing over the meshes. This is the first synthetic 3D ground truth for
evaluating multiview reconstruction algorithms that is realistically complex –
most existing ground truth is obtained using either laser or structured light
methods, both of which suffer from reconstruction inaccuracies and calibration
errors. Starting from an existing 3D model ensures that our ground truth is not

http://multiview-3d-drawing.sourceforge.net
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Fig. 11. Our publicly-available synthetic (left and top-right) and real (bottom-right)
3D ground truths modeled and rendered using Blender for the present work.

polluted by any such errors, since both 3D model and the calibration parame-
ters are obtained from the 3D modeling software, Fig. 11. The result is the first
publicly available, high-precision 3D curve ground truth dataset to be used in
the evaluation of curve-based multiview stereo algorithms. For the experiments
reported in the main manuscript we use 25 views out of 100 from this dataset,
evenly distributed around the primary objects of interest, namely the two chairs,
see Fig. 11.

The Vase Dataset: constructed for this research from the dtu Point Feature
Dataset with calibration and 3D ground truth from structured light [16,35].
The images were taken using an automated robot arm from pre-calibrated posi-
tions and our test sequence was constructed using views from different illumina-
tion conditions to simulate varying illumination. To the best of our knowledge,
these are the most exhaustive public multiview ground truth datasets. To gen-
erate ground-truth for curves, we have constructed a GUI based on Blender
to manually remove all points of the ground-truth 3D point-cloud that corre-
spond to homogeneous scene structures as observed when projected on all views,
Fig. 11(bottom). What remains is a dense 3D point cloud ground truth where the
points are restricted to be near abrupt intensity changes on the object, i.e. edges
and curves. Our results on this real dataset showcase our algorithm’s robustness
under varying illumination.

The Amsterdam House Dataset: 50 calibrated multiview images, also devel-
oped for this research, comprising a wide variety of object properties, including
but not limited to smooth surfaces, shiny surfaces, specific close-curve geome-
tries, text, texture, clutter and cast shadows, Fig. 1. The camera reprojection
error obtained by Bundler [34] is on average subpixel. There is no ground truth
3D geometry for this dataset; the intent here is: to qualitatively test on a scene
that is challenging to approaches that rely on, e.g., point features; and to be able
to closely inspect expected geometries and junction arising from simple, known
shapes of scene objects.
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Fig. 12. The 3D drawing results on the Barcelona Pavilion, DTU Vase and Capitol
Datasets. See Supplementary Materials for more extensive results and comparisons

The Capitol High Building: 256HD frames from a high 270◦ helicopter fly-by
of the Rhode Island State Capitol [10]. Camera parameters are from the Matlab
Calibration toolbox and tracking 30 points.

Qualitative Evaluation: The enhancements of Sect. 2 lead to significant
improvements to the 3D curve sketch of [10] in increasing recall while main-
taining precision. See Fig. 5 for a qualitative comparison. When the clean clouds
of curves are organized into a set of connected 3D graphs, the results are more
accurate, more visually pleasing and not redundant, Figs. 10(f) and 12. Each
of the issues in Fig. 10(a–e) have been resolved and spatial organization of 3D
curves have been captured as junctions, represented by small white spheres.

Quantitative Evaluation: Accuracy and coverage of 3D curve reconstructions
is evaluated against ground truth. We compare 3 different results to quantify our
improvements: (i) Original Curve Sketch [10] run exhaustively on all views, (ii)
Enhanced Curve Sketch, Sect. 2, and (iii) Curve Drawing, Sect. 3. Edge maps
are obtained using Third-Order Color Edge Detector [49], and are linked using

Fig. 13. Precision-recall curves for quantitative evaluation of 3D curve drawing algo-
rithm: (a) Curve sketch, enhanced curve sketch and curve drawing results are compared
on Barcelona Pavilion dataset with afternoon rendering, showing significant improve-
ments in reconstruction quality; (b) A comparison of 3D curve drawing results on fixed
and varying illumination version of Barcelona Pavilion dataset proves that 3D draw-
ing quality does not get adversely affected by varying illumination; (c) 3D drawing
improves reconstruction quality by a large margin in Vase dataset, which consists of
images of a real object under slight illumination variation.



84 A. Usumezbas et al.

Symbolic Linker [14] to extract curve fragments for each view. Edge support
thresholds are varied during reconstruction for each method, to obtain precision-
recall curves. Here, precision is the percentage of accurately reconstructed curve
samples: a ground truth curve sample is a true positive if its closer than a
proximity threshold to the reconstructed 3D model. A reconstructed 3D sample is
deemed a false positive if its not closer than τprox to any ground truth curve. This
method ensures that redundant reconstructions aren’t rewarded multiple times.
All remaining curve samples in the reconstruction are false positives. Recall
is the fraction of ground truth curve samples covered by the reconstruction. A
ground truth sample is marked as a false negative if its farther than τprox to the
test reconstruction. The precision-recall curves shown in Fig. 13 quantitatively
measure the improvements of our algorithm and showcase its robustness under
varying illumination.

5 Conclusion

We have presented a method to extract a 3D drawing as a graph of 3D curve
fragments to represent a scene from a large number of multiview imagery. The
3D drawing is able to pick up contours of objects with homogeneous surfaces
where feature and intensity based correlation methods fail. The 3D drawing can
act as a scaffold to complement and assist existing feature and intensity based
methods. Since image curves are generally invariant to image transformations
such as illumination changes, the 3D drawing is stable under such changes. The
approach does not require controlled acquisition, does not restrict the number
of objects or object properties.
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